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Abstract

:

State-of-the-art forest models are often complex, analytically intractable, and computationally expensive, due to the explicit representation of detailed biogeochemical and ecological processes. Different models often produce distinct results while predictions from the same model vary with parameter values. In this project, we developed a rigorous quantitative approach for conducting model intercomparisons and assessing model performance. We have applied our original methodology to compare two forest biogeochemistry models, the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) and Landscape Disturbance and Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN). We simulated past-decade conditions at flux tower sites located within Harvard Forest, MA, USA (HF-EMS) and Jones Ecological Research Center, GA, USA (JERC-RD). We mined field data available from both sites to perform model parameterization, validation, and intercomparison. We assessed model performance using the following time-series metrics: Net ecosystem exchange, aboveground net primary production, aboveground biomass, C, and N, belowground biomass, C, and N, soil respiration, and species total biomass and relative abundance. We also assessed static observations of soil organic C and N, and concluded with an assessment of general model usability, performance, and transferability. Despite substantial differences in design, both models achieved good accuracy across the range of pool metrics. While LANDIS-II NECN showed better fidelity to interannual NEE fluxes, PPA-SiBGC indicated better overall performance for both sites across the 11 temporal and two static metrics tested (HF-EMS R2¯=0.73,+0.07, RMSE¯=4.68,−9.96; JERC-RD R2¯=0.73,+0.01, RMSE¯=2.18,−1.64). To facilitate further testing of forest models at the two sites, we provide pre-processed datasets and original software written in the R language of statistical computing. In addition to model intercomparisons, our approach may be employed to test modifications to forest models and their sensitivity to different parameterizations.
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1. Introduction


1.1. A Brief History of Forest Ecosystem Models


For millenia, timber harvest for economic, militaristic, and social gain was the primary—if not sole—objective of forestry. This focus changed only slightly in the 18th century with the emergence of sustained-yield forest management in Leipzig, Germany (then within the Electorate of Saxony, Holy Roman Empire) [1]. For the first time, controlling the effects of management intensity on land productivity over time was given primary consideration. This followed a history of deforestation extending back to the loss of Cedrus forests across the Middle East, as described in the Epic of Gilgamesh in the third millennium BCE [2,3]. While sustained-yield forest management was designed to maximize timber production indefinitely, under the spurious assumption that sustained yield is possible solely through in situ silvicultural treatments, the concept broadly inspired sustainability science, resilience theory [4], and subsequent work on complex adaptive systems [5].



From its inception, sustainability regarded matters economic, social, and ecological in nature [6]. Yet, economic-focused timber production likely accelerated with increased mechanization in the mid-20th century. As our understanding of abiotic and biotic forest interactions expanded, the core assumptions of stationarity underpinning sustained-yield management lost support. The importance of fire ecology [7], structural complexity [8], trophic interactions [9], and their relation to climate, soil, and ecosystem functioning was soon uncovered. Research on climate impacts on regeneration [10,11] further showed that species compositional changes are likely under current climate trajectories, requiring proactive strategies to sustain yields from extant forests.



Research along this line inspired the concepts of adaptive migration [12], assisted gene flow [13], and precise gene editing of trees with CRISPR/Cas9 [14]. Ecological forestry or sustainable forest management is now the dominant management paradigm, where the focus is on emulating natural processes of succession, disturbance, and migration [15]. Mirroring changes in management, modeling forest ecosystems also underwent a paradigm shift from focusing on sustained yield to ecological forestry and multiple-use management. This has required a remarkable increase in the size and complexity of forest ecosystem models in order to simulate a suite of new complex processes.



Forest models likely began 350 years ago in China with yield tables known as the Lung Ch’uan codes, invented by a women of the Kuo family in Suichuan county, Jiangxi [16]. It was not until the 20th century that the first complex mathematical models of forests emerged. Long restricted to simple models developed with mechanical calculators, digital computers enabled researchers to explicitly model forest dynamics. Following the development of matrix models [17] and empirical growth-and-yield models such as Prognosis [18,19], a vast array of gap [20], forest landscape [21,22,23,24,25], and terrestrial biosphere models [26,27,28] have been developed. Models of forest ecosystems vary substantially in application, abstraction, and system detail. While some models may be entirely statistical or mechanistic, others combine statistical and systems-theoretic process models in a hybrid modeling approach [29,30].



Representation of canopy geometry varies from implicit to a single ’big-leaf’ and detailed three-dimensional crown and root geometry (e.g., modern gap models such as MAESPA [31] and LES [32]). Models of growth range from simple allometric equations (e.g., growth-and-yield models) to light-use efficiency models [33] and first-principles mechanistic models of photosynthesis [34]. Belowground process models similarly vary in structure, from simple stoichiometric relations to carbon and nitrogen cycling with microbial dynamics to a fully mechanistic representation of energetic and biogeochemical processes based on thermodynamics. Current belowground models vary considerably in their process representation and accuracy, with much improvement left to be made [35]. Most belowground models in use globally rely on a variant of the classical Century model [36,37].



Model specialization and generalization ranges from pure research applications in narrowly defined areas (e.g., [31]) to simulating multiple loosely coupled landscape processes to modeling biogeochemical fluxes throughout the world’s forests. A trade-off is thought to exist between realism, precision, and generality [38], with more detailed models requiring higher parameterization costs. Yet, little is known about the net effects of variation in the structure of these models on the precision and accuracy of their predictions across temporal and spatial scales. While such model intercomparisons are common within classes of models such as terrestrial biosphere models, they are seldom applied to gap or forest landscape models. Models operating at different scales are seldom compared within sites. Yet, much can be learned by comparing models that differ in assumptions and structure.




1.2. Emergence of New Classes of Hybrid Model


Modern forest landscape models are the result of five key model development phases, listed in chronological order: (1) Growth-and-yield models; (2) fire models; (3) gap models; (4) physiological models; (5) hybrid models combining design principles from each [20,29,39]. Terrestrial biosphere models similarly trace their roots back to early one-dimensional physiological models, with land surface models currently in their third generation and dynamic global vegetation models in their second generation [40]. This latest generation of models was intended to address the lack of explicit representation of vegetation dynamics—a critical source of model uncertainty in future climate scenarios [41]. This inspired the aforementioned forest ecosystem model intercomparisons as well as new terrestrial biosphere model designs based on gap models, bypassing the trade-offs of medium-resolution forest landscape models.



Collectively, these efforts yielded a number of new terrestrial biosphere models based on the classical gap model, including the Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) [42], the Ecosystem Demography model (ED/ED2) [43,44], and Land Model 3 with PPA (LM3-PPA) [45], based on the Perfect Plasticity Approximation (PPA) [46,47]. These models represent the current state-of-the-art in modeling vegetation dynamics globally, in what we term ’cohort-leaf’ vegetation models. While individual-based global models have begun to merge, forest landscape models have remained in between, focused on spatial processes of fire, harvest, and biological disturbance. Yet, previous research has shown that such forest landscape models are often insensitive to landscape configuration and are therefore aspatial [48], counter to the main assumption and selling point of these models.



While most forest landscape and terrestrial biosphere models lack individual trees, the SAS [43] and PPA [32,46,49] model reduction strategies have demonstrated an ability to successfully up-scale gap dynamics to forest stands. Other up-scaling strategies exist as well. One recent forest landscape model participating in the CoFoLaMo intercomparison scales from individual trees to stands by pre-computing light tables [50]. Regardless of the model structure, it is clear that gap, forest landscape, and terrestrial biosphere models are beginning to merge into new models of the terrestrial biosphere. This trend is also attributable to improvements in computational efficiency with new processor designs and cluster or cloud computing infrastructure. As few, if any, existing models are designed for highly parallel architectures (e.g., general-purpose graphics processing units, or GPGPUs), there remains much potential for future efficiency gains. Meanwhile, a clear opportunity exists to embed machine learning models within simulators for data-driven, pattern-based processes (e.g., from remote sensing data streams).




1.3. Existing Forest Ecosystem Model Intercomparison Projects


Existing forest model intercomparison projects, or MIPs, in Europe include the stand-level Intersectoral Impact MIP (ISIMIP) regional forests sector [51] and the landscape-level Comparison of Forest Landscape Models (CoFoLaMo) [52] through ISIMIP, both conducted under the European Union Cooperation on Science and Technology (COST) Action FP1304 “Towards robust projections of European forests under climate change” (PROFOUND). Previous MIP efforts in the United States are limited and include the Throughfall Displacement Experiment (TDE) Ecosystem MIP at Walker Branch Watershed in Oak Ridge, Tennessee [53,54]. The TDE MIP involved a large-scale manipulation experiment to assess ecosystem responses to changes in precipitation, utilizing a total of 13 models. The MIP included an array of monthly, daily, and hourly temporal resolution models. Notable models compared include PnET-II [55], SPA [56], Biome-BGC [57], LINKAGES [58], and MAESTRO/MAESTRA [59], in addition to nine other models. Perhaps unsurprisingly, they found that no single model was ideal for predicting a variety of variables while there was substantial disagreement between models in the C response of vegetation to soil water changes. They also found that more mechanistic models operating at shorter temporal resolution generally showed higher fitness [54]. While the TDE MIP provided a thorough model intercomparison using a variety of model structures, it was limited to a single location and was completed nearly two decades ago.



ISIMIP is a protocol that provides a framework for projecting the impacts of climate change across different sectors. The recent ISIMIP2 biome sector MIP involved the following simulation models: CARAIB [60], DLEM [61], JULES [62,63], LPJ-GUESS [64], LPJmL [65], ORCHIDEE [66], VEGAS [67], and VISIT [68]. These models were used to simulate carbon cycling in terrestrial ecosystem in response to climate change and increased atmospheric CO2 [69]. Shared forcing data was provided at daily temporal and 0.5° spatial resolution. The ISIMIP2 simulation protocol called for model spin-up followed by a transient run forced by historical climate, CO2 concentration, and land-use [69,70]. ISIMIP2 also involved a regional forests sector, the ISIMIP2/PROFOUND model intercomparison, which included the following models: 3D-CMCC FEM [71,72], 3D-CMCC-CNR-BGC [73], 3-PG [33], 4C or FORESEE [74], ANAFORE [75], BASFOR [76], CARAIB [60], ED2 [43,44], ForClim [20], FORMIND [77], GO+ [78], GOTILWA+ [79], Landscape-DNDC [80], LPJ-GUESS [64], PnET-BGC [81], and PRELES [82].



ISIMIP2/PROFOUND resulted in the release of a database of harmonized data for model intercomparisons, as well as a wrapper library in the R language for statistical computing [83], yet to be released at the time of this writing. For the ISIMIP regional forest model intercomparison, sites were selected in COST Action FP1304 PROFOUND that provide simplified forest model initialization. Modeling experiments mostly encompassed managed forests. Long time-series data from forest inventories and FLUXNET sites were used in model intercomparisons. Meanwhile, CoFoLaMo involved a comparison of the following forest ecosystem models through the ISIMIP framework [52]: LandClim [84], ForHyCS [85], TreeMig [86], LANDIS-II [87], and iLand [50]. Rather than being driven by climate data at 0.5° spatial resolution, temperature and precipitation drivers were downscaled to 100 m resolution in CoFoLaMo. Forest models were compared with respect to their scales, processes, interactions, drivers, disturbances, uncertainties, and implementation details such as data requirements. For model spin-up, the models used observed climate data hindcast to 1600 A.D., while model forecasts used Representative Concentration Pathways (RCPs) from ISIMIP [52].



Given extensive model intercomparison efforts currently underway in Europe, the question remains, is a forest biogeochemistry MIP necessary for North America? Presently, no other current forest biogeochemistry MIP is evident for the Americas, leaving a substantial spatial sampling bias in model implementation. There is a critical need to conduct ongoing forest biogeochemistry model comparisons in this and other regions of the world in order to establish the regional foundation for robust global C cycle projections. While model initialization and validation data may be relatively difficult to come by in other regions, North America enjoys some of the most thorough forest inventory data in the world, with wide coverage and repeat sampling. This is particularly true for vast temperate and boreal forests in the US and Canada that are critical to the global C cycle. Meanwhile, Mexico, Puerto Rico, and the state of Hawaii contain tropical forests critical for improving models in these systems globally. In this work, we aim to begin this process for North America with a comparison of the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) and Landscape Disturbance and Succession with Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN) models, which provide contrasting model structures for representing demographic and biogeochemical processes.



