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Abstract: State-of-the-art forest models are often complex, analytically intractable, and
computationally expensive, due to the explicit representation of detailed biogeochemical and
ecological processes. Different models often produce distinct results while predictions from the
same model vary with parameter values. In this project, we developed a rigorous quantitative
approach for conducting model intercomparisons and assessing model performance. We have
applied our original methodology to compare two forest biogeochemistry models, the Perfect
Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) and Landscape Disturbance and
Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN). We simulated past-decade
conditions at flux tower sites located within Harvard Forest, MA, USA (HF-EMS) and Jones Ecological
Research Center, GA, USA (JERC-RD). We mined field data available from both sites to perform
model parameterization, validation, and intercomparison. We assessed model performance using
the following time-series metrics: Net ecosystem exchange, aboveground net primary production,
aboveground biomass, C, and N, belowground biomass, C, and N, soil respiration, and species
total biomass and relative abundance. We also assessed static observations of soil organic C and
N, and concluded with an assessment of general model usability, performance, and transferability.
Despite substantial differences in design, both models achieved good accuracy across the range of
pool metrics. While LANDIS-II NECN showed better fidelity to interannual NEE fluxes, PPA-SiBGC
indicated better overall performance for both sites across the 11 temporal and two static metrics tested
(HF-EMS R2 = 0.73,+0.07, RMSE = 4.68,−9.96; JERC-RD R2 = 0.73,+0.01, RMSE = 2.18,−1.64).
To facilitate further testing of forest models at the two sites, we provide pre-processed datasets
and original software written in the R language of statistical computing. In addition to model
intercomparisons, our approach may be employed to test modifications to forest models and their
sensitivity to different parameterizations.

Keywords: Perfect Plasticity Approximation; SORTIE-PPA; LANDIS-II; forest ecosystem simulation;
forest biogeochemistry model; forest landscape model; model intercomparison; Harvard Forest;
Jones Ecological Research Center

1. Introduction

1.1. A Brief History of Forest Ecosystem Models

For millenia, timber harvest for economic, militaristic, and social gain was the primary—if not
sole—objective of forestry. This focus changed only slightly in the 18th century with the emergence
of sustained-yield forest management in Leipzig, Germany (then within the Electorate of Saxony,
Holy Roman Empire) [1]. For the first time, controlling the effects of management intensity on land
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productivity over time was given primary consideration. This followed a history of deforestation
extending back to the loss of Cedrus forests across the Middle East, as described in the Epic of Gilgamesh
in the third millennium BCE [2,3]. While sustained-yield forest management was designed to maximize
timber production indefinitely, under the spurious assumption that sustained yield is possible solely
through in situ silvicultural treatments, the concept broadly inspired sustainability science, resilience
theory [4], and subsequent work on complex adaptive systems [5].

From its inception, sustainability regarded matters economic, social, and ecological in nature [6].
Yet, economic-focused timber production likely accelerated with increased mechanization in the
mid-20th century. As our understanding of abiotic and biotic forest interactions expanded, the core
assumptions of stationarity underpinning sustained-yield management lost support. The importance of
fire ecology [7], structural complexity [8], trophic interactions [9], and their relation to climate, soil, and
ecosystem functioning was soon uncovered. Research on climate impacts on regeneration [10,11] further
showed that species compositional changes are likely under current climate trajectories, requiring
proactive strategies to sustain yields from extant forests.

Research along this line inspired the concepts of adaptive migration [12], assisted gene flow [13],
and precise gene editing of trees with CRISPR/Cas9 [14]. Ecological forestry or sustainable forest
management is now the dominant management paradigm, where the focus is on emulating natural
processes of succession, disturbance, and migration [15]. Mirroring changes in management, modeling
forest ecosystems also underwent a paradigm shift from focusing on sustained yield to ecological
forestry and multiple-use management. This has required a remarkable increase in the size and
complexity of forest ecosystem models in order to simulate a suite of new complex processes.

Forest models likely began 350 years ago in China with yield tables known as the Lung Ch’uan
codes, invented by a women of the Kuo family in Suichuan county, Jiangxi [16]. It was not until
the 20th century that the first complex mathematical models of forests emerged. Long restricted
to simple models developed with mechanical calculators, digital computers enabled researchers to
explicitly model forest dynamics. Following the development of matrix models [17] and empirical
growth-and-yield models such as Prognosis [18,19], a vast array of gap [20], forest landscape [21–25],
and terrestrial biosphere models [26–28] have been developed. Models of forest ecosystems vary
substantially in application, abstraction, and system detail. While some models may be entirely
statistical or mechanistic, others combine statistical and systems-theoretic process models in a hybrid
modeling approach [29,30].

Representation of canopy geometry varies from implicit to a single ’big-leaf’ and detailed
three-dimensional crown and root geometry (e.g., modern gap models such as MAESPA [31] and
LES [32]). Models of growth range from simple allometric equations (e.g., growth-and-yield models)
to light-use efficiency models [33] and first-principles mechanistic models of photosynthesis [34].
Belowground process models similarly vary in structure, from simple stoichiometric relations to carbon
and nitrogen cycling with microbial dynamics to a fully mechanistic representation of energetic and
biogeochemical processes based on thermodynamics. Current belowground models vary considerably
in their process representation and accuracy, with much improvement left to be made [35]. Most
belowground models in use globally rely on a variant of the classical Century model [36,37].

Model specialization and generalization ranges from pure research applications in narrowly
defined areas (e.g., [31]) to simulating multiple loosely coupled landscape processes to modeling
biogeochemical fluxes throughout the world’s forests. A trade-off is thought to exist between realism,
precision, and generality [38], with more detailed models requiring higher parameterization costs. Yet,
little is known about the net effects of variation in the structure of these models on the precision and
accuracy of their predictions across temporal and spatial scales. While such model intercomparisons
are common within classes of models such as terrestrial biosphere models, they are seldom applied to
gap or forest landscape models. Models operating at different scales are seldom compared within sites.
Yet, much can be learned by comparing models that differ in assumptions and structure.
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1.2. Emergence of New Classes of Hybrid Model

Modern forest landscape models are the result of five key model development phases, listed in
chronological order: (1) Growth-and-yield models; (2) fire models; (3) gap models; (4) physiological
models; (5) hybrid models combining design principles from each [20,29,39]. Terrestrial biosphere
models similarly trace their roots back to early one-dimensional physiological models, with land
surface models currently in their third generation and dynamic global vegetation models in their
second generation [40]. This latest generation of models was intended to address the lack of
explicit representation of vegetation dynamics—a critical source of model uncertainty in future
climate scenarios [41]. This inspired the aforementioned forest ecosystem model intercomparisons
as well as new terrestrial biosphere model designs based on gap models, bypassing the trade-offs of
medium-resolution forest landscape models.

Collectively, these efforts yielded a number of new terrestrial biosphere models based on the
classical gap model, including the Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) [42],
the Ecosystem Demography model (ED/ED2) [43,44], and Land Model 3 with PPA (LM3-PPA) [45],
based on the Perfect Plasticity Approximation (PPA) [46,47]. These models represent the current
state-of-the-art in modeling vegetation dynamics globally, in what we term ’cohort-leaf’ vegetation
models. While individual-based global models have begun to merge, forest landscape models have
remained in between, focused on spatial processes of fire, harvest, and biological disturbance. Yet,
previous research has shown that such forest landscape models are often insensitive to landscape
configuration and are therefore aspatial [48], counter to the main assumption and selling point of
these models.

While most forest landscape and terrestrial biosphere models lack individual trees, the SAS [43]
and PPA [32,46,49] model reduction strategies have demonstrated an ability to successfully up-scale
gap dynamics to forest stands. Other up-scaling strategies exist as well. One recent forest landscape
model participating in the CoFoLaMo intercomparison scales from individual trees to stands by
pre-computing light tables [50]. Regardless of the model structure, it is clear that gap, forest landscape,
and terrestrial biosphere models are beginning to merge into new models of the terrestrial biosphere.
This trend is also attributable to improvements in computational efficiency with new processor designs
and cluster or cloud computing infrastructure. As few, if any, existing models are designed for highly
parallel architectures (e.g., general-purpose graphics processing units, or GPGPUs), there remains
much potential for future efficiency gains. Meanwhile, a clear opportunity exists to embed machine
learning models within simulators for data-driven, pattern-based processes (e.g., from remote sensing
data streams).

1.3. Existing Forest Ecosystem Model Intercomparison Projects

Existing forest model intercomparison projects, or MIPs, in Europe include the stand-level
Intersectoral Impact MIP (ISIMIP) regional forests sector [51] and the landscape-level Comparison
of Forest Landscape Models (CoFoLaMo) [52] through ISIMIP, both conducted under the European
Union Cooperation on Science and Technology (COST) Action FP1304 “Towards robust projections
of European forests under climate change” (PROFOUND). Previous MIP efforts in the United
States are limited and include the Throughfall Displacement Experiment (TDE) Ecosystem MIP
at Walker Branch Watershed in Oak Ridge, Tennessee [53,54]. The TDE MIP involved a large-scale
manipulation experiment to assess ecosystem responses to changes in precipitation, utilizing a total
of 13 models. The MIP included an array of monthly, daily, and hourly temporal resolution models.
Notable models compared include PnET-II [55], SPA [56], Biome-BGC [57], LINKAGES [58], and
MAESTRO/MAESTRA [59], in addition to nine other models. Perhaps unsurprisingly, they found that
no single model was ideal for predicting a variety of variables while there was substantial disagreement
between models in the C response of vegetation to soil water changes. They also found that more
mechanistic models operating at shorter temporal resolution generally showed higher fitness [54].
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While the TDE MIP provided a thorough model intercomparison using a variety of model structures,
it was limited to a single location and was completed nearly two decades ago.

ISIMIP is a protocol that provides a framework for projecting the impacts of climate change across
different sectors. The recent ISIMIP2 biome sector MIP involved the following simulation models:
CARAIB [60], DLEM [61], JULES [62,63], LPJ-GUESS [64], LPJmL [65], ORCHIDEE [66], VEGAS [67],
and VISIT [68]. These models were used to simulate carbon cycling in terrestrial ecosystem in response
to climate change and increased atmospheric CO2 [69]. Shared forcing data was provided at daily
temporal and 0.5° spatial resolution. The ISIMIP2 simulation protocol called for model spin-up
followed by a transient run forced by historical climate, CO2 concentration, and land-use [69,70].
ISIMIP2 also involved a regional forests sector, the ISIMIP2/PROFOUND model intercomparison,
which included the following models: 3D-CMCC FEM [71,72], 3D-CMCC-CNR-BGC [73], 3-PG [33],
4C or FORESEE [74], ANAFORE [75], BASFOR [76], CARAIB [60], ED2 [43,44], ForClim [20],
FORMIND [77], GO+ [78], GOTILWA+ [79], Landscape-DNDC [80], LPJ-GUESS [64], PnET-BGC [81],
and PRELES [82].

