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Abstract: Research Highlights: We demonstrated that the resistance mechanisms of plants could be
used to combat damage caused by pests in forestry plantations. Background and Objectives: Poplar is
the main tree species used in plantations in northern China, with Micromelalopha sieversi (Staudinger)
representing a major pest species causing defoliation. Here, we investigated whether two poplar
clones could resist this pest species and the physiological mechanisms involved. Materials and Methods:
Two clones of Populus from section Aigeiros were used, with ‘108’ (P. × euramericana ‘Guariento’)
being more attractive to M. sieversi than ‘111’ (P. × euramericana ‘Bellotto’). Three treatments were set
up (oviposited plants, neighboring plants, and control plants) to determine whether resistance was
induced in plants neighboring oviposited plants. Results: Significantly fewer eggs were oviposited
on neighboring plants compared to control plants for both clones, with more eggs being laid on
oviposited and control plants of ‘108’ compared to ‘111’. β-Pinene was detected in oviposited and
neighboring plants, but not control plants for either clone. Significantly higher concentrations of
3-carene was present in oviposited and neighboring plants of ‘108’ and ‘111’ compared to control
plants at 24, 48, and 72 h after oviposition. Males, females, and mated females primarily responded to
electroantennogram (EAG), methyl palmitate and 2-ethylhexyl acrylate at 50 ng/µL, and to 3-carene
and β-pinene at 5 ng/µL, and to styrene at 10 ng/µL in EAG assays. When using these concentrations
on plant leaves, 3-carene, β-pinene, and styrene significantly reduced the number of eggs laid on
‘108’, while 3-carene and β-pinene were effective for ‘111’. Conclusions: Plants neighboring oviposited
plants exhibited defense responses; 3-carene and β-pinene were used to transmit chemical signals
(volatile cues) from oviposited plants to neighboring plants; which induced neighboring plants
released volatiles as a defense mechanism to prevent egg laying.

Keywords: Populus × euramericana clones; Micromelalopha sieversi (Staudinger); oviposition; induced
resistance; plant volatiles

1. Introduction

Plants are able to detect and respond to oviposition by insects by activating direct and indirect
defense responses [1]. Many studies have demonstrated a variety of responses of plants to the early
stages of insect attack [2]. Induced direct and indirect plant defenses in response to egg deposition have
been determined. Egg deposition may induce the formation of a neoplasm that elevates eggs from the
plant surface, so the exposed eggs easily drop off the leaves [3]. Leaves with eggs may form necrotic
tissue to remove eggs and reduce the survival of hatching larvae [4,5]. Rice plants even produce an
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ovicidal substance that kills the eggs of Sogatella furcifera (Horváth) [6–8]. Furthermore, cabbage leaves
with the eggs of Pieris brassicae L. produce oviposition deterrents [9].

In response to herbivory, plants emit volatiles that may be quantitatively and qualitatively
different from those emitted by intact plants [10]. Information-mediated indirect resistance might
increase by attracting predatory and parasitoid organisms [11–15]. For instance, egg deposition by
Diprion pini induces a significant increase in the amount of (E)-β-farnesene from Pinus sylvestris,
attracting the egg parasitoid Chrysonotomyia ruforum [16]. This induced response is not strictly limited
to the site of egg deposition, but egg-free leaves adjacent to the site of oviposition also release volatiles
that are attractive to egg parasitoids, showing systematic induced resistance [15,17,18].

Phytophagous insects are able to identify chemical signals emitted by host plants and locate
them. As long as there is a smell of potato leaves, potato beetles exhibit host directed behavior [19].
The odor from withering black poplar (Populus nigra L.) branches affect how sites are selected for
hiding and oviposition, mating rates, and the fecundity of female moths of the cotton bollworm
(Helicoverpa armigera Hübner) [20]. The monoterpene profiles of defoliated and undefoliated lodgepole
pines (Pinus contorta Douglas) are associated with the oviposition preferences of Panolis flammea
(D&S) [21]. The females of Pyrrhalta maculicollis Mots. preferentially lay eggs on uninfected leaves
compared to heavily infected leaves due to changes in plant volatiles [22]. Following mating, female
Trichoplusia ni (Hubner) moths primarily oviposit on undamaged cotton plants (Gossypium hirsutum L.)
and cabbage plants (Brassica oleracea L.) [23].