In this forest biogeochemistry MIP, we focus on two sites on the East Coast of the United States, Harvard Forest (HF), Massachusetts and Jones Ecological Research Center (JERC), Georgia. The two sites were selected for their representativeness of the United States Eastern Seaboard and for the availability of data needed to parameterize and validate the models. Harvard Forest is one of the most-studied forests in the world, with Google Scholar returning 12,700 results for the site. We focus on results for the Environmental Measurement Station (EMS) eddy covariance (EC) flux tower site within the Little Prospect Hill tract - the longest-running eddy covariance flux tower in the world. While there have been fewer studies at Jones Ecological Research Center, Georgia, USA, Google Scholar returns 1370 results for the site, reflecting its growing role in forest sciences research. Our study focuses on the Red Dirt (RD) EC flux tower site within the mesic sector.



In this work, we aim to establish a foundation for future forest biogeochemistry model intercomparisons. This includes open-source object-oriented software to facilitate model parameterization, validation, intercomparison, and simplified reproducibility of results, based on our Earth-science Research and Development Environment (Erde), a library implemented in R and Python (Erickson and Strigul, in preparation). We perform the model intercomparison for two key research forests in the United States to assess the ability of each model to reproduce observed biogeochemistry pools and fluxes over time. We hypothesize that the inclusion of forest growth, compositional change, and mortality processes in both models will allow for accurate predictions of biomass and NEE dynamics, as suggested in previous research Urbanski et al. [88]. Accordingly, we compare both models to observations and to each other for a host of metrics related to biomass, C, N, and forest composition at the two research sites.





2. Materials and Methods


LANDIS-II NECN and PPA-SiBGC were parameterized for two forested sites in the eastern United States, Harvard Forest, Massachusetts and Jones Ecological Research Center, Georgia. At the HF site, we focus on Little Prospect Hill and the EMS EC flux tower (HF-EMS). At the JERC site, we focus on the mesic zone and RD EC flux tower (JERC-RD). Both sites provided local EC and meteorological measurements to conduct this study. Plots of EC flux and meteorological tower measurements for both sites are located in Appendix A (Figure A1, Figure A2, Figure A3 and Figure A4); maps of both sites are provided in the site descriptions.



Both models were parameterized using data available for each site, including local (i.e., field measurements) and general information sources (e.g., species compendiums and other published sources). As these empirical or observational values were used to parameterize both models, further model calibration (i.e., parameter tuning) was not necessary. This is because tuning parameters away from measured values to improve model performance, or defining a separate set of tuning parameters, is known to produce model over-fitting (i.e., reduced generality) and thus false improvements in model accuracy through reduced parsimony [89]. We explicitly avoided this practice, as it is only appropriate when fitting empirical growth-and-yield models such as Prognosis, also known as the Forest Vegetation Simulator (FVS) [18,19]. All model parameters are provided in Appendix B (Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9, Table A10, Table A11, Table A12, Table A13, Table A14, Table A15, Table A16, Table A17, Table A18, Table A19, Table A20, Table A21, Table A22, Table A23, Table A24, Table A25, Table A26, Table A27, Table A28, Table A29 and Table A30). We close the methodology section with descriptions of the metrics, models, and criteria used in the intercomparisons.



2.1. Model Descriptions


In the following sections, we provide a brief overview of the two forest ecosystem models used in this intercomparison study. For detailed information on each model, readers are encouraged to refer to the original publications.



2.1.1. LANDIS-II NECN


The LANDIS-II model is an extension of the original LANdscape DIsturbance and Succession (LANDIS) model [90,91,92] into a modular software framework [87]. Specifically, LANDIS-II is a model core containing basic state information that interfaces or communicates with external user-developed models known as “extensions” using a combination of object-oriented and modular design. This design makes LANDIS-II a modeling framework rather than a model. The LANDIS family of models, which also includes LANDIS PRO [93] and Fin-LANDIS [94,95], are stochastic hybrid models [29] based on the vital attributes/fuzzy systems approach of the LANDSIM model genre [96]. This genre borrows heavily from cellular automata [97] and thus Markov Chains by applying simple heuristic rule-based systems, in the form of vital attributes, across two-dimensional grids.



Models of the LANDSIM genre focus on landscape-scale processes and assume game-theoretic vital attribute controls over successional trajectories following disturbance [98]. The LANDSIM model genre is thus a reasonable match for the classical forest fire model [99], given its local two-dimensional cellular basis. In contrast to the original LANDIS model, LANDIS-II is implemented in Microsoft C# rather than ISO C++98 [100], simplifying model development in exchange for a proprietary single-vendor software stack [87].



The latest version of LANDIS-II (v7) supports Linux through use of the Microsoft .NET Core developer platform. The modular design of LANDIS-II is intended to simplify the authorship and interaction of user-provided libraries for succession and disturbance. The centralized model core stores basic landscape and species state information and acts as an interface between succession and disturbance models. While there have been numerous forest landscape models over the years [21,22,23,24,25], the LANDIS family of models has enjoyed notable longevity and is currently united under the LANDIS-II Foundation. Part of its longevity is attributable to the prioritization of model functionality over realism in order to appeal to application-minded managers seeking a broad array of functionality.



The Net Ecosystem Carbon and Nitrogen (NECN) model [101] is a simplified variant of the classical Century model [36,37]. The original ten soil layers in Century have been replaced by a single soil layer, with functions for growth and decay borrowed directly from Century v4.5. The NECN succession model Figure 1 is thus a process-based model that simulates C and N dynamics along the plant-soil continuum at a native monthly timestep.



Atmospheric effects are included through monthly climate (i.e., temperature maxima, minima, means, and standard deviations, and precipitation means and standard deviations). Explicit geometric representation of tree canopies is forgone in favor of bounded statistical growth models based theoretically on Liebig’s Law of the Minimum. Functions for growth, mortality, and decay are adopted from Century [36] while hydrology is based on the simple bucket model [102]. The regeneration function is the only new process in NECN and is also based on Liebig’s Law. For a detailed description of the NECN model, readers may refer to the original model publication [101]. Parameterization of the LANDIS-II model for both sites was based on updating parameters used in recent [103,104,105,106] and ongoing (Flanagan et al., in review) work.




2.1.2. PPA-SiBGC


The PPA-SiBGC model belongs to the SORTIE-PPA family of models [46,49] within the SAS-PPA model genre, based on a simple and analytically tractable approximation of the classical SORTIE gap model [107,108]. The Perfect Plasticity Approximation, or PPA [46,47], was derived from the dual assumptions of perfect crown plasticity (e.g., space-filling) and phototropism (e.g., stem-leaning), both of which were supported in empirical and modeling studies [49]. The discovery of the PPA was rooted in extensive observational and in silico research [46]. The PPA model was designed to overcome the most computationally challenging aspects of gap models in order to facilitate model scaling from the landscape to global scale.



The PPA and its predecessor, the size-and-age structured (SAS) equations [43,109], are popular model reduction techniques employed in current state-of-the-art terrestrial biosphere models [28]. The PPA model can be thought of metaphorically as Navier–Stokes equations of forest dynamics, capable of modeling individual tree population dynamics with a one-dimensional von Foerster partial differential equation [46]. The simple mathematical foundation of the PPA model is provided in Equation (1).


1=∫z*∞∑j=1kNj(z)Aj(z*,z)dz



(1)




where k is the number of species, j is the species index, Nj(z) is the density of species j at height z, Aj(a*,z) is the projected crown area of species j at height z, and dz is the derivative of height. In other words, we discard the spatial location of individual trees and calculate the height at which the integral of tree crown area is equal to the ground area of the stand. This height is known as the theoretical z* height, which segments trees into overstory and understory classes [46].



The segmentation of the forest canopy into understory and overstory layers allows for separate coefficients or functions for growth, mortality, and fecundity to be applied across strata, whose first moment accurately approximates the dynamics of individual-based forest models. Recent studies have shown that the PPA model faithfully reduces the dynamics of the more recent neighborhood dynamics (ND) SORTIE-ND gap model [110] and is capable of accurately capturing forest dynamics [111,112].



In this work, we applied a simple biogeochemistry variant of the SORTIE-PPA model, PPA-SiBGC (Erickson and Strigul, in review) Figure 2.



Empirical observations were relied upon for the C and N content of tree species compartments. Stoichiometric relations were used to estimate N from C, based on empirical measurements provided for both sites. All values were calculated directly from observations. Previously published equations [113] and parameters [114] were used to model crown allometry. Together with inventory data, general biomass equations were used to estimated dry weight mass (kg) for tree stems, branches, leaves, and, fine and coarse roots [115]. Carbon content was assumed to be 50% of dry mass, generally supported by data. Monthly soil respiration was modeled using the approach of Raich et al. [116], while soil organic C was modeled using the simple generalized approach of Domke et al. [117]. Species- and stratum-specific parameters for growth, mortality, and fecundity were calculated directly from field data for both sites. Net ecosystem exchange, or NEE, was modeled as NEE=rsoil−ANPP following previous studies, which note associated challenges in connecting field and flux tower measurements [118,119]. Here, ANPP, or annual net primary production, is the total site biomass increment adjusted for the C fraction. This is necessary given the current field-measurement basis of the PPA, which may be replaced by LiDAR measurements and/or process models in future work.





2.2. Site Descriptions


In the following sections, we describe the two forested sites on the East Coast of the United States: HF-EMS and the JERC-RD. A critical factor in the selection of the sites was the availability of eddy covariance flux tower data needed to validate NEE in the models.



2.2.1. HF-EMS


The HF-EMS EC flux tower is located within the Little Prospect Hill tract of Harvard Forest (42.538° N, 72.171° W, 340 m elevation) in Petersham, Massachusetts, approximately 100 km from the city of Boston [88]. A map of the site is shown in Figure 3. The tower has been recording NEE, heat, and meteorological measurements since 1989, with continuous measurements since 1991, making it the longest-running eddy covariance measurement system in the world. The site is currently predominantly deciduous broadleaf second-growth forests approximately 75–95 years in age, based on previous estimates [120]. Soils at Harvard Forest originate from sandy loam glacial till and are reported to be mildly acidic [88].



The site is dominated by red oak (Quercus rubra L.) and red maple (Acer rubrum L.) stands, with sporadic stands of Eastern hemlock (Tsuga canadensis (L.) Carrière), white pine (Pinus strobus L.), and red pine (Pinus resinosa Ait.). When the site was established, it contained 100 Mg C ha−1 in live aboveground woody biomass [120]. As noted by Urbanski et al. [88], approximately 33% of red oak stands were established prior to 1895, 33% prior to 1930, and 33% before 1940. A relatively hilly and undisturbed forest (since the 1930s) extends continuously for several km2 around the tower. In 2000, harvest operations removed 22.5 Mg C ha−1 of live aboveground woody biomass about 300 m S-SE from the tower, with little known effect on the flux tower measurements. The 40 biometric plots were designated via stratified random sampling within eight 500 m transects Urbanski et al. [88]. The HF-EMS tower site currently contains 34 biometric plots at 10 m radius each, covering 10,681 m2, or approximately one hectare, in area. Summary statistics for the EMS tower site for the year 2002 are provided in Table 1.



A table of observed species abundances for the year 2002 are provided in Table 2, using tree species codes from the USDA PLANTS database (https://plants.usda.gov).