ISIMIP2/PROFOUND resulted in the release of a database of harmonized data for model
intercomparisons, as well as a wrapper library in the R language for statistical computing [83], yet
to be released at the time of this writing. For the ISIMIP regional forest model intercomparison, sites
were selected in COST Action FP1304 PROFOUND that provide simplified forest model initialization.
Modeling experiments mostly encompassed managed forests. Long time-series data from forest
inventories and FLUXNET sites were used in model intercomparisons. Meanwhile, CoFoLaMo
involved a comparison of the following forest ecosystem models through the ISIMIP framework [52]:
LandClim [84], ForHyCS [85], TreeMig [86], LANDIS-II [87], and iLand [50]. Rather than being driven
by climate data at 0.5° spatial resolution, temperature and precipitation drivers were downscaled to
100 m resolution in CoFoLaMo. Forest models were compared with respect to their scales, processes,
interactions, drivers, disturbances, uncertainties, and implementation details such as data requirements.
For model spin-up, the models used observed climate data hindcast to 1600 A.D., while model forecasts
used Representative Concentration Pathways (RCPs) from ISIMIP [52].

Given extensive model intercomparison efforts currently underway in Europe, the question
remains, is a forest biogeochemistry MIP necessary for North America? Presently, no other current
forest biogeochemistry MIP is evident for the Americas, leaving a substantial spatial sampling bias
in model implementation. There is a critical need to conduct ongoing forest biogeochemistry model
comparisons in this and other regions of the world in order to establish the regional foundation for
robust global C cycle projections. While model initialization and validation data may be relatively
difficult to come by in other regions, North America enjoys some of the most thorough forest
inventory data in the world, with wide coverage and repeat sampling. This is particularly true
for vast temperate and boreal forests in the US and Canada that are critical to the global C cycle.
Meanwhile, Mexico, Puerto Rico, and the state of Hawaii contain tropical forests critical for improving
models in these systems globally. In this work, we aim to begin this process for North America with
a comparison of the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC)
and Landscape Disturbance and Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II
NECN) models, which provide contrasting model structures for representing demographic and
biogeochemical processes.

In this forest biogeochemistry MIP, we focus on two sites on the East Coast of the United States,
Harvard Forest (HF), Massachusetts and Jones Ecological Research Center (JERC), Georgia. The two
sites were selected for their representativeness of the United States Eastern Seaboard and for the
availability of data needed to parameterize and validate the models. Harvard Forest is one of the
most-studied forests in the world, with Google Scholar returning 12,700 results for the site. We focus on
results for the Environmental Measurement Station (EMS) eddy covariance (EC) flux tower site within
the Little Prospect Hill tract - the longest-running eddy covariance flux tower in the world. While there
have been fewer studies at Jones Ecological Research Center, Georgia, USA, Google Scholar returns
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1370 results for the site, reflecting its growing role in forest sciences research. Our study focuses on the
Red Dirt (RD) EC flux tower site within the mesic sector.

In this work, we aim to establish a foundation for future forest biogeochemistry model
intercomparisons. This includes open-source object-oriented software to facilitate model
parameterization, validation, intercomparison, and simplified reproducibility of results, based on our
Earth-science Research and Development Environment (Erde), a library implemented in R and Python
(Erickson and Strigul, in preparation). We perform the model intercomparison for two key research
forests in the United States to assess the ability of each model to reproduce observed biogeochemistry
pools and fluxes over time. We hypothesize that the inclusion of forest growth, compositional change,
and mortality processes in both models will allow for accurate predictions of biomass and NEE
dynamics, as suggested in previous research Urbanski et al. [88]. Accordingly, we compare both
models to observations and to each other for a host of metrics related to biomass, C, N, and forest
composition at the two research sites.

2. Materials and Methods

LANDIS-II NECN and PPA-SiBGC were parameterized for two forested sites in the eastern United
States, Harvard Forest, Massachusetts and Jones Ecological Research Center, Georgia. At the HF site,
we focus on Little Prospect Hill and the EMS EC flux tower (HF-EMS). At the JERC site, we focus on
the mesic zone and RD EC flux tower (JERC-RD). Both sites provided local EC and meteorological
measurements to conduct this study. Plots of EC flux and meteorological tower measurements for
both sites are located in Appendix A (Figures A1–A4); maps of both sites are provided in the site
descriptions.

Both models were parameterized using data available for each site, including local (i.e., field
measurements) and general information sources (e.g., species compendiums and other published
sources). As these empirical or observational values were used to parameterize both models, further
model calibration (i.e., parameter tuning) was not necessary. This is because tuning parameters away
from measured values to improve model performance, or defining a separate set of tuning parameters,
is known to produce model over-fitting (i.e., reduced generality) and thus false improvements in model
accuracy through reduced parsimony [89]. We explicitly avoided this practice, as it is only appropriate
when fitting empirical growth-and-yield models such as Prognosis, also known as the Forest
Vegetation Simulator (FVS) [18,19]. All model parameters are provided in Appendix B (Tables A1–A30).
We close the methodology section with descriptions of the metrics, models, and criteria used in
the intercomparisons.

2.1. Model Descriptions

In the following sections, we provide a brief overview of the two forest ecosystem models used in
this intercomparison study. For detailed information on each model, readers are encouraged to refer to
the original publications.

2.1.1. LANDIS-II NECN

The LANDIS-II model is an extension of the original LANdscape DIsturbance and Succession
(LANDIS) model [90–92] into a modular software framework [87]. Specifically, LANDIS-II is a model
core containing basic state information that interfaces or communicates with external user-developed
models known as “extensions” using a combination of object-oriented and modular design. This
design makes LANDIS-II a modeling framework rather than a model. The LANDIS family of models,
which also includes LANDIS PRO [93] and Fin-LANDIS [94,95], are stochastic hybrid models [29]
based on the vital attributes/fuzzy systems approach of the LANDSIM model genre [96]. This genre
borrows heavily from cellular automata [97] and thus Markov Chains by applying simple heuristic
rule-based systems, in the form of vital attributes, across two-dimensional grids.
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Models of the LANDSIM genre focus on landscape-scale processes and assume game-theoretic
vital attribute controls over successional trajectories following disturbance [98]. The LANDSIM model
genre is thus a reasonable match for the classical forest fire model [99], given its local two-dimensional
cellular basis. In contrast to the original LANDIS model, LANDIS-II is implemented in Microsoft
C# rather than ISO C++98 [100], simplifying model development in exchange for a proprietary
single-vendor software stack [87].

The latest version of LANDIS-II (v7) supports Linux through use of the Microsoft .NET Core
developer platform. The modular design of LANDIS-II is intended to simplify the authorship and
interaction of user-provided libraries for succession and disturbance. The centralized model core
stores basic landscape and species state information and acts as an interface between succession and
disturbance models. While there have been numerous forest landscape models over the years [21–25],
the LANDIS family of models has enjoyed notable longevity and is currently united under the
LANDIS-II Foundation. Part of its longevity is attributable to the prioritization of model functionality
over realism in order to appeal to application-minded managers seeking a broad array of functionality.

The Net Ecosystem Carbon and Nitrogen (NECN) model [101] is a simplified variant of the
classical Century model [36,37]. The original ten soil layers in Century have been replaced by a single
soil layer, with functions for growth and decay borrowed directly from Century v4.5. The NECN
succession model Figure 1 is thus a process-based model that simulates C and N dynamics along the
plant-soil continuum at a native monthly timestep.

Cohorts

Wood, Leaf, Root

Monthly Temperature, Precipitation

Detritus
Pools

Structural
|
Metabolic Structural
|
Metabolic

Surface 
Residue

Soil 
Residue

Wood Coarse 
Roots

SOM
3

Passive

SOM
1
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SOM
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Slow SOM
Pools

CO2, N

CO2,
N

C,
N
Flow

Decomposition

Regeneration
Growth
Mortality
Decay
Hydrology

= Liebig’s Law
= Century
= Century
= Century
= Bucket

Figure 1. LANdscape DIsturbance and Succession II Net Ecosystem Carbon and Nitrogen
(LANDIS-II NECN) model structure.

Atmospheric effects are included through monthly climate (i.e., temperature maxima, minima,
means, and standard deviations, and precipitation means and standard deviations). Explicit geometric
representation of tree canopies is forgone in favor of bounded statistical growth models based
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theoretically on Liebig’s Law of the Minimum. Functions for growth, mortality, and decay are adopted
from Century [36] while hydrology is based on the simple bucket model [102]. The regeneration
function is the only new process in NECN and is also based on Liebig’s Law. For a detailed description
of the NECN model, readers may refer to the original model publication [101]. Parameterization of
the LANDIS-II model for both sites was based on updating parameters used in recent [103–106] and
ongoing (Flanagan et al., in review) work.

2.1.2. PPA-SiBGC

The PPA-SiBGC model belongs to the SORTIE-PPA family of models [46,49] within the SAS-PPA
model genre, based on a simple and analytically tractable approximation of the classical SORTIE gap
model [107,108]. The Perfect Plasticity Approximation, or PPA [46,47], was derived from the dual
assumptions of perfect crown plasticity (e.g., space-filling) and phototropism (e.g., stem-leaning), both
of which were supported in empirical and modeling studies [49]. The discovery of the PPA was rooted
in extensive observational and in silico research [46]. The PPA model was designed to overcome the
most computationally challenging aspects of gap models in order to facilitate model scaling from the
landscape to global scale.

The PPA and its predecessor, the size-and-age structured (SAS) equations [43,109], are popular
model reduction techniques employed in current state-of-the-art terrestrial biosphere models [28]. The
PPA model can be thought of metaphorically as Navier–Stokes equations of forest dynamics, capable of
modeling individual tree population dynamics with a one-dimensional von Foerster partial differential
equation [46]. The simple mathematical foundation of the PPA model is provided in Equation (1).

1 =
∫ ∞

z∗

k

∑
j=1

Nj(z)Aj(z∗, z)dz (1)

where k is the number of species, j is the species index, Nj(z) is the density of species j at height z,
Aj(a∗, z) is the projected crown area of species j at height z, and dz is the derivative of height. In other
words, we discard the spatial location of individual trees and calculate the height at which the integral
of tree crown area is equal to the ground area of the stand. This height is known as the theoretical z∗

height, which segments trees into overstory and understory classes [46].
The segmentation of the forest canopy into understory and overstory layers allows for separate

coefficients or functions for growth, mortality, and fecundity to be applied across strata, whose first
moment accurately approximates the dynamics of individual-based forest models. Recent studies have
shown that the PPA model faithfully reduces the dynamics of the more recent neighborhood dynamics
(ND) SORTIE-ND gap model [110] and is capable of accurately capturing forest dynamics [111,112].

In this work, we applied a simple biogeochemistry variant of the SORTIE-PPA model, PPA-SiBGC
(Erickson and Strigul, in review) Figure 2.