The air transfer experiment is used to confirm the role of volatile cues in communication between
plants [24]. Volatiles are released within minutes in response to tissue damage that induces the
undamaged parts of damaged plant and neighboring plants [25]. Undamaged leaves of hybrid poplar
(Populus deltoides × nigra) exposed to volatiles from herbivore-wounded leaves on the same stem
exhibit elevated defensive responses to feeding by Lymantria dispar L. [26]. The systemic defenses of
blueberry (Vaccinium corymbosum L.) are activated on undamaged branches when damaged branches
release volatiles in response to damage by herbivores [27]. Some plants rely on volatile cues that
are active over relatively short distances and might be subject to eavesdropping by other plants [28].
Conveyance of chemical information between damaged and undamaged plants has been detected [29].
For example, wild tobacco (Nicotiana attenuata) becomes more resistant to herbivores when grown
in close proximity to clipped sagebrush (Artemisia tridentata) neighbors, with communication being
airborne rather than soilborne [30]. Pairs of sagebrush (A. tridentata) plants that were grown up to
60 cm apart were influenced by the experimental clipping of a neighbor [31].

Thus, there is evidence that plants with eggs, including egg-laden leaves and egg-free leaves,
activate direct and indirect defenses. However, there is limited information on the defenses of
neighboring plants induced by oviposited plants. Here, we investigated the response of two clones of
Populus from section Aigeiros to the eggs deposition of M. sieversi (Staudinger), including oviposited
plants and nearby plants, and we examined whether the plants neighboring to oviposited plants can
produce induced resistance and the mechanism of induced resistance. ‘108’ (Populus × euramericana
‘Guariento’) is more susceptible than ‘111’ (P. × euramericana ‘Bellotto’) to M. sieversi (Staudinger) [32].

2. Materials and Methods

2.1. Plants and Insects

In 2017, branches of ‘108’ (Populus × euramericana ‘Guariento’) and ‘111’ (P. × euramericana
‘Bellotto’) were cut from the forest farm in Daxing, Beijing. Each branch was cut into small segments
(about 12–13 cm) with 3–4 buds, and was cultivated outside for 3–10 month in separate plastic pots
filled with soil containing nutrients (Figure 1A). Plants of 4–5-month-old, with more than 20 leaves
(Figure 1B), were transferred to the laboratory (26 ± 2 ◦C, 50% ± 5% relative humidity (RH), 16:8 h
light:dark (L:D)) and were used for the experiments. Pupae of M. sieversi (Staudinger) were collected
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in the field. Each pupae was placed separately in an incubator (28 ± 1 ◦C, 50 ± 1% RH, 16:8 h L:D)
to pupate.Forests 2019, 10 FOR PEER REVIEW  3 
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Figure 1. (A) Seedlings from cuttings of ‘108’ and ‘111’; (B) the seedling with leaves. 
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Figure 1. (A) Seedlings from cuttings of ‘108’ and ‘111’; (B) the seedling with leaves.

2.2. Oviposition Bioassay I

The experiments were carried out in two laboratories with the same natural conditions. There were
three treatments: the oviposited plants, the plants neighboring oviposited plants, and the control plants.
Two insect cages (150 cm × 75 cm × 75 cm) for four oviposited plants and four neighboring plants
were set up in a laboratory, with a distance of about 50 cm between the plants (inside and between
cages), Another insect cage was set up with four control plants in another laboratory. Twenty pairs
of newly hatched male and female moths were allowed to mate freely and lay eggs in the cage for
oviposited plants. After egg masses appeared on oviposited plants, 20 pairs of male and female moths
were placed in the cages of neighboring and control plants. The number of eggs on the plants of the
three treatments was counted at 24 h, 48 h and, 72 h after oviposition. ‘108’ and ‘111’ were tested
separately, and the experiment was repeated four times. After analyzing how the positioning (1, 2,
3, 4) of oviposited plants, neighboring plants, and control plants affected the number of eggs in the
same cage using the Kruskal-Wallis test of non-parametric test in SPSS 19.0 (IBM, New York, NY,
USA), respectively, the changes of the number of eggs at three time periods were statistically analyzed.
Finally, the sum number of eggs on the four plants in each cage at 72 h after oviposition was used for
the statistical analysis.