Previous research at the EMS EC flux tower site found unusually high rates of ecosystem respiration in winter and low rates in mid-to-late summer compared to other temperate forests [122]. While the mechanisms behind these observed patterns remains poorly understood, this observation is outside the scope of the presented research. Between 1992 and 2004, the site acted as a net carbon sink, with a mean annual uptake rate of 2.5 Mg C ha−1 year−1. Aging dominated the site characteristics, with a 101–115 Mg C ha−1 increase in biomass, comprised predominantly of growth of red oak (Quercus rubra). The year 1998 showed a sharp decline in net ecosystem exchange (NEE) and other metrics, recovering thereafter [88]. As Urbanski et al. [88] note of the Integrated Biosphere Simulator 2 (IBIS2) and similar models at the time, “the drivers of interannual and decadal changes in NEE are long-term increases in tree biomass, successional change in forest composition, and disturbance events, processes not well represented in current models.” The two models used in the intercomparison study, a SORTIE-PPA [46,47] variant and LANDIS-II with NECN succession [87,101], are intended to directly address these model shortcomings.




2.2.2. JERC-RD


Jones Ecological Research Center at Ichauway is located near Newton, Georgia, USA (31° N, 84° W, 25–200 m elevation). A map of the JERC-RD flux tower with landcover classes is shown in Figure 4. The site falls within the East Gulf Coastal Plain and consists of flat to rolling land sloping to the southwest. The region is characterized by a humid subtropical climate with temperatures ranging from 5–34 °C and precipitation averaging 132 cm year−1. The overall site is 12,000 ha in area, 7500 ha of which are forested [123]. The site also exists within a tributary drainage basin that eventually empties into the Flint River. Soils here are underlain by karst Ocala limestone and mostly Typic Quartzipsamments, with sporadic Grossarenic and Aquic Arenic Paleudults [124]. Soils here often lack well-developed organic horizons [123,124,125].



Forests here are mostly second-growth, approximately 65–95 years in age. Long-leaf pine (Pinus palustris Mill.) dominates the overstory, while the understory is comprised primarily of wiregrass (Aristida stricta Michx.) and secondarily of shrubs, legumes, forbs, immature hardwoods, and regenerating long-leaf pine forests [126]. Prescribed fire is a regular component of management here, with stands often burned at regular 1–5 year intervals [123]. This has promoted wiregrass and legumes in the understory, while reducing the number of hardwoods [123]. The RD EC flux tower is contained within the mesic/intermediate sector. This site consists of only four primary tree species from two genera: Long-leaf pine (Pinus palustris), water oak (Quercus nigra L.), southern live oak (Quercus virginiana Mill.), and bluejack oak (Quercus incana W. Bartram). Measurements for the RD tower are available for the 2008–2013 time period. Summary statistics for the RD tower site for the year 2008 are provided in Table 3.



A table of observed species abundances for the year 2009 are provided in Table 4.



Two recent studies [127,128] indicate that the mesic sector of this subtropical pine savanna functions as a moderate carbon sink (NEE = −0.83 Mg C ha−1year−1; −1.17 Mg C ha−1year−1), reduced to near-neutral uptake during the 2011 drought (NEE = −0.17 Mg C ha−1 year−1), and is a carbon source when prescribed burning is taken into account. NEE typically recovered to pre-fire rates within 30–60 days. The mechanisms behind soil respiration rates here again appear to be complex, site-specific, and poorly understood [128].



Overall, existing research highlights the importance of fire and drought to carbon exchange in long-leaf pine (Pinus palustris) and oak (Quercus spp.) savanna systems [127,128,129] at JERC. This is in contrast to the secondary growth-dominated deciduous broadleaf characteristics of Harvard Forest. Species diversity at the EMS tower site is 350% greater than that of the JERC-RD site, with 14 species from a variety of genera compared to four species from only two genera, Pinus and Quercus.





2.3. Site Data


Data collection methods may be accessed through the below data provider websites. Both sites provided a metadata file along with each data file, as is typically available to data users for the two sites. To conduct this model intercomparison exercise at HF-EMS, we leveraged the large amount of data openly available to the public through the Harvard Forest Data Archive:





	http://harvardforest.fas.harvard.edu/harvard-forest-data-archive






Data were collected here for a range of studies, as evidenced by the Harvard Forest Data Archive. Datasets used in model validation include HF001-04, HF004-02, HF069-09, HF278-04, HF069-06, HF015-05, HF006-01, and HF069-13. These include weather station and forest inventory time-series, eddy covariance flux tower measurements, soil respiration, soil organic matter, and studies on C:N stoichiometry. Standard measurement techniques were used for each. For both sites, local tree species, age, depth-at-breast-height (DBH), biomass, soil, and meteorological data were primarily used to parameterize the models.



The Jones Ecological Research Center has hosted multiple research efforts over the years, collectively resulting in the collection of a large data library. However, JERC-RD site data are not made openly available to the public and are thus only available by request. One may find contact information located within their website:





	http://www.jonesctr.org






Datasets used in model validation at JERC-RD include JC010-02, JC010-01, JC003-04, JC004-01, JC003-07, and JC011-01. These include weather station and eddy covariance flux tower measurements, forest inventory data, soil respiration, soil organic matter, and studies on C:N stoichiometry. Standard measurement techniques were also used for each of these.




2.4. Scales, Metrics, and Units


The selection of simulation years was based on the availability of EC flux tower data used in model validation. Thus, we simulated the HF-EMS site for the years 2002–2012 and the JERC-RD site for the years 2009–2013. For both sites and models, we initialized the model state in the first year of simulations using field observations. The PPA-SiBGC model used an annual timestep while LANDIS-II NECN used a monthly timestep internally. Both models may be set to other timesteps if desired.



The areal extent of the single-site model intercomparisons were designed to correspond to available field measurements. At both sites, tree inventories were conducted in 10,000 m2, or one-hectare, areas. All target metrics were converted to an annual areal basis to ease interpretation, comparison, and transferability of results. Importantly, an areal conversion will allow comparison to other sites around the world. While flux tower measurements for both sites were already provided on an areal (m−2) basis, many other variables were converted to harmonize metrics between models and study sites. For example, moles CO2 measurements were converted to moles C through well-described molecular weights, all other measures of mass were converted to kg, and all areal and flux measurements were harmonized to m−2. A table of metrics and units used in the intercomparison of LANDIS-II and PPA-SiBGC is provided in Table 5.



In the subsequent section, we describe the model intercomparison methodology.




2.5. Model Intercomparison


Intercomparison of the PPA-SiBGC and LANDIS-II models at the HF-EMS and JERC-RD EC flux tower sites was conducted using a collection of object-oriented functional programming scripts written in the R language for statistical computing [83]. These scripts were designed to simplify model configuration, parameterization, operation, calibration/validation, plotting, and error calculation. The scripts and our parameters are available on GitHub (https://github.com/adam-erickson/ecosystem-model-comparison), making our results fully and efficiently reproducible. The directory structure of the repository is shown in Figure S1 in the Supplementary Materials. The R scripts are also designed to automatically load and parse the results from previous model simulations, in order to avoid reproducibility issues stemming from model stochasticity. We use standard regression metrics applied to the time-series of observation and simulation data to assess model fitness. The metrics used include the coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and mean error (ME) or bias, calculated using simulated and observed values. Our implementation of R2 follows the Bravais–Pearson interpretation as the squared correlation coefficient between observed and predicted values [130]. This implementation is provided in Equation (2).


R2=r2=∑i=1n(yi−y¯)(y^i−y^¯)∑i=1n(yi−y¯)2(y^i−y^¯)22



(2)




where n is the sample size, yi is the ith observed value, yi^ is the ith predicted value, y¯ is the mean observed value, and y^¯ is the mean predicted value. The calculation of RMSE follows the standard formulation, as shown in Equation (3).


RMSE=1n∑t=1net2



(3)




where n is the sample size and et is the error for the tth value, or the difference between observed and predicted values. The calculation of MAE is similarly unexceptional, per Equation (4).


MAE=1n∑t=1n|et|



(4)




where again n is the sample size and et is the error for the tth value. Our calculation of mean error (ME) or bias is the same as MAE, but without taking the absolute value.



While Nash–Sutcliffe efficiency (NSE) is often used in a simulation model context, we selected the Bravais–Pearson interpretation of R2 over NSE to simplify the interpretation of results. The NSE metric replaces 1−(SSpredictions/SSobservations) with (SSobservations−SSpredictions)/SSobservations, where SS is the sum of squares. Thus, NSE is analogous to the standard R2 coefficient of determination used in regression analysis [131]. The implementation of R2 that we selected is important to note, as its results are purely correlative and quantify only dispersion, ranging in value between zero and one. This has some desirable properties in that no negative or large values are produced, and that it is insensitive to differences in scale. Regardless of the correlation metric used, complementary metrics are needed to quantify the direction (i.e., bias) and/or magnitude of error. We rely on RMSE and MAE to provide information on error or residual magnitude, and ME to provide information on bias. We utilize a visual analysis to assess error directionality over time, as this can be poorly characterized by a single coefficient, masking periodicity.



We compute R2, RMSE, MAE, and ME for time-series of the metrics described in Table 5 on page 13. These include NEE, above- and below-ground biomass, C, and N, soil organic C and N, soil respiration (rsoil), aboveground net primary production (ANPP), and, species aboveground biomass and relative abundance. All of these metrics are pools with the exception of NEE, rsoil, and ANPP fluxes. Finally, we diagnose the ability of both models to meet a range of logistical criteria related to deployment: Model usability, performance, and transferability. Model usability is assessed per four criteria:

	
Ease of installation



	
Ease of parameterization



	
Ease of program operation



	
Ease of parsing outputs








Model software performance is assessed per a single metric: The speed of program execution for each site for the predefined simulation duration. The durations are 11 years and five years for the HF-EMS and JERC-RD EC flux tower sites, respectively. Simulation results are output at annual temporal resolution, the standard resolution for both models, while NECN operates on a monthly timestep, and most other modules of LANDIS-II are annual. Finally, model transferability is assessed per the following five criteria:

	
Model generalizability



	
Availability of parameterization data



	
Size of the program



	
Cross-platform support



	
Ease of training new users








Each of these logistical criteria are compared in a qualitative analysis, with the exception of software performance.





3. Results


Both PPA-SiBGC and LANDIS-II NECN showed strong performance for pools at the two model intercomparison sites, frequently achieving R2 values approaching unity. Yet, both models showed weak performance for fluxes. The models failed to accurately predict ANPP, while PPA-SiBGC showed stronger rsoil performance and LANDIS-II NECN showed stronger NEE performance. The R2 values for both models and sites are visualized in Figure 5.



On average, PPA-SiBGC outperformed LANDIS-II NECN across the sites and metrics tested, showing higher correlations, lower error, and less bias overall (HF-EMS R2¯=0.73,+0.07, RMSE¯=4.68,−9.96, ME¯=−0.84,−5.96; JERC-RD R2¯=0.73,+0.01, RMSE¯=2.18,−1.64, ME¯=1.33,+1.03). This result is based on calculating mean values for R2, RMSE, MAE, and ME in order to clearly translate the overall results. The two models produced the following mean values for each of the four statistical metrics and two sites:



As shown in Table 6, PPA-SiBGC yielded higher R2 values and lower RMSE, MAE, and ME values in comparison to LANDIS-II, on average, across all sites and metrics tested. Below, we provide model intercomparison results individually for the two sites, HF-EMS and JERC-RD.



3.1. HF-EMS


For the HF-EMS site, PPA-SiBGC showed higher R2 values and lower RMSE, MAE, and ME values compared to LANDIS-II NECN across the range of metrics. While PPA-SiBGC predicted NEE and species relative abundance showed weaker correlations with observed values compared to LANDIS-II NECN, the magnitude of error was lower, as evidenced by lower RMSE, MAE, and ME values. While LANDIS-II NECN showed a lower magnitude of error for belowground N, this is the only metric where this is the case, while the correlation of this metric to observed values was also lower than that of PPA-SiBGC. Overall results for the HF-EMS site model intercomparison are shown in Table 7.



Time-series figures allow a visual analysis of the temporal dynamics between observations and model predictions in order to assess the ability of models to capture interannual variability in carbon exchange. Both models effectively captured integrals of dynamics in biomass, C, and, species biomass and abundance. In Figure 6, the temporal differences in modeled NEE, aboveground C, ANPP, and soil respiration are shown for the two models in comparison to observations for the HF-EMS site. LANDIS-II NECN predicted NEE showed a higher correlation with observations while the magnitude of error and bias were lower. Furthermore, LANDIS-II NECN predicted that the HF-EMS site is a net C source, rather than sink, in contrary to observations. Meanwhile, PPA-SiBGC outperformed LANDIS-II NECN in aboveground C per both R2 and RMSE. Both models overpredicted species cohort biomass, while LANDIS-II NECN underpredicted total aboveground C.