Empirical observations were relied upon for the C and N content of tree species compartments.
Stoichiometric relations were used to estimate N from C, based on empirical measurements provided
for both sites. All values were calculated directly from observations. Previously published
equations [113] and parameters [114] were used to model crown allometry. Together with inventory
data, general biomass equations were used to estimated dry weight mass (kg) for tree stems, branches,
leaves, and, fine and coarse roots [115]. Carbon content was assumed to be 50% of dry mass, generally
supported by data. Monthly soil respiration was modeled using the approach of Raich et al. [116],
while soil organic C was modeled using the simple generalized approach of Domke et al. [117]. Species-
and stratum-specific parameters for growth, mortality, and fecundity were calculated directly from
field data for both sites. Net ecosystem exchange, or NEE, was modeled as NEE = rsoil − ANPP
following previous studies, which note associated challenges in connecting field and flux tower
measurements [118,119]. Here, ANPP, or annual net primary production, is the total site biomass
increment adjusted for the C fraction. This is necessary given the current field-measurement basis of
the PPA, which may be replaced by LiDAR measurements and/or process models in future work.
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Figure 2. Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model structure;
Raich et al. [116]; Domke et al. [117].

2.2. Site Descriptions

In the following sections, we describe the two forested sites on the East Coast of the United States:
HF-EMS and the JERC-RD. A critical factor in the selection of the sites was the availability of eddy
covariance flux tower data needed to validate NEE in the models.

2.2.1. HF-EMS

The HF-EMS EC flux tower is located within the Little Prospect Hill tract of Harvard Forest
(42.538° N, 72.171° W, 340 m elevation) in Petersham, Massachusetts, approximately 100 km from
the city of Boston [88]. A map of the site is shown in Figure 3. The tower has been recording NEE,
heat, and meteorological measurements since 1989, with continuous measurements since 1991, making
it the longest-running eddy covariance measurement system in the world. The site is currently
predominantly deciduous broadleaf second-growth forests approximately 75–95 years in age, based
on previous estimates [120]. Soils at Harvard Forest originate from sandy loam glacial till and are
reported to be mildly acidic [88].

The site is dominated by red oak (Quercus rubra L.) and red maple (Acer rubrum L.)
stands, with sporadic stands of Eastern hemlock (Tsuga canadensis (L.) Carrière), white pine
(Pinus strobus L.), and red pine (Pinus resinosa Ait.). When the site was established, it contained
100 Mg C ha−1 in live aboveground woody biomass [120]. As noted by Urbanski et al. [88],
approximately 33% of red oak stands were established prior to 1895, 33% prior to 1930,
and 33% before 1940. A relatively hilly and undisturbed forest (since the 1930s) extends
continuously for several km2 around the tower. In 2000, harvest operations removed
22.5 Mg C ha−1 of live aboveground woody biomass about 300 m S-SE from the tower, with little
known effect on the flux tower measurements. The 40 biometric plots were designated via stratified
random sampling within eight 500 m transects Urbanski et al. [88]. The HF-EMS tower site currently
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contains 34 biometric plots at 10 m radius each, covering 10,681 m2, or approximately one hectare, in
area. Summary statistics for the EMS tower site for the year 2002 are provided in Table 1.
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Figure 3. Harvard Forest (HF) EMS flux tower and landcover classes.

Table 1. HF-EMS forest inventory summary for the 34 tower plots in 2002; DBH = depth at breast
height (cm); BA = basal area per hectare (m2); Stocking = ntrees per hectare; QMD = quadratic mean
diameter (cm); SDI = Reineke’s stand density index [121].

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

DBHMean 34 24.64 3.50 17.32 22.39 27.13 31.97
DBHSt.Dev. 34 10.92 2.74 6.11 8.60 12.51 16.88
BA 34 35.29 11.55 13.78 25.98 42.34 57.31
Stocking 34 639.43 232.38 318.31 421.76 787.82 1145.92
QMD 34 26.87 4.00 18.34 23.91 29.64 34.39
SDI 34 680.13 214.45 280.56 531.35 853.97 1071.37

A table of observed species abundances for the year 2002 are provided in Table 2, using tree
species codes from the USDA PLANTS database (https://plants.usda.gov).

Previous research at the EMS EC flux tower site found unusually high rates of ecosystem
respiration in winter and low rates in mid-to-late summer compared to other temperate forests [122].
While the mechanisms behind these observed patterns remains poorly understood, this observation is
outside the scope of the presented research. Between 1992 and 2004, the site acted as a net carbon sink,
with a mean annual uptake rate of 2.5 Mg C ha−1 year−1. Aging dominated the site characteristics,
with a 101–115 Mg C ha−1 increase in biomass, comprised predominantly of growth of red oak
(Quercus rubra). The year 1998 showed a sharp decline in net ecosystem exchange (NEE) and other
metrics, recovering thereafter [88]. As Urbanski et al. [88] note of the Integrated Biosphere Simulator 2
(IBIS2) and similar models at the time, “the drivers of interannual and decadal changes in NEE are
long-term increases in tree biomass, successional change in forest composition, and disturbance events,
processes not well represented in current models.” The two models used in the intercomparison study,

https://plants.usda.gov
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a SORTIE-PPA [46,47] variant and LANDIS-II with NECN succession [87,101], are intended to directly
address these model shortcomings.

Table 2. HF-EMS species abundance for the 34 tower plots in 2002.

Species Count

ACPE 56
ACRU 4924
BEAL 729
BELE 239
BEPO 116
CADE 1
FAGR 277
FRAM 258
ILVE 86
PIGL 397
PIRE 638
PIST 582
PRSE 270

QURU 2485
QUVE 247
TSCA 1926

2.2.2. JERC-RD

Jones Ecological Research Center at Ichauway is located near Newton, Georgia, USA (31° N, 84° W,
25–200 m elevation). A map of the JERC-RD flux tower with landcover classes is shown in Figure 4. The
site falls within the East Gulf Coastal Plain and consists of flat to rolling land sloping to the southwest.
The region is characterized by a humid subtropical climate with temperatures ranging from 5–34 °C
and precipitation averaging 132 cm year−1. The overall site is 12,000 ha in area, 7500 ha of which are
forested [123]. The site also exists within a tributary drainage basin that eventually empties into the
Flint River. Soils here are underlain by karst Ocala limestone and mostly Typic Quartzipsamments,
with sporadic Grossarenic and Aquic Arenic Paleudults [124]. Soils here often lack well-developed
organic horizons [123–125].
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Figure 4. Jones Ecological Research Center (JERC) RD flux tower and landcover classes.

Forests here are mostly second-growth, approximately 65–95 years in age. Long-leaf pine
(Pinus palustris Mill.) dominates the overstory, while the understory is comprised primarily of
wiregrass (Aristida stricta Michx.) and secondarily of shrubs, legumes, forbs, immature hardwoods,
and regenerating long-leaf pine forests [126]. Prescribed fire is a regular component of management
here, with stands often burned at regular 1–5 year intervals [123]. This has promoted wiregrass and
legumes in the understory, while reducing the number of hardwoods [123]. The RD EC flux tower is
contained within the mesic/intermediate sector. This site consists of only four primary tree species
from two genera: Long-leaf pine (Pinus palustris), water oak (Quercus nigra L.), southern live oak
(Quercus virginiana Mill.), and bluejack oak (Quercus incana W. Bartram). Measurements for the RD
tower are available for the 2008–2013 time period. Summary statistics for the RD tower site for the
year 2008 are provided in Table 3.

Table 3. JERC-RD forest inventory summary for the four tower plots in 2009; DBH = depth at breast
height (cm); BA = basal area per hectare (m2); Stocking = ntrees per hectare; QMD = quadratic mean
diameter (cm); SDI = Reineke’s stand density index [121].

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

DBHMean 4 31.498 2.870 27.426 30.530 33.392 33.719
DBHSt.Dev. 4 12.733 2.737 10.525 11.293 13.285 16.714
BA 4 17.604 1.662 15.764 16.780 18.273 19.756
Stocking 4 201.000 60.871 164 170 205 292
QMD 4 33.968 3.374 29.350 32.665 35.987 37.152
SDI 4 310.965 39.514 278.001 291.255 318.514 368.254

A table of observed species abundances for the year 2009 are provided in Table 4.
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Table 4. JERC-RD species abundance for the four tower plots in 2009.

Species Count

PIPA 2063
QUIN 14
QUNI 22
QUVI 66

Two recent studies [127,128] indicate that the mesic sector of this subtropical pine savanna
functions as a moderate carbon sink (NEE = −0.83 Mg C ha−1 year−1; −1.17 Mg C ha−1 year−1),
reduced to near-neutral uptake during the 2011 drought (NEE = −0.17 Mg C ha−1 year−1), and is a
carbon source when prescribed burning is taken into account. NEE typically recovered to pre-fire rates
within 30–60 days. The mechanisms behind soil respiration rates here again appear to be complex,
site-specific, and poorly understood [128].

Overall, existing research highlights the importance of fire and drought to carbon exchange in
long-leaf pine (Pinus palustris) and oak (Quercus spp.) savanna systems [127–129] at JERC. This is in
contrast to the secondary growth-dominated deciduous broadleaf characteristics of Harvard Forest.
Species diversity at the EMS tower site is 350% greater than that of the JERC-RD site, with 14 species
from a variety of genera compared to four species from only two genera, Pinus and Quercus.

2.3. Site Data

Data collection methods may be accessed through the below data provider websites. Both sites
provided a metadata file along with each data file, as is typically available to data users for the two
sites. To conduct this model intercomparison exercise at HF-EMS, we leveraged the large amount of
data openly available to the public through the Harvard Forest Data Archive:

http://harvardforest.fas.harvard.edu/harvard-forest-data-archive

Data were collected here for a range of studies, as evidenced by the Harvard Forest Data Archive.
Datasets used in model validation include HF001-04, HF004-02, HF069-09, HF278-04, HF069-06,
HF015-05, HF006-01, and HF069-13. These include weather station and forest inventory time-series,
eddy covariance flux tower measurements, soil respiration, soil organic matter, and studies on C:N
stoichiometry. Standard measurement techniques were used for each. For both sites, local tree species,
age, depth-at-breast-height (DBH), biomass, soil, and meteorological data were primarily used to
parameterize the models.

The Jones Ecological Research Center has hosted multiple research efforts over the years,
collectively resulting in the collection of a large data library. However, JERC-RD site data are not
made openly available to the public and are thus only available by request. One may find contact
information located within their website:

http://www.jonesctr.org

Datasets used in model validation at JERC-RD include JC010-02, JC010-01, JC003-04, JC004-01,
JC003-07, and JC011-01. These include weather station and eddy covariance flux tower measurements,
forest inventory data, soil respiration, soil organic matter, and studies on C:N stoichiometry. Standard
measurement techniques were also used for each of these.

2.4. Scales, Metrics, and Units

The selection of simulation years was based on the availability of EC flux tower data used in
model validation. Thus, we simulated the HF-EMS site for the years 2002–2012 and the JERC-RD site
for the years 2009–2013. For both sites and models, we initialized the model state in the first year of

http://harvardforest.fas.harvard.edu/harvard-forest-data-archive
http://www.jonesctr.org
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simulations using field observations. The PPA-SiBGC model used an annual timestep while LANDIS-II
NECN used a monthly timestep internally. Both models may be set to other timesteps if desired.