2.3. Volatile Collection

Volatile compounds were collected from whole poplar plants, with and without the eggs of
M. sieversi, using dynamic headspace sampling [33]. Before collecting volatiles, plants for oviposition
were kept overnight inside cages with 20 pairs of female and male moths. Volatiles were collected for
8 h from oviposited plants, neighboring plants, and control plants at 24 h, 48 h, and 72 h after eggs were
laid on oviposited plants. The upper eight to 10 leaves of plants with and without eggs were enclosed
in sample bags (Ziploc, 25.0 cm × 32.5 cm) and the volatiles were collected using the atmospheric
sampling instrument (QC-1S, Institute of Labor Protection Science, Beijing, China). The inlet port was
connected to the sample tube (Chrompack, 0.6 mm × 16 mm, Porapak Q, 200 mg) by a silicone pipe.
The outlet port was directly connected to the silicone tube. The sample tube and the silicone tube were
connected to the outlet port and were sealed in the sample bag. Velocity of air flow was 500 mL·min−1.
After entrainment, volatiles were eluted with 4 mL hexane and were concentrated to 0.5 mL using N2.
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2.4. Coupled Gas Chromatography-Mass Spectrometry (GC-MS)

The concentrated extracts of the volatile substances were analyzed on GC-MS (Trace DSQ, Thermo,
Boston, MA, USA) with a capillary column (DB-5, 30 m length, 0.25 mm i.d. (inner diameter), 0.25 µm
film thickness, Agilent Technologies, Santa Clara, CA, USA). Ionization was performed by electron
impact (70 eV, 230 ◦C). The oven temperature was maintained at 40 ◦C for 1 min, and then programmed
at 4 ◦C·min−1 to 200 ◦C, where it was held for 5 min. The software (Xcalibur Data System, Ver.1.4
(Thermo, Boston, MA, USA)) began to collect data after 3 min into sample processing. The total
scanning mass range was 41–650 amu (atomic mass unit), scanning five times per second. Compounds
were identified by comparing the retention indices and mass spectra with those of authentic standards.
We analyzed the relative contents of the main component over three time periods, and the relative
contents of five terpenes and esters were compared in detail. The samples of five volatile compounds
were tested by the following electroantennogram analyses.

2.5. Electroantennogram (EAG) Recording

EAG analyses were conducted as described by Kong et al. [33]. In brief, the metal electrodes were
connected to the antennae of a male/female/mated female of M. sieversi with conductive adhesive,
and the metal electrodes with the antennae were suspended at 0.5 cm in the mouth of the “L” glass
tube, in a continuous and humid air flow (900 mL min−1). The Pasteur tube that contained the filter
paper with the sample was aimed at the small hole of the “L” glass tube, and the volatiles were blown
into the glass tube with N2. A piece of filter paper (6 cm × 0.5 cm) with 10 µL samples of different
concentrations was placed in the Pasteur tube. The concentration of samples was 1 ng/ µL, 5 ng/ µL,
10 ng/µL, 50 ng/µL, and 100 ng/µL. The five concentrations of each sample were grouped together.
Each group was controlled by 10 µL hexane. The five concentrations of samples were analyzed in the
order of low to high. The stimulus time was 0.2 s, and the interval of two stimuli was 40 s. After three
samples tests, one control was tested, and each concentration analyzed three times. The difference
between the electroantennogram response value and the control mean value was the absolute value of
the EAG test. The average of three absolute values of each concentration was analyzed three times
before being compared. Males, females, and mated females were tested in the same way.

2.6. Volatile Treatment and Oviposition Bioassay II

The second egg-laying test was carried out using volatile compounds on the plants. Five samples
were dissolved in 75% ethanol, and the concentrations were the maximum concentration of the active
EAG for each chemical. The solution of each compound (10 µL) was dropped on the leaves of each
plant, and 10 µL of 75% ethanol solution was applied to the control plants. The six insect cages
containing the plants treated with five volatile compounds and control plants were placed in separate
laboratories. Four plants were placed in each cage, 20 pairs of newly hatched male and female moths
were allowed to mate freely and lay eggs in each cage. The sum number of eggs on the four plants in
each cage at 72 h after oviposition was used for the statistical analysis. ‘108’ and ‘111’ were processed
separately, and the experiment was repeated four times.