An analysis of simulated species biomass and abundance also shows greater fidelity of the PPA-SiBGC model to data, as shown in Figure 7. As LANDIS-II NECN does not contain data on individual trees, species relative abundance is calculated based on the number of cohorts of each species. Two species were simulated in LANDIS-II NECN, as there are no explicit trees in the model and the number of cohorts appears to have no effect on the total biomass. Results for PPA-SiBGC indicate that species relative abundance may be improved in future studies by optimizing mortality and fecundity rates. Meanwhile, species biomass predictions output by LANDIS-II NECN were inverted from those of the observations.




3.2. JERC-RD


For the JERC-RD site, both models showed stronger fidelity to data than for the HF-EMS site. Again, PPA-SiBGC showed higher R2 values and lower RMSE and MAE values compared to LANDIS-II NECN across the range of metrics tested. Yet, the margin between models was smaller for the JERC RD site. While PPA-SiBGC demonstrated higher correlations and lower errors for most metrics tested, LANDIS-II NECN outperformed PPA-SiBGC in a few cases. This includes a higher correlation for NEE, ANPP, and lower magnitude of error for aboveground N, belowground biomass, soil respiration, and SOC. PPA-SiBGC, however, showed correlations equal or higher for all metrics tested, and lower errors for all other metrics. Overall results for the JERC-RD site model intercomparison are shown in Table 8.



Time-series carbon exchange metrics for the JERC-RD site, presented in Figure 8, show that modeled NEE values are positively correlated with each other rather than with observed NEE, while the magnitude of error varies from favoring PPA-SiBGC to LANDIS-II NECN. Overall, the PPA-SiBGC model shows a lower magnitude of error for NEE, ANPP, and CAG, and slightly higher for rsoil. Again, for rsoil the two models show strong agreement, but underestimate observations by an order of magnitude. For CAG and ANPP, PPA-SiBGC shows good overall fit.



While both models showed higher performance at the JERC-RD site in comparison to the HF-EMS site, an analysis of simulated species biomass and abundance again indicates greater fidelity of the PPA-SiBGC model to data, as shown in Figure 9. While LANDIS-II NECN greatly overpredicts the rate of longleaf pine growth, PPA-SiBGC matches observed species abundance and biomass trajectories for all species present. While the correlations are high, PPA-SiBGC overpredicts the magnitude of species biomass.



Our results for the HF-EMS and JERC-RD site model intercomparison exercise show strong performance for both models at both sites. Results for the JERC-RD site are particularly close between the two models. Next, we assess results related to the logistics of model deployment to new computers, users, and modeling sites.




3.3. Model Usability, Performance, and Transferability


While the two models share a similar basis in forest dynamics and biogeochemistry modeling, they differ in important practical and conceptual terms. The command-line version of the PPA-SiBGC model used in this work, version 5.0, consists of approximately 500 lines of R code and is thus readily cross-platformed and portable. Meanwhile, the LANDIS-II model core and NECN succession extension are an estimated 2000 and 0.5 million lines of code, respectively. While this version of PPA-SiBGC fuses an explicit tree canopy geometry model with empirical data on fecundity, growth, mortality, and stoichiometry, the NECN extension of LANDIS-II borrows heavily from the process-based Century model [37], similar to the MAPSS-Century-1 (MC1) model [132]. This carries important implications for model parameterization needs. While PPA-SiBGC relies on typical forest inventory data, including tree species, age/size, and densities, LANDIS-II relies on species age/size and traits in the form of vital attributes, in addition to approximately 100 NECN parameters. Below, we summarize our findings regarding the logistics of model deployment.



3.3.1. Model Usability


In the following section, we provide an assessment of model usability based on four criteria.

	
Ease of installation



While LANDIS-II NECN requires the installation of two Windows programs, depending on the options desired, PPA-SiBGC is contained in a single R script and requires only a working R installation.



	
Ease of parameterization



While both models can be difficult to parameterize for regions with little to no observational data, the simple biogeochemistry in PPA-SiBGC requires an order of magnitude fewer parameters than LANDIS-II NECN. In addition, PPA-SiBGC uses commonly available forest inventory data while NECN requires a number of parameters that may be difficult to locate.



	
Ease of program operation



Both models use a command-line interface and are thus equally easy to operate. Yet, PPA-SiBGC is cross-platform and uses comma-separated-value (CSV) files for input tables, which are easier to work with than multiple tables nested within an unstructured text files. This additionally allows for simplification in designing model application programming interfaces (APIs), or model wrappers, a layer of abstraction above the models. These abstractions are important for simplifying model operation and reproducibility, and enable a number of research applications.



	
Ease of parsing outputs



All PPA-SiBGC outputs are provided in CSV files in a single folder while LANDIS-II NECN generates outputs in multiple formats in multiple folders. While the PPA-SiBGC format is simpler and easier to parse, the image output formats used by LANDIS-II carry considerable benefit for spatial applications. Both models may benefit by transitioning spatiotemporal data to the NetCDF scientific file format used by most general circulation and terrestrial biosphere models.









3.3.2. Model Performance


Next, we assess model performance in terms of the speed of operation on a consumer-off-the-shelf (COTS) laptop computer with a dual-core 2.8 GHz Intel Core i7-7600U CPU and 16 GB of DDR4-2400 RAM. We focus on a single performance metric, the timing of simulations. Other aspects of model performance in the form of precision and accuracy are described in previous sections. As shown in Table 9, PPA-SiBGC was between 1200 and 2800% faster than LANDIS-II NECN in our timing tests. This was surprising given that PPA-SiBGC models true cohorts (i.e., individual trees) in an interpreted language while LANDIS-II models theoretical cohorts (i.e., cohorts without a physical basis) in a compiled language. The difference in speed is likely attributable to the parsimony of the PPA-SiBGC model.




3.3.3. Model Transferability


Here, we discuss model transferability. In this section, we assess the effort required to transfer the models to new locations, new computer systems, or new users. All three are important logistical criteria for effective model deployment.

	
Model generalization



Both models appear to generalize effectively to different forested regions of the world, as both have shown strong performance in this study and others. No clear winner is evident in this regard. In terms of model realism, PPA-SiBGC has a more realistic representation of forest canopies while LANDIS-II NECN has more realistic processes, as it is a Century model variant.



	
Availability of parameterization data



While LANDIS-II NECN requires substantially greater parameterization data compared to PPA-SiBGC, it may often be possible to rely on previously published parameters. Meanwhile, the growth, mortality, and fecundity parameters used by PPA-SiBGC are easy to calculate using common field inventory data. PPA-SiBGC is simpler to transfer in this regard given the wide availability of forest inventory data.



	
Size of the program



PPA-SiBGC is approximately 500 lines of R code, while LANDIS-II NECN is estimated at 0.5 million lines of C# code.



	
Cross-platform support



While Linux support may soon be supported with Microsoft .NET Core, LANDIS-II NECN is written in C# and is thus limited to Microsoft Windows platforms. Meanwhile, PPA-SiBGC is written in standard R code and is fully cross-platform.



	
Ease of training new users



While both models have a learning curve, the practical simplicity of PPA-SiBGC may make it easier to train new users. While LANDIS-II NECN contains more mechanistic processes and related parameters, these come at the cost of confusing new users. The model wrapper library we developed as part of this work vastly eases the operation of both models. Future studies should measure the time required for new users to effectively operate both models.











4. Discussion


First, it is important to clarify some terms used in this analysis. Gross primary production (GPP) is the net rate of carboxylation and oxygenation by RuBisCO and is calculated as GPP=Pg−Rp, where Pg is gross photosynthesis and Rp is photorespiration. In EC flux data analyses, GPP is also known as gross ecosystem exchange (GEE) or gross ecosystem production (GEP) and is often estimated inversely from NEE or NEP flux tower retrievals as GPP=NEE−Re, where Re is ecosystem respiration or the sum of auto- and heterotrophic respiration components. Thus, Re=Rm+Rg+Rh where Rm is maintenance respiration, Rg is autotrophic growth respiration, and Rh is heterotrophic respiration. While GPP is the total amount of C fixed by plants in photosynthesis, NPP subtracts autotrophic respiration (Ra) as NPP=GPP−Ra where Ra=Rg+Rm. NEE or net ecosystem production (NEP) is then calculated as NPP minus heterotrophic respiration, or NEE=NPP−Rh, which is equivalent to NEE=GPP−Re. During the day, NEE=Pg+Rp+Rm+Rg+Rh while during the night, Pg and Rp are absent, making NEE approximate to ecosystem respiration, or Re. Traditionally, gross or net exchange of CO2 into the forest is negative and fluxes into the atmosphere are positive, while each constituent process is discussed with a positive sign. Thus, NEE is often calculated as NEE=Re−GPP where each constituent flux term is always positive [133,134,135,136,137].



All this is to say that there exists much difficulty in relating NPP from field inventories and soil respiration samples directly to NEE from EC flux towers, integrated over the year. In our analyses, we assume that the observed annual biomass growth increment is equivalent to ANPP and that soil respiration (rsoil) is equivalent to ecosystem respiration (Re), or NEE=NPP−rsoil. Yet, there are known error contributions at multiple conversion points, making the comparison of models based on field data and EC flux tower measurements difficult. For example, field inventory estimates of ANPP contain known sources of error in converting DBH to biomass, both above- and belowground [115], and there are additional errors in converting biomass to C based on a fixed fraction for each biomass compartment. Meanwhile, unlike Re, rsoil does not account for Rg or Rm, only Rh. Even if these fluxes were approximately similar, spatial biases in the EC flux tower footprint or contributing area [138,139,140,141,142] may make field inventory and tower measurements difficult to harmonize.



As others have noted [118,119], including a previous study on flux measurements at the HF-EMS site [88], it is evident that treating ANPP as the C fraction of woody biomass increment per allometric relations from field data is a loose proxy for ecosystem ANPP, given its visible disconnection from observed NEE and rsoil fluxes. Given the definition of NEE, the relation between these variables should be approximately linear. While others have reported hysteresis between peaks in NEE and growth increment at the HF-EMS site [88], we did not see evidence of this dynamic. Instead, flux tower NEE appears to have little to no connection to field data ANPP and observed rsoil fluxes at both sites in this analysis. Nevertheless, both models showed good agreement with net changes to C and N pools. This may partially reflect difficulties in accounting for belowground processes, which can contribute disproportionately to C fluxes, and in connecting flux tower NEE to forest stands where the contributing area extent is far greater than a one-hectare stand, as is often the case [138,139,140].



This issue can be seen in Figure 6 and Figure 8. In this model intercomparison exercise, ANPP for the PPA-SiBGC model and field data are based on annual woody biomass increment, while ANPP in LANDIS-II NECN includes the Century process model for estimating ANPP. Rather than this basis making the NECN model purely process-based or mechanistic, species-specific growth is tightly constrained by empirical limits in a truncated logistic curve, with LAI and the number of cohorts present used as a proxy for growing space limitations and moisture and temperature used for physiological constraint based on Liebig’s Law of the Minimum. In contrast, PPA-SiBGC is parameterized with mean observed growth and mortality rates from field data, which vary depending on the canopy position of a cohort. Understory cohorts assumed to be in full shade face higher mortality and lower growth, as is widely evident in field data, while overstory cohorts assumed to be in full sunlight have higher growth and lower mortality rates. While soil and root processes are explicitly simulated in Century and thus LANDIS-II NECN, PPA-SiBGC relies on simple stoichiometric and allometric relations from field data to model these pools. In other words, PPA-SiBGC is designed primarily to model pools rater than fluxes, as the former are of generally higher interest to foresters.