The areal extent of the single-site model intercomparisons were designed to correspond to
available field measurements. At both sites, tree inventories were conducted in 10,000 m2, or
one-hectare, areas. All target metrics were converted to an annual areal basis to ease interpretation,
comparison, and transferability of results. Importantly, an areal conversion will allow comparison to
other sites around the world. While flux tower measurements for both sites were already provided
on an areal (m−2) basis, many other variables were converted to harmonize metrics between models
and study sites. For example, moles CO2 measurements were converted to moles C through
well-described molecular weights, all other measures of mass were converted to kg, and all areal and
flux measurements were harmonized to m−2. A table of metrics and units used in the intercomparison
of LANDIS-II and PPA-SiBGC is provided in Table 5.

Table 5. Model intercomparison abbreviations, metrics, and units.

Abbreviation Metric Units

NEE Net ecosystem exchange kg C m−2 year−1

BAG Aboveground biomass kg mass m−2

CAG Aboveground C kg C m−2

NAG Aboveground N kg N m−2

BBG Belowground biomass kg mass m−2

CBG Belowground C kg C m−2

NBG Belowground N kg N m−2

CSO Soil organic C kg C m−2

NSO Soil organic N kg N m−2

rsoil Soil respiration C kg C m−2 year−1

ANPP Aboveground net primary production kg mass m−2 year−1

BSp Species aboveground biomass kg mass m−2

nSp Species relative abundance %

In the subsequent section, we describe the model intercomparison methodology.

2.5. Model Intercomparison

Intercomparison of the PPA-SiBGC and LANDIS-II models at the HF-EMS and JERC-RD EC
flux tower sites was conducted using a collection of object-oriented functional programming scripts
written in the R language for statistical computing [83]. These scripts were designed to simplify model
configuration, parameterization, operation, calibration/validation, plotting, and error calculation. The
scripts and our parameters are available on GitHub (https://github.com/adam-erickson/ecosystem-
model-comparison), making our results fully and efficiently reproducible. The directory structure of
the repository is shown in Figure S1 in the Supplementary Materials. The R scripts are also designed
to automatically load and parse the results from previous model simulations, in order to avoid
reproducibility issues stemming from model stochasticity. We use standard regression metrics applied
to the time-series of observation and simulation data to assess model fitness. The metrics used include
the coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE),
and mean error (ME) or bias, calculated using simulated and observed values. Our implementation of
R2 follows the Bravais–Pearson interpretation as the squared correlation coefficient between observed
and predicted values [130]. This implementation is provided in Equation (2).

R2 = r2 =

 ∑n
i=1(yi − y)(ŷi − ŷ)√

∑n
i=1(yi − y)2(ŷi − ŷ)2

2

(2)

https://github.com/adam-erickson/ecosystem-model-comparison
https://github.com/adam-erickson/ecosystem-model-comparison
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where n is the sample size, yi is the ith observed value, ŷi is the ith predicted value, y is the mean
observed value, and ŷ is the mean predicted value. The calculation of RMSE follows the standard
formulation, as shown in Equation (3).

RMSE =

√
1
n

n

∑
t=1

e2
t (3)

where n is the sample size and et is the error for the tth value, or the difference between observed and
predicted values. The calculation of MAE is similarly unexceptional, per Equation (4).

MAE =
1
n

n

∑
t=1
|et| (4)

where again n is the sample size and et is the error for the tth value. Our calculation of mean error
(ME) or bias is the same as MAE, but without taking the absolute value.

While Nash–Sutcliffe efficiency (NSE) is often used in a simulation model context, we selected
the Bravais–Pearson interpretation of R2 over NSE to simplify the interpretation of results. The NSE
metric replaces 1− (SSpredictions/SSobservations) with (SSobservations − SSpredictions)/SSobservations, where
SS is the sum of squares. Thus, NSE is analogous to the standard R2 coefficient of determination used
in regression analysis [131]. The implementation of R2 that we selected is important to note, as its
results are purely correlative and quantify only dispersion, ranging in value between zero and one.
This has some desirable properties in that no negative or large values are produced, and that it is
insensitive to differences in scale. Regardless of the correlation metric used, complementary metrics
are needed to quantify the direction (i.e., bias) and/or magnitude of error. We rely on RMSE and MAE
to provide information on error or residual magnitude, and ME to provide information on bias. We
utilize a visual analysis to assess error directionality over time, as this can be poorly characterized by a
single coefficient, masking periodicity.

We compute R2, RMSE, MAE, and ME for time-series of the metrics described in Table 5 on
page 13. These include NEE, above- and below-ground biomass, C, and N, soil organic C and N, soil
respiration (rsoil), aboveground net primary production (ANPP), and, species aboveground biomass
and relative abundance. All of these metrics are pools with the exception of NEE, rsoil , and ANPP
fluxes. Finally, we diagnose the ability of both models to meet a range of logistical criteria related
to deployment: Model usability, performance, and transferability. Model usability is assessed per
four criteria:

1. Ease of installation
2. Ease of parameterization
3. Ease of program operation
4. Ease of parsing outputs

Model software performance is assessed per a single metric: The speed of program execution
for each site for the predefined simulation duration. The durations are 11 years and five years for
the HF-EMS and JERC-RD EC flux tower sites, respectively. Simulation results are output at annual
temporal resolution, the standard resolution for both models, while NECN operates on a monthly
timestep, and most other modules of LANDIS-II are annual. Finally, model transferability is assessed
per the following five criteria:

1. Model generalizability
2. Availability of parameterization data
3. Size of the program
4. Cross-platform support
5. Ease of training new users

Each of these logistical criteria are compared in a qualitative analysis, with the exception of
software performance.
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3. Results

Both PPA-SiBGC and LANDIS-II NECN showed strong performance for pools at the two model
intercomparison sites, frequently achieving R2 values approaching unity. Yet, both models showed
weak performance for fluxes. The models failed to accurately predict ANPP, while PPA-SiBGC showed
stronger rsoil performance and LANDIS-II NECN showed stronger NEE performance. The R2 values
for both models and sites are visualized in Figure 5.

nSp

NEE

BAGCAG

NAG

BBG

CBG

NBG rsoil

ANPP

BSp

0 0.2 0.4 0.6 0.8 1

nSp

NEE

BAGCAG

NAG

BBG

CBG

NBG rsoil

ANPP

BSp

0 0.2 0.4 0.6 0.8 1

Figure 5. Overall model performance (R2) for both models and sites; left = HF-EMS; right = JERC-RD;
periwinkle = PPA-SiBGC; pink = LANDIS-II NECN; violet = intersection.

On average, PPA-SiBGC outperformed LANDIS-II NECN across the sites and metrics tested,
showing higher correlations, lower error, and less bias overall (HF-EMS R2 = 0.73,+0.07,
RMSE = 4.68,−9.96, ME = −0.84,−5.96; JERC-RD R2 = 0.73,+0.01, RMSE = 2.18,−1.64,
ME = 1.33,+1.03). This result is based on calculating mean values for R2, RMSE, MAE, and ME in
order to clearly translate the overall results. The two models produced the following mean values for
each of the four statistical metrics and two sites:

As shown in Table 6, PPA-SiBGC yielded higher R2 values and lower RMSE, MAE, and ME values
in comparison to LANDIS-II, on average, across all sites and metrics tested. Below, we provide model
intercomparison results individually for the two sites, HF-EMS and JERC-RD.

Table 6. Overall mean values across each of the sites and metrics tested.

PPA-SiBGC LANDIS-II NECN
Metric R2 RMSE MAE ME R2 RMSE MAE ME

Mean 0.73 3.43 3.24 0.24 0.69 9.23 8.36 2.71

3.1. HF-EMS

For the HF-EMS site, PPA-SiBGC showed higher R2 values and lower RMSE, MAE, and ME values
compared to LANDIS-II NECN across the range of metrics. While PPA-SiBGC predicted NEE and
species relative abundance showed weaker correlations with observed values compared to LANDIS-II
NECN, the magnitude of error was lower, as evidenced by lower RMSE, MAE, and ME values. While
LANDIS-II NECN showed a lower magnitude of error for belowground N, this is the only metric
where this is the case, while the correlation of this metric to observed values was also lower than that
of PPA-SiBGC. Overall results for the HF-EMS site model intercomparison are shown in Table 7.
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Table 7. Model fitness for HF-EMS.

PPA-SiBGC LANDIS-II NECN
Metric R2 RMSE MAE ME R2 RMSE MAE ME

NEE 0.05 0.78 0.76 0.76 0.44 0.49 0.44 0.44
BAG 1.00 10.31 10.30 10.30 0.98 2.48 2.48 −2.48
CAG 1.00 0.05 0.05 0.05 0.98 1.24 1.24 −1.24
NAG 1.00 1.44 1.44 −1.44 0.12 1.99 1.99 −1.99
BBG 1.00 9.25 9.25 9.25 0.97 2.82 2.82 −2.82
CBG 1.00 4.92 4.92 −4.92 0.94 6.99 6.99 −6.99
NBG 1.00 0.56 0.56 0.56 0.78 0.12 0.12 −0.12
rsoil 0.17 0.63 0.62 −0.62 0.06 1.10 1.10 −1.10

ANPP 0.03 0.01 0.01 −0.01 0.0002 0.97 0.93 0.90
CSO ... 26.49 26.49 −26.49 ... 36.63 36.63 −36.63
NSO ... 1.33 1.33 −1.33 ... 1.60 1.60 −1.60
BSp 1.00 5.07 2.92 2.92 0.97 133.70 119.87 119.87
nSp 0.82 0.05 0.03 0 0.99 0.29 0.22 0.22

Mean 0.73 4.68 4.51 −0.84 0.66 14.65 13.57 5.11

Time-series figures allow a visual analysis of the temporal dynamics between observations and
model predictions in order to assess the ability of models to capture interannual variability in carbon
exchange. Both models effectively captured integrals of dynamics in biomass, C, and, species biomass
and abundance. In Figure 6, the temporal differences in modeled NEE, aboveground C, ANPP, and
soil respiration are shown for the two models in comparison to observations for the HF-EMS site.
LANDIS-II NECN predicted NEE showed a higher correlation with observations while the magnitude
of error and bias were lower. Furthermore, LANDIS-II NECN predicted that the HF-EMS site is a net C
source, rather than sink, in contrary to observations. Meanwhile, PPA-SiBGC outperformed LANDIS-II
NECN in aboveground C per both R2 and RMSE. Both models overpredicted species cohort biomass,
while LANDIS-II NECN underpredicted total aboveground C.
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Figure 6. Simulated and observed NEE, CAG, ANPP, and rSoil for the HF-EMS site; black = observations;
red = PPA-SiBGC; blue = LANDIS-II NECN; (a) = NEE; (b) = CAG; (c) = ANPP; (d) = rSoil.
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An analysis of simulated species biomass and abundance also shows greater fidelity of the
PPA-SiBGC model to data, as shown in Figure 7. As LANDIS-II NECN does not contain data on
individual trees, species relative abundance is calculated based on the number of cohorts of each
species. Two species were simulated in LANDIS-II NECN, as there are no explicit trees in the model
and the number of cohorts appears to have no effect on the total biomass. Results for PPA-SiBGC
indicate that species relative abundance may be improved in future studies by optimizing mortality
and fecundity rates. Meanwhile, species biomass predictions output by LANDIS-II NECN were
inverted from those of the observations.
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Figure 7. HF-EMS: Simulated and observed species aboveground biomass and relative abundance;
(a) = biomass; (b) = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN;
note that different scales are used for biomass.