The strong empirical basis of parameterization of both PPA-SiBGC and LANDIS-II NECN explains why the two models are often in better agreement with each other than with observations. The similarity of outputs from the two models is perhaps surprising, given their differences in model architecture and theoretical basis. This shows that, despite any mechanistic process present, both models in their current form are closely fit to field data and are therefore strongly empirical, as evidenced by their representation of growth processes. Meanwhile, this design choice limits the representation of fluxes in both models, as detailed process models are absent. This is expected for PPA-SiBGC, which is intended primarily to be a simple empirical pool model. This work also shows that observations between field and tower measurements are substantially disconnected. We estimate that fluxes are poorly represented by both models because they are tightly coupled to field inventory data rather than to tower-based measurements. Hence, patterns evident in field inventory data are reliably reproduced while fluxes appear wholly uncoupled.



The advancement of processor architectures has facilitated the development of increasingly complex forest models. Each new generation of processors allows researchers to conduct large-scale simulations faster and more efficiently than previous designs. As a result, forest models have grown into large, complex, analytically intractable programs. Rigorous intercomparison of models developed by different research groups, as well as the diagnosis of new versions of established models, is therefore a critical step in further advancing ecosystem models. This ensures that models are properly diagnosed and compared in a consistent, reliable, and transparent manner. Too often, model intercomparisons are conducted by each separate research group applying their own model in a manner that is, at best, inconsistent and opaque. In this work, we extended our model intercomparison by further providing wrapper functions that may be used to benchmark additional models or sites through a unified modeling framework. This ensures the consistency and transparency of intercomparison results.



The presented research is intended to establish the groundwork for future model intercomparison studies at both sites in order to advance the design of new models. Furthermore, we hope that this work will inspire a new generation of forest model intercomparisons in North America, which are sorely absent. Forest models have proven to be a critical testbed for improving the representation of vegetation dynamics in global terrestrial biosphere models [40,41,143], given the importance of forests in the global carbon cycle and the increased detail of local- to regional-scale models. Model benchmarking datasets and related results should be publicly shared and regularly updated with version-controlled software repositories (e.g., GitHub or GitLab), as is commonplace in the machine learning research community. Cloud computing providers may provide full reproducibility for cases where compute is limiting. In general, there is a broad disparity between modern software tools and existing forest models.



One important new forest model in development is a next-generation model from the SORTIE-PPA family of models, known as SORTIE-NG. This new model combines mechanistic representations of demographic processes, energetic and biogeochemical fluxes, and landscape disturbance dynamics, using hierarchical multiscale modeling with a modular component-based software framework [144]. Along with LM3-PPA [45], SORTIE-NG is among the first of a new class of hybrid models that we term ‘cohort-leaf’ models for their partitioning of energetic and biogeochemical fluxes amongst dynamic vegetation cohorts, instead of a single vertical ’big-leaf’ profile. The SORTIE-NG model includes evolutionary optimality principles as well as phenotype plasticity and intraspecific genetic diversity through first-class support for probabilistic modeling, borrowing design principles from probabilistic programming languages (e.g., [145]). Thus, SORTIE-NG is intended to be the first forest model to bridge the divide between big-leaf, gap, and landscape models, and to be designed from the outset as a probabilistic modeling framework [144]. Future model extensions are in the planning stages, including the first machine learning processes included in an ecosystem model.



While implemented in a ’close-to-metal’ language (i.e., C++17) and designed for efficiency, SORTIE-NG is more computationally demanding than the PPA-SiBGC model used in this paper. Yet, we anticipate that SORTIE-NG will be able to improved the fidelity to observed fluxes through reliance on detailed process models, which is the major shortcoming of both models considered in this paper. Similarly, there is a new version of the LANDIS-II NECN model in development known as NECN-Hydro, which remains a simplified variant of the Century model, but includes more detailed hydrological processes. The currently presented work provides not only an intercomparison of two current state-of-art models, but also open-source software and wrapper functions for simple and rapid comparison of our results with new models or sites. The selected forested ecosystems modeled in this work are among the best-studied model forests on Earth today. Specifically, the EMS EC flux tower at Harvard Forest is the longest running flux tower in the United States. Extensions of the presented work will allow rigorous model comparison methodologies for forest models that will benefit the research community at large.



Extensions of this work may also address the robustness of model predictions to variations in parameter values. The parameterization of complex forest biogeochemistry models such as LANDIS-II NECN and PPA-SiBGC is an important problem for consideration. Models such as LANDIS-II NECN operate with an order of magnitude more parameters than PPA-SiBGC, which can each be estimated with different levels of accuracy. Often, we know only the range of parameter values while parameterization can also depend on the statistical approach employed. Meanwhile, authors routinely employ additional model calibration that consists of adjusting parameters in order to obtain improved fitness, which we explicitly avoided in this study.



Conducting such analyses through a unified software framework in a fully transparent and reproducible manner is therefore of the utmost importance. This is exactly the type of analyses that our provided software is designed to support. In a parallel line of research, we extend this base-level implementation into a generic application programming interface (API) and toolkit for geoscientific simulation models, known as Erde [146], supporting both R and Python. The Erde framework provides machine learning model emulation, robust loss estimation, parameter optimization, probabilistic parameterization, samplers such as Latin hypercube sampling and Markov Chain Monte Carlo, and a number of other helper methods designed for complex simulation models. We utilize the Erde framework in the design of Erde Gym, a toolkit for developing and comparing optimization algorithms in the geosciences with a focus on reinforcement learning [146]. For the first time, Erde Gym will allow us to model systems (e.g., evolutionary plant optimality) as intelligent agents able to navigate complex environments.



4.1. Limitations


This study, similar to most other modeling studies, was limited by the availability, quality, and quantity of observational data. The lack of temporal depth in this data poses substantial challenges in modeling the long-term effects of forest succession, as these processes can operate on a century timescale or longer. However, diagnosing succession was not the aim of this study, as we instead focus on near-term validation of forest models using field measurements and EC flux tower data. Another limitation is that these methods may be challenging to implement for sites that are less well-characterized, particularly in the absence of EC flux tower data and/or tree species parameters. A combination of tower-based and remote sensing observations may help overcome this challenge in the coming years with advances in machine learning. In addition, the poor performance of both tested models in capturing fluxes and excellent performance in capturing stocks indicate that the two current models should be applied in cases where stocks, rather than fluxes, are of primary interest.




4.2. Future Opportunities


Future studies should expand upon the PPA with a first-principles representation of energetic and biogeochemical above- and below-ground processes in a modern component-based software framework. This work should fuse the new state-of-the-art forest biogeochemistry model with a model wrapper API written in R or Python, in order to expand native model functions to include Monte Carlo methods, machine-learning model emulation, robust loss functions, and optimization through a simple API enabling reproducibility. This would combine a high-performance forest model written in a compiled language with a simple, user-friendly interface written in an interpreted language, combining the best of both worlds. We are currently conducting work along this line by fusing the SORTIE-NG model with the Erde framework in order to develop state-of-the-art and user-friendly modeling capabilities, inspired by the design of modern deep learning frameworks such as PyTorch [147] and the Keras API [148].



In addition, there is a clear opportunity to link individual-based models such as PPA-SiBGC and SORTIE-NG to remote sensing data including airborne laser scanning or high-resolution multiview-stereo imagery (i.e., structure-from-motion), and hyperspectral indices of vegetation growth or stress. This line of work may assess opportunities for Bayesian data assimilation in addition to model parameterization and validation using detailed wall-to-wall forest structure maps. As models such as LES [32] provide more structural detail, spatially explicit data will be needed to parameterize the next generation of models. New data collection methods (e.g., [149]) will also be needed as the geometric realism of models advances toward the photorealistic detail offered by procedural models such as Lindenmayer- or L-systems [150,151].





5. Conclusions


In conclusion, the PPA-SiBGC and LANDIS-II NECN models represent vegetation dynamics previously absent in modeling studies at these sites. These include, “...long-term increases in tree biomass, successional change in forest composition, and disturbance events, processes not well represented in current models,” which drive interannual variation in NEE [88]. While the timescale of our simulations were decidedly short-term due to data limitations, both models showed good performance. While PPA-SiBGC showed stronger performance across the range of metrics tested, including the logistics of model deployment, LANDIS-II NECN also performed well across the metrics tested. Further studies are needed to compare more aspects of these and other models based on an array of performance criteria.



Ultimately, we hope that this study serves as the foundation for future forest ecosystem model intercomparisons for the North American continent, similar in spirit to the former TDE Ecosystem Model Intercomparison project [54]. This may help create the impetus for a Global Forest Model Intercomparison Project (ForestMIP) together with modeling groups on other continents. The aims of this research were not to determine which model is ’best’ for prognosis at two locations, but to improve the capabilities of existing models across a range of locations in order to advance earth system models. In this regard, there are beneficial aspects to both modeling approaches and the trade-offs presented largely depend on the desired application. Counter to the classical modeling trade-off of Levins [38], improvements in precision and generality resulted from realism.
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The following are available online at http://www.mdpi.com/1999-4907/10/2/180/s1. Parameter tables for both models and sites are provided in Appendix B (Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9, Table A10, Table A11, Table A12, Table A13, Table A14, Table A15, Table A16, Table A17, Table A18, Table A19, Table A20, Table A21, Table A22, Table A23, Table A24, Table A25, Table A26, Table A27, Table A28, Table A29 and Table A30). All model, parameter, script files used in this model intercomparison exercise are available for download at the following public GitHub repository: https://github.com/adam-erickson/ecosystem-model-comparison. The repository provides tables containing parameter values and climate drivers used in the PPA-SiBGC and LANDIS-II NECN model simulations for the two model intercomparison sites. Tree species codes are adopted from the USDA PLANTS database, accessible at the following URL: https://plants.usda.gov. Scripts provided include a simple object-oriented forest biogeochemistry model wrapper library implemented in the R language [83]. The model wrapper library includes a number of features for simplifying the operation of this class of models, including functions for cleaning up and parsing model outputs into memory in a common format for comparison. Importantly, the wrapper library enables full reproducibility of results through the hf_ems.r and jerc_rd.r scripts. Using these scripts with the object-oriented classes.r model wrapper, it is possible to load pre-computed model results and calculate all intercomparison metrics for verification. The directory structure of the repository is shown in Figure S1.
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The following abbreviations are used in this manuscript:









	3D-CMCC CNR-BGC
	3-D Forest Ecosystem Model of the Euro-Mediterranean Centre for Climate Change



	
	with Carbon-Nitrogen-Respiration Biogeochemistry



	3D-CMCC FEM
	3-D Forest Ecosystem Model of the Euro-Mediterranean Centre for Climate Change



	3-PG
	Physiological Processes Predicting Growth model



	4C/FORESEE
	Forest Ecosystems in a Changing Environment model



	ANAFORE
	ANAlysis of FORest Ecosystems model



	ANPP
	Aboveground net primary production



	API
	Application programming interface



	BASFOR
	BASic FORest simulator model



	BGC
	Biogeochemistry



	Biome-BGC
	Biome BioGeochemical Cycles model



	CARAIB
	CARbon Assimilation In the Biosphere model



	CoFoLaMo
	Comparison of Forest Landscape Models



	COST
	Cooperation in Science and Technology



	CPU
	Central processing unit



	CSV
	Comma-separated values



	DLEM
	Dynamic Land Ecosystem Model



	DoD
	Department of Defense



	EC
	Eddy covariance



	ED/ED2
	Ecosystem Demography model



	EMS
	Environmental Measurement Station



	ForClim
	Forests in a changing Climate model



	ForHyCS
	Forest and Hydrology Change in Switzerland model



	FORMIND
	Forest Model Individual-based



	FVS
	Forest Vegetation Simulator



	GO+
	GRAECO and ORCHIDEE plus CASTANEA model



	GOTILWA+
	Growth of Trees is Limited by Water model



	GPGPU
	General-purpose graphics processing unit



	HF
	Harvard Forest, Massachusetts, USA



	IBIS2
	Integrated Biosphere Simulator version 2



	iLand
	Individual-based forest landscape and disturbance model



	ISIMIP/ISIMIP2
	Inter-Sectoral Impact Model Intercomparison Project



	JERC
	Jones Ecological Research Center, Georgia, USA



	JULES
	Joint UK Land Environment Simulator



	L-systems
	Lindenmayer systems



	LandClim
	LANDIS-ForClim model



	LANDIS
	Landscape Disturbance and Succession model



	LANDIS-II
	Landscape Disturbance and Succession model, C# version



	LM3
	Land Model version 3



	Landscape-DNDC
	Landscape DeNitrification DeComposition model



	LINKAGES
	Linked forest productivity-soil process model



	LPJ-GUESS
	Lund-Potsdam-Jena General Ecosystem Simulator



	LPJmL
	Lund-Potsdam-Jena managed Land



	MAE
	Mean absolute error



	MAESTRO/MAESTRA
	Model of Assimilation, Evaporation, and Solar radiation TRansfer Operation



	MC1
	MAPSS-Century-1 model



	ME
	Mean error



	MIP
	Model Intercomparison Project



	NECN
	Net Ecosystem Carbon and Nitrogen model



	NEE
	Net ecosystem exchange



	NSE
	Nash-Sutcliffe efficiency



	ORCHIDEE
	Organising Carbon and Hydrology In Dynamic Ecosystems



	PnET-II
	Photosynthetic/EvapoTranspiration model



	PnET-BGC
	Photosynthetic/EvapoTranspiration Biogeochemistry model



	PPA
	Perfect Plasticity Approximation model



	PPA-SiBGC
	PPA with Simple Biogeochemistry model



	PRELES
	PREdict with LESs - or - PREdict Light-use efficiency, Evapotranspiration and Soil water



	PROFOUND
	Towards robust projections of European forests under climate change



	RAM
	Random access memory



	RCP
	Representative Concentration Pathway



	RD
	Red Dirt mesic flux tower site, JERC



	RMSE
	Root mean squared error



	SAS
	Size- and age-structured equations



	SOC
	Soil organic carbon



	SON
	Soil organic nitrogen



	SPA
	Soil-plant-atmosphere continuum model



	TDE
	Throughfall Displacement Experiment



	TreeMig
	Tree Migration model



	VEGAS
	VEgetation-Global-Atmosphere-Soil model



	VISIT
	Vegetation Integrative Simulator for Trace Gases








Appendix A. Eddy Covariance Flux Tower Measurements


Appendix A.1. HF-EMS EC Flux Tower


Recent historical mean daily fluxes of temperature (°C), ecosystem respiration (μ mol CO2m−2), and NEE (μ mol C m−2) for the HF-EMS tower are shown in Figure A1.



Patterns in daytime and nighttime NEE are shown in Figure A2. This was calculated by taking daily mean NEE values for three-hour windows surrounding noon and midnight, respectively (1100–1300 and 2300–0100 h). These patterns are important to diagnose, as they demonstrate responses to a gradient of light and temperature conditions.
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Figure A1. HF-EMS tower daily averages. 






Figure A1. HF-EMS tower daily averages.
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Figure A2. HF-EMS tower daily diurnal averages. 






Figure A2. HF-EMS tower daily diurnal averages.
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Appendix A.2. JERC-RD EC Flux Tower


Recent historical mean daily fluxes of latent heat flux (LE) (Wm−2), ecosystem respiration (μ mol CO2 m−2), and NEE (μ mol C m−2) for the RD flux tower are shown in Figure A3.
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Figure A3. JERC-RD tower daily averages. 






Figure A3. JERC-RD tower daily averages.
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Patterns of daytime and nighttime NEE are shown in Figure A4. Again, this was calculated by taking daily mean NEE values for three-hour windows surrounding noon and midnight, respectively (1100–1300 and 2300–0100 h).
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Figure A4. JERC-RD tower daily diurnal averages. 






Figure A4. JERC-RD tower daily diurnal averages.
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Appendix B. Model Parameters


Appendix B.1. HF-EMS


Appendix B.1.1. PPA-SiBGC
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Table A1. Species crown allometry parameters.






Table A1. Species crown allometry parameters.





	Species
	Type
	hcoeff
	cr1
	cr2
	cd





	ACPE
	adult
	0.063
	0.108
	1
	0.490



	ACRU
	adult
	0.063
	0.108
	1
	0.490



	BEAL
	adult
	0.063
	0.109
	1
	0.540



	BELE
	adult
	0.024
	0.109
	1
	0.540



	BEPO
	adult
	0.063
	0.109
	1
	0.540



	FAGR
	adult
	0.035
	0.152
	1
	0.664



	FRAM
	adult
	0.056
	0.095
	1
	0.319



	PIGL
	adult
	0.033
	0.087
	1
	0.413



	PIRE
	adult
	0.033
	0.087
	1
	0.413



	PIST
	adult
	0.033
	0.087
	1
	0.413



	PRSE
	adult
	0.045
	0.116
	1
	0.370



	QURU
	adult
	0.042
	0.119
	1
	0.413



	QUVE
	adult
	0.042
	0.119
	1
	0.413



	TSCA
	adult
	0.024
	0.100
	1
	0.846



	ACPE
	sapling
	0.062
	0.107
	1
	0.580



	ACRU
	sapling
	0.063
	0.108
	1
	0.490



	BEAL
	sapling
	0.063
	0.109
	1
	0.540



	BELE
	sapling
	0.024
	0.109
	1
	0.540



	BEPO
	sapling
	0.063
	0.109
	1
	0.540



	FAGR
	sapling
	0.035
	0.152
	1
	0.664



	FRAM
	sapling
	0.056
	0.095
	1
	0.319



	PIGL
	sapling
	0.033
	0.087
	1
	0.413



	PIRE
	sapling
	0.033
	0.087
	1
	0.413



	PIST
	sapling
	0.033
	0.087
	1
	0.413



	PRSE
	sapling
	0.045
	0.116
	1
	0.370



	QURU
	sapling
	0.042
	0.119
	1
	0.413



	QUVE
	sapling
	0.042
	0.119
	1
	0.413



	TSCA
	sapling
	0.024
	0.100
	1
	0.846
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Table A2. Species biomass equation parameters.






Table A2. Species biomass equation parameters.





	Species
	b0
	b1
	fstem
	fbranch
	fleaf
	froot
	fsoil





	ACPE
	−2.047
	2.385
	0.700
	0.230
	0.070
	0.240
	0.680



	ACRU
	−2.047
	2.385
	0.700
	0.230
	0.070
	0.240
	0.680



	BEAL
	−1.810
	2.348
	0.700
	0.230
	0.070
	0.240
	0.680



	BELE
	−1.810
	2.348
	0.700
	0.230
	0.070
	0.240
	0.680



	BEPO
	−2.227
	2.451
	0.700
	0.230
	0.070
	0.240
	0.680



	FAGR
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680



	FRAM
	−1.838
	2.352
	0.700
	0.230
	0.070
	0.240
	0.680



	PIGL
	−2.136
	2.323
	0.700
	0.230
	0.070
	0.240
	0.680



	PIRE
	−2.618
	2.464
	0.700
	0.230
	0.070
	0.240
	0.680



	PIST
	−2.618
	2.464
	0.700
	0.230
	0.070
	0.240
	0.680



	PRSE
	−2.212
	2.413
	0.700
	0.230
	0.070
	0.240
	0.680



	QURU
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680



	QUVE
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680



	TSCA
	−2.348
	2.388
	0.700
	0.230
	0.070
	0.240
	0.680
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Table A3. Biomass carbon fraction parameters.






Table A3. Biomass carbon fraction parameters.





	fstem
	fbranch
	fleaf
	froot
	fsoil





	0.500
	0.500
	0.500
	0.500
	0.143
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Table A4. Species DBH increment parameters.






Table A4. Species DBH increment parameters.





	Species
	Type
	IDBH





	ACPE
	adult
	0.277



	ACRU
	adult
	0.312



	BEAL
	adult
	0.280



	BELE
	adult
	0.198



	BEPO
	adult
	0.103



	FAGR
	adult
	0.303



	FRAM
	adult
	0.149



	PIGL
	adult
	0.274



	PIRE
	adult
	0.390



	PIST
	adult
	0.277



	PRSE
	adult
	0.120



	QURU
	adult
	0.420



	QUVE
	adult
	0.322



	TSCA
	adult
	0.563



	ACPE
	sapling
	0.895



	ACRU
	sapling
	0.269



	BEAL
	sapling
	0.520



	BELE
	sapling
	0.201



	BEPO
	sapling
	0.300



	FAGR
	sapling
	0.530



	FRAM
	sapling
	0.500



	PIGL
	sapling
	0.353



	PIRE
	sapling
	0.350



	PIST
	sapling
	0.350



	PRSE
	sapling
	0.200



	QURU
	sapling
	0.098



	QUVE
	sapling
	0.100



	TSCA
	sapling
	0.509
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Table A5. Species mortality parameters.






Table A5. Species mortality parameters.





	Species
	Type
	pmortality





	ACPE
	adult
	0.115



	ACRU
	adult
	0.030



	BEAL
	adult
	0.035



	BELE
	adult
	0.009



	BEPO
	adult
	0.032



	FAGR
	adult
	0.015



	FRAM
	adult
	0.004



	PIGL
	adult
	0.074



	PIRE
	adult
	0.023



	PIST
	adult
	0.010



	PRSE
	adult
	0.009



	QURU
	adult
	0.007



	QUVE
	adult
	0.001



	TSCA
	adult
	0.022



	ACPE
	sapling
	0.001



	ACRU
	sapling
	0.873



	BEAL
	sapling
	0.001



	BELE
	sapling
	0.667



	BEPO
	sapling
	0.001



	FAGR
	sapling
	0.354



	FRAM
	sapling
	0.001



	PIGL
	sapling
	0.001



	PIRE
	sapling
	0.001



	PIST
	sapling
	0.001



	PRSE
	sapling
	0.001



	QURU
	sapling
	0.001



	QUVE
	sapling
	0.001



	TSCA
	sapling
	0.821
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Table A6. Species fecundity parameters.






Table A6. Species fecundity parameters.





	Species
	Fecundity





	ACPE
	2



	ACRU
	29



	BEAL
	16



	BELE
	8



	BEPO
	2



	FAGR
	11



	FRAM
	5



	PIGL
	3



	PIRE
	3



	PIST
	11



	PRSE
	8



	QURU
	29



	QUVE
	9



	TSCA
	17
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Table A7. Species C:N ratio parameters.






Table A7. Species C:N ratio parameters.





	Species
	CNstem
	CNbranch
	CNleaf
	CNlitter
	CNroot
	CNsoil





	ACPE
	548.590
	71.460
	30.460
	58.800
	68.548
	23.087



	ACRU
	548.590
	71.460
	30.460
	58.800
	68.548
	23.087



	BEAL
	548.590
	71.460
	22.420
	58.800
	68.548
	23.087



	BELE
	548.590
	71.460
	21.200
	58.800
	68.548
	23.087



	BEPO
	548.590
	71.460
	21.560
	58.800
	68.548
	23.087



	FAGR
	548.590
	71.460
	22.420
	58.800
	68.548
	23.087



	FRAM
	548.590
	71.460
	21.910
	58.800
	68.548
	23.087



	PIGL
	548.590
	71.460
	38
	58.800
	68.548
	23.087



	PIRE
	548.590
	71.460
	33
	58.800
	68.548
	23.087



	PIST
	548.590
	71.460
	38
	58.800
	68.548
	23.087



	PRSE
	548.590
	71.460
	21.500
	58.800
	68.548
	23.087



	QURU
	548.590
	71.460
	21.920
	58.800
	68.548
	23.087



	QUVE
	548.590
	71.460
	21.920
	58.800
	68.548
	23.087



	TSCA
	548.590
	71.460
	42.520
	58.800
	68.548
	23.087









Appendix B.1.2. LANDIS-II NECN
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Table A8. NECN adjustment parameters.






Table A8. NECN adjustment parameters.