3.2. JERC-RD

For the JERC-RD site, both models showed stronger fidelity to data than for the HF-EMS site.
Again, PPA-SiBGC showed higher R2 values and lower RMSE and MAE values compared to LANDIS-II
NECN across the range of metrics tested. Yet, the margin between models was smaller for the JERC
RD site. While PPA-SiBGC demonstrated higher correlations and lower errors for most metrics tested,
LANDIS-II NECN outperformed PPA-SiBGC in a few cases. This includes a higher correlation for
NEE, ANPP, and lower magnitude of error for aboveground N, belowground biomass, soil respiration,
and SOC. PPA-SiBGC, however, showed correlations equal or higher for all metrics tested, and lower
errors for all other metrics. Overall results for the JERC-RD site model intercomparison are shown in
Table 8.
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Table 8. Model fitness for JERC-RD.

PPA-SiBGC LANDIS-II NECN
Metric R2 RMSE MAE ME R2 RMSE MAE ME

NEE 0.05 0.12 0.11 0.05 0.09 0.13 0.11 −0.05
BAG 0.96 1.48 1.47 1.47 0.96 9.77 9.76 −9.76
CAG 0.96 1.63 1.63 −1.63 0.96 4.88 4.88 −4.88
NAG 0.99 0.29 0.29 0.29 0.96 0.05 0.05 −0.05
BBG 0.96 10.84 10.83 10.83 0.96 1.37 1.20 1.20
CBG 0.96 0.25 0.25 0.25 0.96 0.96 0.95 −0.95
NBG 0.99 1.44 1.44 −1.44 0.96 1.60 1.60 −1.60
rsoil 0.19 0.98 0.97 −0.97 0.05 0.90 0.90 −0.90

ANPP 0.00 0.12 0.10 −0.10 0.03 0.62 0.60 0.49
CSO ... 4.30 4.30 4.30 ... 0.17 0.17 −0.17
NSO ... 0.38 0.38 0.38 ... 0.12 0.12 0.12
BSp 1.00 6.47 3.90 3.90 0.98 28.97 20.52 20.52
nSp 1.00 0.02 0.01 0 1.00 0.09 0.09 −0.02

Mean 0.73 2.18 1.98 1.33 0.72 3.82 3.15 0.30

Time-series carbon exchange metrics for the JERC-RD site, presented in Figure 8, show that
modeled NEE values are positively correlated with each other rather than with observed NEE, while
the magnitude of error varies from favoring PPA-SiBGC to LANDIS-II NECN. Overall, the PPA-SiBGC
model shows a lower magnitude of error for NEE, ANPP, and CAG, and slightly higher for rsoil.
Again, for rsoil the two models show strong agreement, but underestimate observations by an order of
magnitude. For CAG and ANPP, PPA-SiBGC shows good overall fit.

While both models showed higher performance at the JERC-RD site in comparison to the HF-EMS
site, an analysis of simulated species biomass and abundance again indicates greater fidelity of the
PPA-SiBGC model to data, as shown in Figure 9. While LANDIS-II NECN greatly overpredicts the rate
of longleaf pine growth, PPA-SiBGC matches observed species abundance and biomass trajectories
for all species present. While the correlations are high, PPA-SiBGC overpredicts the magnitude of
species biomass.

Our results for the HF-EMS and JERC-RD site model intercomparison exercise show strong
performance for both models at both sites. Results for the JERC-RD site are particularly close between
the two models. Next, we assess results related to the logistics of model deployment to new computers,
users, and modeling sites.
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Figure 8. Simulated and observed NEE, CAG, ANPP, and rSoil for the JERC-RD site; black = observations;
red = PPA-SiBGC; blue = LANDIS-II NECN; (a) = NEE; (b) = CAG; (c) = ANPP; (d) = rSoil.
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Figure 9. JERC-RD: Simulated and observed species aboveground biomass and relative abundance;
(a) = biomass; (b) = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN;
note that different scales are used for biomass.

3.3. Model Usability, Performance, and Transferability

While the two models share a similar basis in forest dynamics and biogeochemistry modeling,
they differ in important practical and conceptual terms. The command-line version of the PPA-SiBGC
model used in this work, version 5.0, consists of approximately 500 lines of R code and is thus readily
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cross-platformed and portable. Meanwhile, the LANDIS-II model core and NECN succession extension
are an estimated 2000 and 0.5 million lines of code, respectively. While this version of PPA-SiBGC
fuses an explicit tree canopy geometry model with empirical data on fecundity, growth, mortality, and
stoichiometry, the NECN extension of LANDIS-II borrows heavily from the process-based Century
model [37], similar to the MAPSS-Century-1 (MC1) model [132]. This carries important implications
for model parameterization needs. While PPA-SiBGC relies on typical forest inventory data, including
tree species, age/size, and densities, LANDIS-II relies on species age/size and traits in the form of vital
attributes, in addition to approximately 100 NECN parameters. Below, we summarize our findings
regarding the logistics of model deployment.

3.3.1. Model Usability

In the following section, we provide an assessment of model usability based on four criteria.

1. Ease of installation

While LANDIS-II NECN requires the installation of two Windows programs, depending on
the options desired, PPA-SiBGC is contained in a single R script and requires only a working
R installation.

2. Ease of parameterization

While both models can be difficult to parameterize for regions with little to no observational data,
the simple biogeochemistry in PPA-SiBGC requires an order of magnitude fewer parameters than
LANDIS-II NECN. In addition, PPA-SiBGC uses commonly available forest inventory data while
NECN requires a number of parameters that may be difficult to locate.

3. Ease of program operation

Both models use a command-line interface and are thus equally easy to operate. Yet, PPA-SiBGC
is cross-platform and uses comma-separated-value (CSV) files for input tables, which are easier to
work with than multiple tables nested within an unstructured text files. This additionally allows
for simplification in designing model application programming interfaces (APIs), or model
wrappers, a layer of abstraction above the models. These abstractions are important for
simplifying model operation and reproducibility, and enable a number of research applications.

4. Ease of parsing outputs

All PPA-SiBGC outputs are provided in CSV files in a single folder while LANDIS-II NECN
generates outputs in multiple formats in multiple folders. While the PPA-SiBGC format is simpler
and easier to parse, the image output formats used by LANDIS-II carry considerable benefit for
spatial applications. Both models may benefit by transitioning spatiotemporal data to the NetCDF
scientific file format used by most general circulation and terrestrial biosphere models.

3.3.2. Model Performance

Next, we assess model performance in terms of the speed of operation on a consumer-off-the-shelf
(COTS) laptop computer with a dual-core 2.8 GHz Intel Core i7-7600U CPU and 16 GB of DDR4-2400
RAM. We focus on a single performance metric, the timing of simulations. Other aspects of model
performance in the form of precision and accuracy are described in previous sections. As shown
in Table 9, PPA-SiBGC was between 1200 and 2800% faster than LANDIS-II NECN in our timing
tests. This was surprising given that PPA-SiBGC models true cohorts (i.e., individual trees) in an
interpreted language while LANDIS-II models theoretical cohorts (i.e., cohorts without a physical
basis) in a compiled language. The difference in speed is likely attributable to the parsimony of the
PPA-SiBGC model.
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Table 9. Simulation timing results.

Site Model Duration (years) Elapsed (s)

HF-EMS PPA-SiBGC 11 8.51
HF-EMS LANDIS-II NECN 11 101.15
JERC-RD PPA-SiBGC 5 2.25
JERC-RD LANDIS-II NECN 5 61.51

3.3.3. Model Transferability

Here, we discuss model transferability. In this section, we assess the effort required to transfer
the models to new locations, new computer systems, or new users. All three are important logistical
criteria for effective model deployment.

1. Model generalization

Both models appear to generalize effectively to different forested regions of the world, as both
have shown strong performance in this study and others. No clear winner is evident in this regard.
In terms of model realism, PPA-SiBGC has a more realistic representation of forest canopies while
LANDIS-II NECN has more realistic processes, as it is a Century model variant.

2. Availability of parameterization data

While LANDIS-II NECN requires substantially greater parameterization data compared to
PPA-SiBGC, it may often be possible to rely on previously published parameters. Meanwhile,
the growth, mortality, and fecundity parameters used by PPA-SiBGC are easy to calculate using
common field inventory data. PPA-SiBGC is simpler to transfer in this regard given the wide
availability of forest inventory data.

3. Size of the program

PPA-SiBGC is approximately 500 lines of R code, while LANDIS-II NECN is estimated at
0.5 million lines of C# code.

4. Cross-platform support

While Linux support may soon be supported with Microsoft .NET Core, LANDIS-II NECN is
written in C# and is thus limited to Microsoft Windows platforms. Meanwhile, PPA-SiBGC is
written in standard R code and is fully cross-platform.

5. Ease of training new users

While both models have a learning curve, the practical simplicity of PPA-SiBGC may make it
easier to train new users. While LANDIS-II NECN contains more mechanistic processes and
related parameters, these come at the cost of confusing new users. The model wrapper library we
developed as part of this work vastly eases the operation of both models. Future studies should
measure the time required for new users to effectively operate both models.

4. Discussion

First, it is important to clarify some terms used in this analysis. Gross primary production (GPP) is
the net rate of carboxylation and oxygenation by RuBisCO and is calculated as GPP = Pg − Rp, where
Pg is gross photosynthesis and Rp is photorespiration. In EC flux data analyses, GPP is also known as
gross ecosystem exchange (GEE) or gross ecosystem production (GEP) and is often estimated inversely
from NEE or NEP flux tower retrievals as GPP = NEE− Re, where Re is ecosystem respiration or
the sum of auto- and heterotrophic respiration components. Thus, Re = Rm + Rg + Rh where Rm is
maintenance respiration, Rg is autotrophic growth respiration, and Rh is heterotrophic respiration.
While GPP is the total amount of C fixed by plants in photosynthesis, NPP subtracts autotrophic
respiration (Ra) as NPP = GPP− Ra where Ra = Rg + Rm. NEE or net ecosystem production (NEP)
is then calculated as NPP minus heterotrophic respiration, or NEE = NPP− Rh, which is equivalent
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to NEE = GPP− Re. During the day, NEE = Pg + Rp + Rm + Rg + Rh while during the night, Pg and
Rp are absent, making NEE approximate to ecosystem respiration, or Re. Traditionally, gross or net
exchange of CO2 into the forest is negative and fluxes into the atmosphere are positive, while each
constituent process is discussed with a positive sign. Thus, NEE is often calculated as NEE = Re−GPP
where each constituent flux term is always positive [133–137].