	Parameter
	Value





	pest modifier
	0.1



	Nmineral initial
	3.0



	Fuelsfine initial
	0.1



	Natmos slope
	0.007



	Natmos intercept
	0.011



	Latitudedeg
	43.3



	rdenitrification
	0.001



	rdecay surface
	0.65



	rdecay SOM1
	1.0



	rdecay SOM2
	0.125



	rdecay SOM3
	0.0002
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Table A9. NECN maximum LAI parameters.






Table A9. NECN maximum LAI parameters.





	Classshade
	LAImax





	1
	1



	2
	2.5



	3
	3.5



	4
	6



	5
	8
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Table A10. NECN light establishment parameters.






Table A10. NECN light establishment parameters.





	Classshade
	Shade0
	Shade1
	Shade2
	Shade3
	Shade4
	Shade5





	1
	1
	1
	0.25
	0.1
	0
	0



	2
	0.5
	0.5
	1
	0.25
	0.1
	0



	3
	0.1
	0.5
	1
	1
	0.5
	0.1



	4
	0.1
	0.25
	0.5
	0.5
	1
	0.25



	5
	0
	0.1
	0.25
	0.25
	0.5
	1
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Table A11. NECN species parameters.






Table A11. NECN species parameters.





	Species
	PFT
	Nfix
	GDDmin
	GDDmax
	Tmin
	Dmax
	Longleaf
	Repi
	Lleaf
	Lrootf
	Lwood
	Lrootc
	CNleaf
	CNrootf
	CNwood
	CNrootc
	CNlitter
	ANPPmax
	Bmax





	ACRU
	3
	N
	1260
	6600
	−18
	0.23
	1
	N
	0.183
	0.334
	0.125
	0.312
	28.20
	26
	565
	50
	55
	440
	25000



	QURU
	2
	N
	1100
	4571
	−17
	0.2025
	1
	N
	0.249
	0.334
	0.225
	0.303
	18.50
	58
	398
	113
	32
	380
	25000
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Table A12. Functional group parameters.






Table A12. Functional group parameters.





	PFT
	Index
	Tmean
	Tmax
	Tshape
	Tshape
	fCf
	BTOLAI
	kLAI
	LAImax
	PPRPTS2
	PPRPTS3
	rdecayw
	mwood
	mshape
	dropmonth
	frootc
	frootf





	Oaks
	2
	25
	40
	1.5
	2.5
	0.6
	−0.9
	10000
	9
	0.1
	0.8
	0.5
	0.0006
	15
	9
	0.2
	0.5



	NorthHardwoods
	3
	25
	40
	1.5
	2.5
	0.6
	−0.9
	7000
	10
	1.5
	0.96
	0.7
	0.0006
	15
	9
	0.2
	0.5
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Table A13. Fire reduction parameters; inactive.






Table A13. Fire reduction parameters; inactive.





	Classseverity
	Reductionwood
	Reductionlitter
	ReductionSOM





	1
	0.0
	0.5
	1.0



	2
	0.05
	0.75
	1.0



	3
	0.2
	1.0
	1.0



	4
	0.5
	1.0
	1.0



	5
	0.8
	1.0
	1.0
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Table A14. Harvest reduction parameters; inactive.






Table A14. Harvest reduction parameters; inactive.





	Class
	Reductionwood
	Reductionlitter
	ReductionSOM
	Removalleaf
	Removalwood





	HandThinning
	0.05
	1.0
	1.0
	1.0
	1.0



	MechThinning
	0.05
	1.0
	1.0
	0.85
	1.0
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Table A15. Species parameters; only ACRU and QURU were simulated.






Table A15. Species parameters; only ACRU and QURU were simulated.





	Species
	Longevity
	Maturity
	Tshade
	Tfire
	Deff
	Dmax
	pveg
	Smin
	Smax
	Rfire





	ABBA
	200
	25
	5
	1
	30
	160
	0
	0
	0
	none



	ACRU
	235
	5
	4
	1
	100
	200
	0.75
	0
	150
	none



	ACSA
	300
	40
	5
	1
	100
	200
	0.1
	0
	60
	none



	BEAL
	300
	40
	3
	2
	100
	400
	0.1
	0
	180
	none



	BELE
	250
	40
	4
	2
	100
	400
	0.1
	0
	0
	none



	BEPA
	150
	40
	4
	2
	100
	600
	0.75
	0
	150
	none



	BEPO
	150
	40
	4
	2
	100
	400
	0.1
	0
	0
	none



	CAGL
	200
	30
	3
	2
	50
	100
	0.25
	0
	200
	resprout



	FAGR
	350
	10
	5
	1
	30
	300
	0.4
	10
	200
	resprout



	FRAM
	300
	30
	2
	1
	70
	140
	0.1
	0
	70
	none



	FRNI
	150
	30
	4
	2
	200
	2000
	0.8
	10
	140
	resprout



	LALA
	180
	35
	2
	2
	100
	400
	0.2
	0
	0
	none



	OSVI
	110
	25
	4
	2
	100
	200
	0.15
	0
	100
	resprout



	PIGL
	300
	25
	3
	2
	30
	200
	0
	0
	0
	none



	PIMA
	215
	30
	3
	3
	79
	158
	0
	0
	0
	none



	PIRU
	350
	15
	5
	2
	80
	125
	0
	0
	0
	none



	PIRE
	250
	15
	2
	4
	100
	275
	0.1
	0
	20
	none



	PIRI
	200
	10
	2
	4
	90
	150
	0.5
	10
	100
	resprout



	PIST
	400
	25
	3
	3
	60
	210
	0
	0
	0
	none



	POBA
	150
	10
	1
	2
	100
	200
	0.8
	10
	80
	resprout



	POGR
	110
	20
	1
	1
	1000
	5000
	0.9
	0
	100
	resprout



	POTR
	110
	20
	1
	1
	1000
	5000
	0.9
	0
	100
	resprout



	PRSE
	200
	10
	2
	3
	100
	200
	0.5
	20
	90
	resprout



	QUAL
	400
	25
	3
	2
	30
	800
	0.1
	20
	200
	resprout



	QUCO
	150
	20
	2
	3
	50
	100
	0.5
	20
	100
	resprout



	QUPR
	300
	20
	3
	3
	50
	150
	0.5
	10
	200
	resprout



	QURU
	250
	30
	3
	2
	30
	800
	0.5
	20
	200
	resprout



	QUVE
	120
	20
	3
	2
	70
	150
	0.1
	20
	90
	resprout



	THOC
	800
	30
	2
	1
	45
	100
	0.5
	0
	200
	none



	TIAM
	250
	15
	4
	1
	75
	150
	0.8
	10
	240
	resprout



	TSCA
	500
	20
	5
	2
	30
	100
	0
	0
	0
	none



	ULAM
	85
	20
	4
	2
	90
	400
	0.3
	5
	70
	resprout










Appendix B.2. JERC-RD


Appendix B.2.1. PPA-SiBGC
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Table A16. Species crown allometry parameters.






Table A16. Species crown allometry parameters.





	Species
	Type
	hcoeff
	cr1
	cr2
	cd





	PIPA
	adult
	0.033
	0.087
	1
	0.413



	QUIN
	adult
	0.042
	0.119
	1
	0.413



	QUNI
	adult
	0.042
	0.119
	1
	0.413



	QUVI
	adult
	0.042
	0.119
	1
	0.413



	PIPA
	sapling
	0.033
	0.087
	1
	0.413



	QUIN
	sapling
	0.042
	0.119
	1
	0.413



	QUNI
	sapling
	0.042
	0.119
	1
	0.413



	QUVI
	sapling
	0.042
	0.119
	1
	0.413
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Table A17. Species biomass equation parameters.






Table A17. Species biomass equation parameters.





	Species
	b0
	b1
	fstem
	fbranch
	fleaf
	froot
	fsoil





	PIPA
	−3.051
	2.647
	0.700
	0.230
	0.070
	0.240
	0.680



	QUIN
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680



	QUNI
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680



	QUVI
	−2.070
	2.441
	0.700
	0.230
	0.070
	0.240
	0.680
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Table A18. Biomass carbon fraction parameters.






Table A18. Biomass carbon fraction parameters.





	fstem
	fbranch
	fleaf
	froot
	fsoil





	0.500
	0.500
	0.500
	0.500
	0.143
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Table A19. Species DBH increment parameters.






Table A19. Species DBH increment parameters.





	Species
	Type
	IDBH





	PIPA
	adult
	0.261



	QUIN
	adult
	0.119



	QUNI
	adult
	0.994



	QUVI
	adult
	0.276



	PIPA
	sapling
	0.197



	QUIN
	sapling
	0.100



	QUNI
	sapling
	0.440



	QUVI
	sapling
	0.271
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Table A20. Species mortality parameters.






Table A20. Species mortality parameters.





	Species
	Type
	pmortality





	PIPA
	adult
	0.001



	QUIN
	adult
	0.001



	QUNI
	adult
	0.001



	QUVI
	adult
	0.001



	PIPA
	sapling
	0.174



	QUIN
	sapling
	0.333



	QUNI
	sapling
	0.143



	QUVI
	sapling
	0.111
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Table A21. Species fecundity parameters.






Table A21. Species fecundity parameters.





	Species
	Fecundity





	PIPA
	2



	QUIN
	0



	QUNI
	0



	QUVI
	0










[image: Table]





Table A22. Species C:N ratio parameters.






Table A22. Species C:N ratio parameters.





	Species
	CNstem
	CNbranch
	CNleaf
	CNlitter
	CNroot
	CNsoil





	PIPA
	133.721
	133.721
	255.103
	255.103
	133.721
	23.087



	QUIN
	96.370
	96.370
	85.259
	85.259
	96.370
	23.087



	QUNI
	96.370
	96.370
	85.259
	85.259
	96.370
	23.087



	QUVI
	96.370
	96.370
	85.259
	85.259
	96.370
	23.087









Appendix B.2.2. LANDIS-II NECN
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Table A23. NECN adjustment parameters.






Table A23. NECN adjustment parameters.





	Parameter
	Value





	pest modifier
	0.4



	Nmineral initial
	0.5



	Fuelsfine initial
	0.1



	Natmos slope
	0.004



	Natmos intercept
	0.017



	Latitudedeg
	31.220731



	rdenitrification
	0.02



	rdecay surface
	0.70



	rdecay SOM1
	0.81



	rdecay SOM2
	0.05



	rdecay SOM3
	0.00006
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Table A24. NECN maximum LAI parameters.






Table A24. NECN maximum LAI parameters.





	Classshade
	LAImax





	1
	1



	2
	2.5



	3
	3.5



	4
	6



	5
	8
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Table A25. NECN light establishment parameters.






Table A25. NECN light establishment parameters.





	Classshade
	Shade0
	Shade1
	Shade2
	Shade3
	Shade4
	Shade5





	1
	1
	1
	0.25
	0.1
	0
	0



	2
	0.5
	0.5
	1
	0.25
	0.1
	0



	3
	0.1
	1
	1
	1
	0.5
	0.1



	4
	0.1
	0.25
	0.5
	0.5
	1
	0.25



	5
	0
	0.1
	0.25
	0.25
	0.5
	1
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Table A26. NECN species parameters.






Table A26. NECN species parameters.





	Species
	PFT
	Nfix
	GDDmin
	GDDmax
	Tmin
	Dmax
	Longleaf
	Repi
	Lleaf
	Lrootf
	Lwood
	Lrootc
	CNleaf
	CNrootf
	CNwood
	CNrootc
	CNlitter
	ANPPmax
	Bmax





	QUIN
	2
	N
	3915
	7000
	1
	0.423
	1
	N
	0.293
	0.23
	0.23
	0.35
	24
	48
	500
	333
	55
	250
	15,000



	QULA
	2
	N
	3915
	7000
	1
	0.423
	1
	N
	0.293
	0.23
	0.23
	0.35
	24
	48
	500
	333
	55
	250
	15,000



	PIPA
	1
	N
	3915
	7000
	1
	0.423
	2
	N
	0.2
	0.2
	0.35
	0.35
	50
	50
	380
	170
	100
	500
	15,000
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Table A27. Functional group parameters.






Table A27. Functional group parameters.