All this is to say that there exists much difficulty in relating NPP from field inventories and soil
respiration samples directly to NEE from EC flux towers, integrated over the year. In our analyses,
we assume that the observed annual biomass growth increment is equivalent to ANPP and that soil
respiration (rsoil) is equivalent to ecosystem respiration (Re), or NEE = NPP− rsoil . Yet, there are
known error contributions at multiple conversion points, making the comparison of models based on
field data and EC flux tower measurements difficult. For example, field inventory estimates of ANPP
contain known sources of error in converting DBH to biomass, both above- and belowground [115],
and there are additional errors in converting biomass to C based on a fixed fraction for each biomass
compartment. Meanwhile, unlike Re, rsoil does not account for Rg or Rm, only Rh. Even if these fluxes
were approximately similar, spatial biases in the EC flux tower footprint or contributing area [138–142]
may make field inventory and tower measurements difficult to harmonize.

As others have noted [118,119], including a previous study on flux measurements at the HF-EMS
site [88], it is evident that treating ANPP as the C fraction of woody biomass increment per allometric
relations from field data is a loose proxy for ecosystem ANPP, given its visible disconnection from
observed NEE and rsoil fluxes. Given the definition of NEE, the relation between these variables
should be approximately linear. While others have reported hysteresis between peaks in NEE and
growth increment at the HF-EMS site [88], we did not see evidence of this dynamic. Instead, flux
tower NEE appears to have little to no connection to field data ANPP and observed rsoil fluxes at both
sites in this analysis. Nevertheless, both models showed good agreement with net changes to C and
N pools. This may partially reflect difficulties in accounting for belowground processes, which can
contribute disproportionately to C fluxes, and in connecting flux tower NEE to forest stands where the
contributing area extent is far greater than a one-hectare stand, as is often the case [138–140].

This issue can be seen in Figures 6 and 8. In this model intercomparison exercise, ANPP for
the PPA-SiBGC model and field data are based on annual woody biomass increment, while ANPP
in LANDIS-II NECN includes the Century process model for estimating ANPP. Rather than this
basis making the NECN model purely process-based or mechanistic, species-specific growth is
tightly constrained by empirical limits in a truncated logistic curve, with LAI and the number of
cohorts present used as a proxy for growing space limitations and moisture and temperature used
for physiological constraint based on Liebig’s Law of the Minimum. In contrast, PPA-SiBGC is
parameterized with mean observed growth and mortality rates from field data, which vary depending
on the canopy position of a cohort. Understory cohorts assumed to be in full shade face higher
mortality and lower growth, as is widely evident in field data, while overstory cohorts assumed to
be in full sunlight have higher growth and lower mortality rates. While soil and root processes are
explicitly simulated in Century and thus LANDIS-II NECN, PPA-SiBGC relies on simple stoichiometric
and allometric relations from field data to model these pools. In other words, PPA-SiBGC is designed
primarily to model pools rater than fluxes, as the former are of generally higher interest to foresters.

The strong empirical basis of parameterization of both PPA-SiBGC and LANDIS-II NECN
explains why the two models are often in better agreement with each other than with observations.
The similarity of outputs from the two models is perhaps surprising, given their differences in
model architecture and theoretical basis. This shows that, despite any mechanistic process present,
both models in their current form are closely fit to field data and are therefore strongly empirical,
as evidenced by their representation of growth processes. Meanwhile, this design choice limits the
representation of fluxes in both models, as detailed process models are absent. This is expected for
PPA-SiBGC, which is intended primarily to be a simple empirical pool model. This work also shows
that observations between field and tower measurements are substantially disconnected. We estimate
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that fluxes are poorly represented by both models because they are tightly coupled to field inventory
data rather than to tower-based measurements. Hence, patterns evident in field inventory data are
reliably reproduced while fluxes appear wholly uncoupled.

The advancement of processor architectures has facilitated the development of increasingly
complex forest models. Each new generation of processors allows researchers to conduct large-scale
simulations faster and more efficiently than previous designs. As a result, forest models have grown
into large, complex, analytically intractable programs. Rigorous intercomparison of models developed
by different research groups, as well as the diagnosis of new versions of established models, is therefore
a critical step in further advancing ecosystem models. This ensures that models are properly diagnosed
and compared in a consistent, reliable, and transparent manner. Too often, model intercomparisons
are conducted by each separate research group applying their own model in a manner that is, at best,
inconsistent and opaque. In this work, we extended our model intercomparison by further providing
wrapper functions that may be used to benchmark additional models or sites through a unified
modeling framework. This ensures the consistency and transparency of intercomparison results.

The presented research is intended to establish the groundwork for future model intercomparison
studies at both sites in order to advance the design of new models. Furthermore, we hope that this
work will inspire a new generation of forest model intercomparisons in North America, which are
sorely absent. Forest models have proven to be a critical testbed for improving the representation
of vegetation dynamics in global terrestrial biosphere models [40,41,143], given the importance of
forests in the global carbon cycle and the increased detail of local- to regional-scale models. Model
benchmarking datasets and related results should be publicly shared and regularly updated with
version-controlled software repositories (e.g., GitHub or GitLab), as is commonplace in the machine
learning research community. Cloud computing providers may provide full reproducibility for cases
where compute is limiting. In general, there is a broad disparity between modern software tools and
existing forest models.

One important new forest model in development is a next-generation model from the SORTIE-PPA
family of models, known as SORTIE-NG. This new model combines mechanistic representations of
demographic processes, energetic and biogeochemical fluxes, and landscape disturbance dynamics,
using hierarchical multiscale modeling with a modular component-based software framework [144].
Along with LM3-PPA [45], SORTIE-NG is among the first of a new class of hybrid models that we term
‘cohort-leaf’ models for their partitioning of energetic and biogeochemical fluxes amongst dynamic
vegetation cohorts, instead of a single vertical ’big-leaf’ profile. The SORTIE-NG model includes
evolutionary optimality principles as well as phenotype plasticity and intraspecific genetic diversity
through first-class support for probabilistic modeling, borrowing design principles from probabilistic
programming languages (e.g., [145]). Thus, SORTIE-NG is intended to be the first forest model to
bridge the divide between big-leaf, gap, and landscape models, and to be designed from the outset as a
probabilistic modeling framework [144]. Future model extensions are in the planning stages, including
the first machine learning processes included in an ecosystem model.

While implemented in a ’close-to-metal’ language (i.e., C++17) and designed for efficiency,
SORTIE-NG is more computationally demanding than the PPA-SiBGC model used in this paper.
Yet, we anticipate that SORTIE-NG will be able to improved the fidelity to observed fluxes through
reliance on detailed process models, which is the major shortcoming of both models considered in
this paper. Similarly, there is a new version of the LANDIS-II NECN model in development known as
NECN-Hydro, which remains a simplified variant of the Century model, but includes more detailed
hydrological processes. The currently presented work provides not only an intercomparison of two
current state-of-art models, but also open-source software and wrapper functions for simple and rapid
comparison of our results with new models or sites. The selected forested ecosystems modeled in this
work are among the best-studied model forests on Earth today. Specifically, the EMS EC flux tower
at Harvard Forest is the longest running flux tower in the United States. Extensions of the presented
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work will allow rigorous model comparison methodologies for forest models that will benefit the
research community at large.

Extensions of this work may also address the robustness of model predictions to variations in
parameter values. The parameterization of complex forest biogeochemistry models such as LANDIS-II
NECN and PPA-SiBGC is an important problem for consideration. Models such as LANDIS-II
NECN operate with an order of magnitude more parameters than PPA-SiBGC, which can each be
estimated with different levels of accuracy. Often, we know only the range of parameter values while
parameterization can also depend on the statistical approach employed. Meanwhile, authors routinely
employ additional model calibration that consists of adjusting parameters in order to obtain improved
fitness, which we explicitly avoided in this study.

Conducting such analyses through a unified software framework in a fully transparent and
reproducible manner is therefore of the utmost importance. This is exactly the type of analyses that
our provided software is designed to support. In a parallel line of research, we extend this base-level
implementation into a generic application programming interface (API) and toolkit for geoscientific
simulation models, known as Erde [146], supporting both R and Python. The Erde framework provides
machine learning model emulation, robust loss estimation, parameter optimization, probabilistic
parameterization, samplers such as Latin hypercube sampling and Markov Chain Monte Carlo,
and a number of other helper methods designed for complex simulation models. We utilize the Erde
framework in the design of Erde Gym, a toolkit for developing and comparing optimization algorithms
in the geosciences with a focus on reinforcement learning [146]. For the first time, Erde Gym will allow
us to model systems (e.g., evolutionary plant optimality) as intelligent agents able to navigate complex
environments.

4.1. Limitations

This study, similar to most other modeling studies, was limited by the availability, quality, and
quantity of observational data. The lack of temporal depth in this data poses substantial challenges
in modeling the long-term effects of forest succession, as these processes can operate on a century
timescale or longer. However, diagnosing succession was not the aim of this study, as we instead
focus on near-term validation of forest models using field measurements and EC flux tower data.
Another limitation is that these methods may be challenging to implement for sites that are less
well-characterized, particularly in the absence of EC flux tower data and/or tree species parameters.
A combination of tower-based and remote sensing observations may help overcome this challenge in
the coming years with advances in machine learning. In addition, the poor performance of both tested
models in capturing fluxes and excellent performance in capturing stocks indicate that the two current
models should be applied in cases where stocks, rather than fluxes, are of primary interest.

4.2. Future Opportunities

Future studies should expand upon the PPA with a first-principles representation of energetic
and biogeochemical above- and below-ground processes in a modern component-based software
framework. This work should fuse the new state-of-the-art forest biogeochemistry model with a model
wrapper API written in R or Python, in order to expand native model functions to include Monte
Carlo methods, machine-learning model emulation, robust loss functions, and optimization through a
simple API enabling reproducibility. This would combine a high-performance forest model written in a
compiled language with a simple, user-friendly interface written in an interpreted language, combining
the best of both worlds. We are currently conducting work along this line by fusing the SORTIE-NG
model with the Erde framework in order to develop state-of-the-art and user-friendly modeling
capabilities, inspired by the design of modern deep learning frameworks such as PyTorch [147] and
the Keras API [148].

In addition, there is a clear opportunity to link individual-based models such as PPA-SiBGC
and SORTIE-NG to remote sensing data including airborne laser scanning or high-resolution
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multiview-stereo imagery (i.e., structure-from-motion), and hyperspectral indices of vegetation growth
or stress. This line of work may assess opportunities for Bayesian data assimilation in addition to
model parameterization and validation using detailed wall-to-wall forest structure maps. As models
such as LES [32] provide more structural detail, spatially explicit data will be needed to parameterize
the next generation of models. New data collection methods (e.g., [149]) will also be needed as the
geometric realism of models advances toward the photorealistic detail offered by procedural models
such as Lindenmayer- or L-systems [150,151].

5. Conclusions

In conclusion, the PPA-SiBGC and LANDIS-II NECN models represent vegetation dynamics
previously absent in modeling studies at these sites. These include, “...long-term increases in tree
biomass, successional change in forest composition, and disturbance events, processes not well
represented in current models,” which drive interannual variation in NEE [88]. While the timescale
of our simulations were decidedly short-term due to data limitations, both models showed good
performance. While PPA-SiBGC showed stronger performance across the range of metrics tested,
including the logistics of model deployment, LANDIS-II NECN also performed well across the metrics
tested. Further studies are needed to compare more aspects of these and other models based on an
array of performance criteria.

Ultimately, we hope that this study serves as the foundation for future forest ecosystem model
intercomparisons for the North American continent, similar in spirit to the former TDE Ecosystem
Model Intercomparison project [54]. This may help create the impetus for a Global Forest Model
Intercomparison Project (ForestMIP) together with modeling groups on other continents. The aims
of this research were not to determine which model is ’best’ for prognosis at two locations, but to
improve the capabilities of existing models across a range of locations in order to advance earth system
models. In this regard, there are beneficial aspects to both modeling approaches and the trade-offs
presented largely depend on the desired application. Counter to the classical modeling trade-off of
Levins [38], improvements in precision and generality resulted from realism.
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Abbreviations

The following abbreviations are used in this manuscript:

3D-CMCC CNR-BGC 3-D Forest Ecosystem Model of the Euro-Mediterranean Centre for Climate Change
with Carbon-Nitrogen-Respiration Biogeochemistry

3D-CMCC FEM 3-D Forest Ecosystem Model of the Euro-Mediterranean Centre for Climate Change
3-PG Physiological Processes Predicting Growth model
4C/FORESEE Forest Ecosystems in a Changing Environment model
ANAFORE ANAlysis of FORest Ecosystems model
ANPP Aboveground net primary production
API Application programming interface
BASFOR BASic FORest simulator model
BGC Biogeochemistry
Biome-BGC Biome BioGeochemical Cycles model
CARAIB CARbon Assimilation In the Biosphere model
CoFoLaMo Comparison of Forest Landscape Models
COST Cooperation in Science and Technology
CPU Central processing unit
CSV Comma-separated values
DLEM Dynamic Land Ecosystem Model
DoD Department of Defense
EC Eddy covariance
ED/ED2 Ecosystem Demography model
EMS Environmental Measurement Station
ForClim Forests in a changing Climate model
ForHyCS Forest and Hydrology Change in Switzerland model
FORMIND Forest Model Individual-based
FVS Forest Vegetation Simulator
GO+ GRAECO and ORCHIDEE plus CASTANEA model
GOTILWA+ Growth of Trees is Limited by Water model
GPGPU General-purpose graphics processing unit
HF Harvard Forest, Massachusetts, USA
IBIS2 Integrated Biosphere Simulator version 2
iLand Individual-based forest landscape and disturbance model
ISIMIP/ISIMIP2 Inter-Sectoral Impact Model Intercomparison Project
JERC Jones Ecological Research Center, Georgia, USA
JULES Joint UK Land Environment Simulator
L-systems Lindenmayer systems
LandClim LANDIS-ForClim model
LANDIS Landscape Disturbance and Succession model
LANDIS-II Landscape Disturbance and Succession model, C# version
LM3 Land Model version 3
Landscape-DNDC Landscape DeNitrification DeComposition model
LINKAGES Linked forest productivity-soil process model
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LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator
LPJmL Lund-Potsdam-Jena managed Land
MAE Mean absolute error
MAESTRO/MAESTRA Model of Assimilation, Evaporation, and Solar radiation TRansfer Operation
MC1 MAPSS-Century-1 model
ME Mean error
MIP Model Intercomparison Project
NECN Net Ecosystem Carbon and Nitrogen model
NEE Net ecosystem exchange
NSE Nash-Sutcliffe efficiency
ORCHIDEE Organising Carbon and Hydrology In Dynamic Ecosystems
PnET-II Photosynthetic/EvapoTranspiration model
PnET-BGC Photosynthetic/EvapoTranspiration Biogeochemistry model
PPA Perfect Plasticity Approximation model
PPA-SiBGC PPA with Simple Biogeochemistry model
PRELES PREdict with LESs - or - PREdict Light-use efficiency, Evapotranspiration and Soil water
PROFOUND Towards robust projections of European forests under climate change
RAM Random access memory
RCP Representative Concentration Pathway
RD Red Dirt mesic flux tower site, JERC
RMSE Root mean squared error
SAS Size- and age-structured equations
SOC Soil organic carbon
SON Soil organic nitrogen
SPA Soil-plant-atmosphere continuum model
TDE Throughfall Displacement Experiment
TreeMig Tree Migration model
VEGAS VEgetation-Global-Atmosphere-Soil model
VISIT Vegetation Integrative Simulator for Trace Gases

Appendix A. Eddy Covariance Flux Tower Measurements

Appendix A.1. HF-EMS EC Flux Tower

Recent historical mean daily fluxes of temperature (°C), ecosystem respiration (µ mol CO2 m−2),
and NEE (µ mol C m−2) for the HF-EMS tower are shown in Figure A1.

Patterns in daytime and nighttime NEE are shown in Figure A2. This was calculated by taking
daily mean NEE values for three-hour windows surrounding noon and midnight, respectively
(1100–1300 and 2300–0100 h). These patterns are important to diagnose, as they demonstrate responses
to a gradient of light and temperature conditions.



Forests 2019, 10, 180 28 of 46

1991

1994

1997

2000

2003

2006

2009

2012

2015

Te
m

pe
ra

tu
re

−10

0

10

20

30

Legend

1991

1994

1997

2000

2003

2006

2009

2012

2015

R
es

pi
ra

tio
n

0.0

2.5

5.0

7.5

10.0

Legend

1991

1994

1997

2000

2003

2006

2009

2012

2015

N
E

E

−10

−5

0

5

10

Legend

−5.0
−2.5

0.0
2.5

0 100 200 300

DOY

N
E

E colour

mean

Figure A1. HF-EMS tower daily averages.
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Figure A2. HF-EMS tower daily diurnal averages.

Appendix A.2. JERC-RD EC Flux Tower

Recent historical mean daily fluxes of latent heat flux (LE) (W m−2), ecosystem respiration
(µ mol CO2 m−2), and NEE (µ mol C m−2) for the RD flux tower are shown in Figure A3.
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Figure A3. JERC-RD tower daily averages.

Patterns of daytime and nighttime NEE are shown in Figure A4. Again, this was calculated by
taking daily mean NEE values for three-hour windows surrounding noon and midnight, respectively
(1100–1300 and 2300–0100 h).
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Figure A4. JERC-RD tower daily diurnal averages.

Appendix B. Model Parameters

Appendix B.1. HF-EMS

Appendix B.1.1. PPA-SiBGC

Table A1. Species crown allometry parameters.

Species Type hcoe f f cr1 cr2 cd

ACPE adult 0.063 0.108 1 0.490
ACRU adult 0.063 0.108 1 0.490
BEAL adult 0.063 0.109 1 0.540
BELE adult 0.024 0.109 1 0.540
BEPO adult 0.063 0.109 1 0.540
FAGR adult 0.035 0.152 1 0.664
FRAM adult 0.056 0.095 1 0.319
PIGL adult 0.033 0.087 1 0.413
PIRE adult 0.033 0.087 1 0.413
PIST adult 0.033 0.087 1 0.413
PRSE adult 0.045 0.116 1 0.370
QURU adult 0.042 0.119 1 0.413
QUVE adult 0.042 0.119 1 0.413
TSCA adult 0.024 0.100 1 0.846
ACPE sapling 0.062 0.107 1 0.580
ACRU sapling 0.063 0.108 1 0.490
BEAL sapling 0.063 0.109 1 0.540
BELE sapling 0.024 0.109 1 0.540
BEPO sapling 0.063 0.109 1 0.540



Forests 2019, 10, 180 32 of 46

Table A1. Cont.

Species Type hcoe f f cr1 cr2 cd

FAGR sapling 0.035 0.152 1 0.664
FRAM sapling 0.056 0.095 1 0.319
PIGL sapling 0.033 0.087 1 0.413
PIRE sapling 0.033 0.087 1 0.413
PIST sapling 0.033 0.087 1 0.413
PRSE sapling 0.045 0.116 1 0.370
QURU sapling 0.042 0.119 1 0.413
QUVE sapling 0.042 0.119 1 0.413
TSCA sapling 0.024 0.100 1 0.846

Table A2. Species biomass equation parameters.

Species b0 b1 fstem fbranch flea f froot fsoil

ACPE −2.047 2.385 0.700 0.230 0.070 0.240 0.680
ACRU −2.047 2.385 0.700 0.230 0.070 0.240 0.680
BEAL −1.810 2.348 0.700 0.230 0.070 0.240 0.680
BELE −1.810 2.348 0.700 0.230 0.070 0.240 0.680
BEPO −2.227 2.451 0.700 0.230 0.070 0.240 0.680
FAGR −2.070 2.441 0.700 0.230 0.070 0.240 0.680
FRAM −1.838 2.352 0.700 0.230 0.070 0.240 0.680
PIGL −2.136 2.323 0.700 0.230 0.070 0.240 0.680
PIRE −2.618 2.464 0.700 0.230 0.070 0.240 0.680
PIST −2.618 2.464 0.700 0.230 0.070 0.240 0.680
PRSE −2.212 2.413 0.700 0.230 0.070 0.240 0.680
QURU −2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVE −2.070 2.441 0.700 0.230 0.070 0.240 0.680
TSCA −2.348 2.388 0.700 0.230 0.070 0.240 0.680

Table A3. Biomass carbon fraction parameters.

fstem fbranch flea f froot fsoil

0.500 0.500 0.500 0.500 0.143

Table A4. Species DBH increment parameters.

Species Type IDBH

ACPE adult 0.277
ACRU adult 0.312
BEAL adult 0.280
BELE adult 0.198
BEPO adult 0.103
FAGR adult 0.303
FRAM adult 0.149
PIGL adult 0.274
PIRE adult 0.390
PIST adult 0.277
PRSE adult 0.120
QURU adult 0.420
QUVE adult 0.322
TSCA adult 0.563
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Table A4. Cont.

Species Type IDBH

ACPE sapling 0.895
ACRU sapling 0.269
BEAL sapling 0.520
BELE sapling 0.201
BEPO sapling 0.300
FAGR sapling 0.530
FRAM sapling 0.500
PIGL sapling 0.353
PIRE sapling 0.350
PIST sapling 0.350
PRSE sapling 0.200
QURU sapling 0.098
QUVE sapling 0.100
TSCA sapling 0.509

Table A5. Species mortality parameters.

Species Type pmortality

ACPE adult 0.115
ACRU adult 0.030
BEAL adult 0.035
BELE adult 0.009
BEPO adult 0.032
FAGR adult 0.015
FRAM adult 0.004
PIGL adult 0.074
PIRE adult 0.023
PIST adult 0.010
PRSE adult 0.009
QURU adult 0.007
QUVE adult 0.001
TSCA adult 0.022
ACPE sapling 0.001
ACRU sapling 0.873
BEAL sapling 0.001
BELE sapling 0.667
BEPO sapling 0.001
FAGR sapling 0.354
FRAM sapling 0.001
PIGL sapling 0.001
PIRE sapling 0.001
PIST sapling 0.001
PRSE sapling 0.001
QURU sapling 0.001
QUVE sapling 0.001
TSCA sapling 0.821
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Table A6. Species fecundity parameters.