	PFT
	Index
	Tmean
	Tmax
	Tshape
	Tshape
	fCf
	BTOLAI
	kLAI
	LAImax
	PPRPTS2
	PPRPTS3
	rdecayw
	mwood
	mshape
	monthdrop
	frootc
	frootf





	Pine
	1
	28
	45
	3.0
	2.5
	0.37
	−0.9
	2000
	10
	1
	0.8
	0.6
	0.001
	15
	9
	0.31
	0.56



	Oaks
	2
	27
	45
	2.2
	2.5
	0.5
	−0.9
	2000
	20
	0.1
	0.75
	0.6
	0.001
	15
	9
	0.21
	0.59
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Table A28. Fire reduction parameters; inactive.






Table A28. Fire reduction parameters; inactive.





	Classseverity
	Reductionwood
	Reductionlitter
	ReductionSOM





	1
	0.0
	0.5
	1.0



	2
	0.05
	0.75
	1.0



	3
	0.2
	1.0
	1.0



	4
	0.5
	1.0
	1.0



	5
	0.8
	1.0
	1.0
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Table A29. Harvest reduction parameters; inactive.






Table A29. Harvest reduction parameters; inactive.





	Classseverity
	Reductionwood
	Reductionlitter
	ReductionSOM
	Removalleaf
	Removalwood





	HandThinning
	0.05
	1.0
	1.0
	1.0
	1.0



	MechThinning
	0.05
	1.0
	1.0
	0.85
	1.0
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Table A30. Species parameters.






Table A30. Species parameters.





	Species
	Longevity
	Maturity
	Tshade
	Tfire
	Deff
	Dmax
	pveg
	Smin
	Smax
	Rfire





	QUIN
	150
	10
	4
	5
	50
	3000
	0.75
	5
	40
	resprout



	QULA
	150
	20
	4
	3
	50
	3000
	0.75
	5
	40
	resprout



	PIPA
	400
	20
	1
	5
	20
	200
	0.0
	0
	5
	none
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Figure 1. LANdscape DIsturbance and Succession II Net Ecosystem Carbon and Nitrogen (LANDIS-II NECN) model structure. 
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Figure 2. Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model structure; Raich et al. [116]; Domke et al. [117]. 
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Figure 3. Harvard Forest (HF) EMS flux tower and landcover classes. 
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Figure 4. Jones Ecological Research Center (JERC) RD flux tower and landcover classes. 
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Figure 5. Overall model performance (R2) for both models and sites; left = HF-EMS; right = JERC-RD; periwinkle = PPA-SiBGC; pink = LANDIS-II NECN; violet = intersection. 
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Figure 6. Simulated and observed NEE, CAG, ANPP, and rSoil for the HF-EMS site; black = observations; red = PPA-SiBGC; blue = LANDIS-II NECN; (a) = NEE; (b) = CAG; (c) = ANPP; (d) = rSoil. 
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Figure 7. HF-EMS: Simulated and observed species aboveground biomass and relative abundance; (a) = biomass; (b) = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note that different scales are used for biomass. 
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Figure 8. Simulated and observed NEE, CAG, ANPP, and rSoil for the JERC-RD site; black = observations; red = PPA-SiBGC; blue = LANDIS-II NECN; (a) = NEE; (b) = CAG; (c) = ANPP; (d) = rSoil. 
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Figure 9. JERC-RD: Simulated and observed species aboveground biomass and relative abundance; (a) = biomass; (b) = abundance; left = observations, middle = PPA-SiBGC, right = LANDIS-II NECN; note that different scales are used for biomass. 
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Table 1. HF-EMS forest inventory summary for the 34 tower plots in 2002; DBH = depth at breast height (cm); BA = basal area per hectare (m2); Stocking = ntrees per hectare; QMD = quadratic mean diameter (cm); SDI = Reineke’s stand density index [121].
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	Statistic
	N
	Mean
	St. Dev.
	Min
	Pctl(25)
	Pctl(75)
	Max





	DBHMean
	34
	24.64
	3.50
	17.32
	22.39
	27.13
	31.97



	DBHSt.Dev.
	34
	10.92
	2.74
	6.11
	8.60
	12.51
	16.88



	BA
	34
	35.29
	11.55
	13.78
	25.98
	42.34
	57.31



	Stocking
	34
	639.43
	232.38
	318.31
	421.76
	787.82
	1145.92



	QMD
	34
	26.87
	4.00
	18.34
	23.91
	29.64
	34.39



	SDI
	34
	680.13
	214.45
	280.56
	531.35
	853.97
	1071.37
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Table 2. HF-EMS species abundance for the 34 tower plots in 2002.
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	Species
	Count





	ACPE
	56



	ACRU
	4924



	BEAL
	729



	BELE
	239



	BEPO
	116



	CADE
	1



	FAGR
	277



	FRAM
	258



	ILVE
	86



	PIGL
	397



	PIRE
	638



	PIST
	582



	PRSE
	270



	QURU
	2485



	QUVE
	247



	TSCA
	1926
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Table 3. JERC-RD forest inventory summary for the four tower plots in 2009; DBH = depth at breast height (cm); BA = basal area per hectare (m2); Stocking = ntrees per hectare; QMD = quadratic mean diameter (cm); SDI = Reineke’s stand density index [121].






Table 3. JERC-RD forest inventory summary for the four tower plots in 2009; DBH = depth at breast height (cm); BA = basal area per hectare (m2); Stocking = ntrees per hectare; QMD = quadratic mean diameter (cm); SDI = Reineke’s stand density index [121].





	Statistic
	N
	Mean
	St. Dev.
	Min
	Pctl(25)
	Pctl(75)
	Max





	DBHMean
	4
	31.498
	2.870
	27.426
	30.530
	33.392
	33.719



	DBHSt.Dev.
	4
	12.733
	2.737
	10.525
	11.293
	13.285
	16.714



	BA
	4
	17.604
	1.662
	15.764
	16.780
	18.273
	19.756



	Stocking
	4
	201.000
	60.871
	164
	170
	205
	292



	QMD
	4
	33.968
	3.374
	29.350
	32.665
	35.987
	37.152



	SDI
	4
	310.965
	39.514
	278.001
	291.255
	318.514
	368.254
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Table 4. JERC-RD species abundance for the four tower plots in 2009.
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	Species
	Count





	PIPA
	2063



	QUIN
	14



	QUNI
	22



	QUVI
	66
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Table 5. Model intercomparison abbreviations, metrics, and units.
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	Abbreviation
	Metric
	Units





	NEE
	Net ecosystem exchange
	kg C m−2year−1



	BAG
	Aboveground biomass
	kg mass m−2



	CAG
	Aboveground C
	kg C m−2



	NAG
	Aboveground N
	kg N m−2



	BBG
	Belowground biomass
	kg mass m−2



	CBG
	Belowground C
	kg C m−2



	NBG
	Belowground N
	kg N m−2



	CSO
	Soil organic C
	kg C m−2



	NSO
	Soil organic N
	kg N m−2



	rsoil
	Soil respiration C
	kg C m−2year−1



	ANPP
	Aboveground net primary production
	kg mass m−2year−1



	BSp
	Species aboveground biomass
	kg mass m−2



	nSp
	Species relative abundance
	%
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Table 6. Overall mean values across each of the sites and metrics tested.
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Metric

	
PPA-SiBGC

	
LANDIS-II NECN




	
R2

	
RMSE

	
MAE

	
ME

	
R2

	
RMSE

	
MAE

	
ME






	
Mean

	
0.73

	
3.43

	
3.24

	
0.24

	
0.69

	
9.23

	
8.36

	
2.71
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Table 7. Model fitness for HF-EMS.
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Metric

	
PPA-SiBGC

	
LANDIS-II NECN




	
R2

	
RMSE

	
MAE

	
ME

	
R2

	
RMSE

	
MAE

	
ME






	
NEE

	
0.05

	
0.78

	
0.76

	
0.76

	
0.44

	
0.49

	
0.44

	
0.44




	
BAG

	
1.00

	
10.31

	
10.30

	
10.30

	
0.98

	
2.48

	
2.48

	
−2.48




	
CAG

	
1.00

	
0.05

	
0.05

	
0.05

	
0.98

	
1.24

	
1.24

	
−1.24




	
NAG

	
1.00

	
1.44

	
1.44

	
−1.44

	
0.12

	
1.99

	
1.99

	
−1.99




	
BBG

	
1.00

	
9.25

	
9.25

	
9.25

	
0.97

	
2.82

	
2.82

	
−2.82




	
CBG

	
1.00

	
4.92

	
4.92

	
−4.92

	
0.94

	
6.99

	
6.99

	
−6.99




	
NBG

	
1.00

	
0.56

	
0.56

	
0.56

	
0.78

	
0.12

	
0.12

	
−0.12




	
rsoil

	
0.17

	
0.63

	
0.62

	
−0.62

	
0.06

	
1.10

	
1.10

	
−1.10




	
ANPP

	
0.03

	
0.01

	
0.01

	
−0.01

	
0.0002

	
0.97

	
0.93

	
0.90




	
CSO

	
...

	
26.49

	
26.49

	
−26.49

	
...

	
36.63

	
36.63

	
−36.63




	
NSO

	
...

	
1.33

	
1.33

	
−1.33

	
...

	
1.60

	
1.60

	
−1.60




	
BSp

	
1.00

	
5.07

	
2.92

	
2.92

	
0.97

	
133.70

	
119.87

	
119.87




	
nSp

	
0.82

	
0.05

	
0.03

	
0

	
0.99

	
0.29

	
0.22

	
0.22




	
Mean

	
0.73

	
4.68

	
4.51

	
−0.84

	
0.66

	
14.65

	
13.57

	
5.11
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Table 8. Model fitness for JERC-RD.
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Metric

	
PPA-SiBGC

	
LANDIS-II NECN




	
R2

	
RMSE

	
MAE

	
ME

	
R2

	
RMSE

	
MAE

	
ME






	
NEE

	
0.05

	
0.12

	
0.11

	
0.05

	
0.09

	
0.13

	
0.11

	
−0.05




	
BAG

	
0.96

	
1.48

	
1.47

	
1.47

	
0.96

	
9.77

	
9.76

	
−9.76




	
CAG

	
0.96

	
1.63

	
1.63

	
−1.63

	
0.96

	
4.88

	
4.88

	
−4.88




	
NAG

	
0.99

	
0.29

	
0.29

	
0.29

	
0.96

	
0.05

	
0.05

	
−0.05




	
BBG

	
0.96

	
10.84

	
10.83

	
10.83

	
0.96

	
1.37

	
1.20

	
1.20




	
CBG

	
0.96

	
0.25

	
0.25

	
0.25

	
0.96

	
0.96

	
0.95

	
−0.95




	
NBG

	
0.99

	
1.44

	
1.44

	
−1.44

	
0.96

	
1.60

	
1.60

	
−1.60




	
rsoil

	
0.19

	
0.98

	
0.97

	
−0.97

	
0.05

	
0.90

	
0.90

	
−0.90




	
ANPP

	
0.00

	
0.12

	
0.10

	
−0.10

	
0.03

	
0.62

	
0.60

	
0.49




	
CSO

	
...

	
4.30

	
4.30

	
4.30

	
...

	
0.17

	
0.17

	
−0.17




	
NSO

	
...

	
0.38

	
0.38

	
0.38

	
...

	
0.12

	
0.12

	
0.12




	
BSp

	
1.00

	
6.47

	
3.90

	
3.90

	
0.98

	
28.97

	
20.52

	
20.52




	
nSp

	
1.00

	
0.02

	
0.01

	
0

	
1.00

	
0.09

	
0.09

	
−0.02




	
Mean

	
0.73

	
2.18

	
1.98

	
1.33

	
0.72

	
3.82

	
3.15

	
0.30
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Table 9. Simulation timing results.






Table 9. Simulation timing results.





	Site
	Model
	Duration (years)
	Elapsed (s)





	HF-EMS
	PPA-SiBGC
	11
	8.51



	HF-EMS
	LANDIS-II NECN
	11
	101.15



	JERC-RD
	PPA-SiBGC
	5
	2.25



	JERC-RD
	LANDIS-II NECN
	5
	61.51











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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