Species Fecundity

ACPE 2
ACRU 29
BEAL 16
BELE 8
BEPO 2
FAGR 11
FRAM 5
PIGL 3
PIRE 3
PIST 11
PRSE 8
QURU 29
QUVE 9
TSCA 17

Table A7. Species C:N ratio parameters.

Species CNstem CNbranch CNlea f CNlitter CNroot CNsoil

ACPE 548.590 71.460 30.460 58.800 68.548 23.087
ACRU 548.590 71.460 30.460 58.800 68.548 23.087
BEAL 548.590 71.460 22.420 58.800 68.548 23.087
BELE 548.590 71.460 21.200 58.800 68.548 23.087
BEPO 548.590 71.460 21.560 58.800 68.548 23.087
FAGR 548.590 71.460 22.420 58.800 68.548 23.087
FRAM 548.590 71.460 21.910 58.800 68.548 23.087
PIGL 548.590 71.460 38 58.800 68.548 23.087
PIRE 548.590 71.460 33 58.800 68.548 23.087
PIST 548.590 71.460 38 58.800 68.548 23.087
PRSE 548.590 71.460 21.500 58.800 68.548 23.087
QURU 548.590 71.460 21.920 58.800 68.548 23.087
QUVE 548.590 71.460 21.920 58.800 68.548 23.087
TSCA 548.590 71.460 42.520 58.800 68.548 23.087

Appendix B.1.2. LANDIS-II NECN

Table A8. NECN adjustment parameters.

Parameter Value

pest modifier 0.1
Nmineral initial 3.0
Fuels f ine initial 0.1
Natmos slope 0.007
Natmos intercept 0.011
Latitudedeg 43.3
rdenitri f ication 0.001
rdecay surface 0.65
rdecay SOM1 1.0
rdecay SOM2 0.125
rdecay SOM3 0.0002
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Table A9. NECN maximum LAI parameters.

Classshade LAImax

1 1
2 2.5
3 3.5
4 6
5 8

Table A10. NECN light establishment parameters.

Classshade Shade0 Shade1 Shade2 Shade3 Shade4 Shade5

1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 0.5 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1

Table A11. NECN species parameters.

Species PFT N f ix GDDmin GDDmax Tmin Dmax Longlea f Repi Llea f Lroot f Lwood Lrootc CNlea f CNroot f CNwood CNrootc CNlitter ANPPmax Bmax

ACRU 3 N 1260 6600 −18 0.23 1 N 0.183 0.334 0.125 0.312 28.20 26 565 50 55 440 25000
QURU 2 N 1100 4571 −17 0.2025 1 N 0.249 0.334 0.225 0.303 18.50 58 398 113 32 380 25000

Table A12. Functional group parameters.

PFT Index Tmean Tmax Tshape Tshape fC f BTOLAI kLAI LAImax PPRPTS2 PPRPTS3 rdecayw mwood mshape dropmonth frootc froot f

Oaks 2 25 40 1.5 2.5 0.6 −0.9 10000 9 0.1 0.8 0.5 0.0006 15 9 0.2 0.5
NorthHardwoods 3 25 40 1.5 2.5 0.6 −0.9 7000 10 1.5 0.96 0.7 0.0006 15 9 0.2 0.5

Table A13. Fire reduction parameters; inactive.

Classseverity Reductionwood Reductionlitter ReductionSOM

1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0

Table A14. Harvest reduction parameters; inactive.

Class Reductionwood Reductionlitter ReductionSOM Removallea f Removalwood

HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0
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Table A15. Species parameters; only ACRU and QURU were simulated.

Species Longevity Maturity Tshade Tf ire De f f Dmax pveg Smin Smax R f ire

ABBA 200 25 5 1 30 160 0 0 0 none
ACRU 235 5 4 1 100 200 0.75 0 150 none
ACSA 300 40 5 1 100 200 0.1 0 60 none
BEAL 300 40 3 2 100 400 0.1 0 180 none
BELE 250 40 4 2 100 400 0.1 0 0 none
BEPA 150 40 4 2 100 600 0.75 0 150 none
BEPO 150 40 4 2 100 400 0.1 0 0 none
CAGL 200 30 3 2 50 100 0.25 0 200 resprout
FAGR 350 10 5 1 30 300 0.4 10 200 resprout
FRAM 300 30 2 1 70 140 0.1 0 70 none
FRNI 150 30 4 2 200 2000 0.8 10 140 resprout
LALA 180 35 2 2 100 400 0.2 0 0 none
OSVI 110 25 4 2 100 200 0.15 0 100 resprout
PIGL 300 25 3 2 30 200 0 0 0 none
PIMA 215 30 3 3 79 158 0 0 0 none
PIRU 350 15 5 2 80 125 0 0 0 none
PIRE 250 15 2 4 100 275 0.1 0 20 none
PIRI 200 10 2 4 90 150 0.5 10 100 resprout
PIST 400 25 3 3 60 210 0 0 0 none
POBA 150 10 1 2 100 200 0.8 10 80 resprout
POGR 110 20 1 1 1000 5000 0.9 0 100 resprout
POTR 110 20 1 1 1000 5000 0.9 0 100 resprout
PRSE 200 10 2 3 100 200 0.5 20 90 resprout
QUAL 400 25 3 2 30 800 0.1 20 200 resprout
QUCO 150 20 2 3 50 100 0.5 20 100 resprout
QUPR 300 20 3 3 50 150 0.5 10 200 resprout
QURU 250 30 3 2 30 800 0.5 20 200 resprout
QUVE 120 20 3 2 70 150 0.1 20 90 resprout
THOC 800 30 2 1 45 100 0.5 0 200 none
TIAM 250 15 4 1 75 150 0.8 10 240 resprout
TSCA 500 20 5 2 30 100 0 0 0 none
ULAM 85 20 4 2 90 400 0.3 5 70 resprout

Appendix B.2. JERC-RD

Appendix B.2.1. PPA-SiBGC

Table A16. Species crown allometry parameters.

Species Type hcoe f f cr1 cr2 cd

PIPA adult 0.033 0.087 1 0.413
QUIN adult 0.042 0.119 1 0.413
QUNI adult 0.042 0.119 1 0.413
QUVI adult 0.042 0.119 1 0.413
PIPA sapling 0.033 0.087 1 0.413
QUIN sapling 0.042 0.119 1 0.413
QUNI sapling 0.042 0.119 1 0.413
QUVI sapling 0.042 0.119 1 0.413
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Table A17. Species biomass equation parameters.

Species b0 b1 fstem fbranch flea f froot fsoil

PIPA −3.051 2.647 0.700 0.230 0.070 0.240 0.680
QUIN −2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUNI −2.070 2.441 0.700 0.230 0.070 0.240 0.680
QUVI −2.070 2.441 0.700 0.230 0.070 0.240 0.680

Table A18. Biomass carbon fraction parameters.

fstem fbranch flea f froot fsoil

0.500 0.500 0.500 0.500 0.143

Table A19. Species DBH increment parameters.

Species Type IDBH

PIPA adult 0.261
QUIN adult 0.119
QUNI adult 0.994
QUVI adult 0.276
PIPA sapling 0.197
QUIN sapling 0.100
QUNI sapling 0.440
QUVI sapling 0.271

Table A20. Species mortality parameters.

Species Type pmortality

PIPA adult 0.001
QUIN adult 0.001
QUNI adult 0.001
QUVI adult 0.001
PIPA sapling 0.174
QUIN sapling 0.333
QUNI sapling 0.143
QUVI sapling 0.111

Table A21. Species fecundity parameters.

Species Fecundity

PIPA 2
QUIN 0
QUNI 0
QUVI 0

Table A22. Species C:N ratio parameters.

Species CNstem CNbranch CNlea f CNlitter CNroot CNsoil

PIPA 133.721 133.721 255.103 255.103 133.721 23.087
QUIN 96.370 96.370 85.259 85.259 96.370 23.087
QUNI 96.370 96.370 85.259 85.259 96.370 23.087
QUVI 96.370 96.370 85.259 85.259 96.370 23.087
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Appendix B.2.2. LANDIS-II NECN

Table A23. NECN adjustment parameters.

Parameter Value

pest modifier 0.4
Nmineral initial 0.5
Fuels f ine initial 0.1
Natmos slope 0.004
Natmos intercept 0.017
Latitudedeg 31.220731
rdenitri f ication 0.02
rdecay surface 0.70
rdecay SOM1 0.81
rdecay SOM2 0.05
rdecay SOM3 0.00006

Table A24. NECN maximum LAI parameters.

Classshade LAImax

1 1
2 2.5
3 3.5
4 6
5 8

Table A25. NECN light establishment parameters.

Classshade Shade0 Shade1 Shade2 Shade3 Shade4 Shade5

1 1 1 0.25 0.1 0 0
2 0.5 0.5 1 0.25 0.1 0
3 0.1 1 1 1 0.5 0.1
4 0.1 0.25 0.5 0.5 1 0.25
5 0 0.1 0.25 0.25 0.5 1

Table A26. NECN species parameters.

Species PFT N f ix GDDmin GDDmax Tmin Dmax Longlea f Repi Llea f Lroot f Lwood Lrootc CNlea f CNroot f CNwood CNrootc CNlitter ANPPmax Bmax

QUIN 2 N 3915 7000 1 0.423 1 N 0.293 0.23 0.23 0.35 24 48 500 333 55 250 15,000
QULA 2 N 3915 7000 1 0.423 1 N 0.293 0.23 0.23 0.35 24 48 500 333 55 250 15,000
PIPA 1 N 3915 7000 1 0.423 2 N 0.2 0.2 0.35 0.35 50 50 380 170 100 500 15,000

Table A27. Functional group parameters.

PFT Index Tmean Tmax Tshape Tshape fC f BTOLAI kLAI LAImax PPRPTS2 PPRPTS3 rdecayw mwood mshape monthdrop frootc froot f

Pine 1 28 45 3.0 2.5 0.37 −0.9 2000 10 1 0.8 0.6 0.001 15 9 0.31 0.56
Oaks 2 27 45 2.2 2.5 0.5 −0.9 2000 20 0.1 0.75 0.6 0.001 15 9 0.21 0.59
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Table A28. Fire reduction parameters; inactive.

Classseverity Reductionwood Reductionlitter ReductionSOM

1 0.0 0.5 1.0
2 0.05 0.75 1.0
3 0.2 1.0 1.0
4 0.5 1.0 1.0
5 0.8 1.0 1.0

Table A29. Harvest reduction parameters; inactive.

Classseverity Reductionwood Reductionlitter ReductionSOM Removallea f Removalwood

HandThinning 0.05 1.0 1.0 1.0 1.0
MechThinning 0.05 1.0 1.0 0.85 1.0

Table A30. Species parameters.

Species Longevity Maturity Tshade Tf ire De f f Dmax pveg Smin Smax R f ire

QUIN 150 10 4 5 50 3000 0.75 5 40 resprout
QULA 150 20 4 3 50 3000 0.75 5 40 resprout
PIPA 400 20 1 5 20 200 0.0 0 5 none
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