3. Results

3.1. Differences in Oviposition among Oviposited Plants, Neighboring Plants, and Control Plants

The results showed that there was no significant difference in the number of eggs on oviposited
plants (p = 0.936), neighboring plants (p = 0.755), and control plants (p = 0.637) at different positions
in each cage on ‘108’. There was also no significant difference in the number of eggs on oviposited
plants (p = 0.985), neighboring plants (p = 0.798), and control plants (p = 0.839) at different positions in
each cage on ‘111’. Therefore, for further statistical analysis, the four plants groups in each cage were
considered as a replicate. The results showed that there was no significant difference in the number of
eggs on oviposited plants (F(2,9) = 0.000, p = 1.000), neighboring plants (F(2,9) = 0.010, p = 0.990), and
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control plants (F(2,9) = 0.000, p = 1.000) of ‘108’ at 24 h, 48 h, and 72 h after oviposition (Figure 2A).
There was also no significant difference in the number of eggs on oviposited plants (F(2,9) = 0.002,
p = 0.998), neighboring plants (F(2,9) = 0.010, p = 0.990), and control plants (F(2,9) = 0.007, p = 0.993) of
‘111’ at 24 h, 48 h, and 72 h after oviposition (Figure 2B). Therefore, the number of eggs on the three
treated plants was counted at 72 h after oviposition. The number of eggs on the neighboring plants of
both ‘108’ (F(2,9) = 6.303, p = 0.019) and ‘111’ (F(2,9) = 14.425, p = 0.002) was significantly lower than that
on oviposited plants and control plants in the first bioassay (Figure 3A). The number of eggs on the
oviposited (p = 0.048, n = 4) and control (p = 0.033, n = 4) plants of ‘108’ was significantly higher than
that on ‘111’ (Figure 3B).

Forests 2019, 10 FOR PEER REVIEW  5 

 

oviposited plants and control plants in the first bioassay (Figure 3A). The number of eggs on the 
oviposited (p = 0.048, n = 4) and control (p = 0.033, n = 4) plants of ‘108’ was significantly higher than 
that on ‘111’ (Figure 3B).  

Figure 2. (A) The number of eggs on oviposited plants, neighboring plants, and control plants of ‘108’ 
at 24 h, 48 h, and 72 h after oviposition, respectively. ANOVA was used to compare the numbers. 
Multiple comparisons and significant means were separated using the Tukey HSD (Honestly 
Significant Difference) test. Note: different lowercase letters indicate a significant difference between 
the three time periods of each treatment (p < 0.05). (B) Number of eggs on oviposited plants, 
neighboring plants, and control plants of ‘111’ at 24 h, 48 h, and 72 h after oviposition, respectively. 
ANOVA was used to compare the numbers. Multiple comparisons and significant means were 
separated using the Tukey HSD test. Note: different uppercase letters indicate a significant difference 
between the three time periods of each treatment (p < 0.05).  

 

Figure 3. (A) The number of eggs on oviposited, neighboring, and control plants of ‘108’ and ‘111’. 
ANOVA was used to compare the numbers. Multiple comparisons and significant means were 
separated using the Tukey HSD test. Note: different lowercase letters indicate a significant difference 
between three treatments of ‘108’ (p < 0.05), and different uppercase letters indicate a significant 
difference between three treatments of ‘111’ (p < 0.05). (B) Number of eggs on the oviposited or control 
plants of ‘108’ and ‘111’ was compared using independent-samples T test. Note: different lowercase 
letters indicate a significant difference between oviposited plants of ‘108’ and ‘111’ (p < 0.05), and 
different uppercase letters indicate a significant difference between control plants of ‘108’ and ‘111’ (p 
< 0.05). 

3.2. Comparison of Volatiles Emitted from Oviposited plants, Neighboring Plants, and Control Plants 

Coupled gas chromatography-mass spectrometry revealed that there were differences in the 
relative content of the main volatile components in three treatments of ‘108’ and ‘111’. Ten volatile 
components were detected in the processing of most ‘108’ samples (Table 1). p-Xylene, styrene, 3-
carene, 2-ethylhexyl acrylate, 2,6,10-trimethyl tetradecane, C26H42O4 (unknown), and methyl 
palmitate were detected in every processed sample. β-Pinene was detected in oviposited and 

Figure 2. (A) The number of eggs on oviposited plants, neighboring plants, and control plants of ‘108’
at 24 h, 48 h, and 72 h after oviposition, respectively. ANOVA was used to compare the numbers.
Multiple comparisons and significant means were separated using the Tukey HSD (Honestly Significant
Difference) test. Note: different lowercase letters indicate a significant difference between the three
time periods of each treatment (p < 0.05). (B) Number of eggs on oviposited plants, neighboring plants,
and control plants of ‘111’ at 24 h, 48 h, and 72 h after oviposition, respectively. ANOVA was used to
compare the numbers. Multiple comparisons and significant means were separated using the Tukey
HSD test. Note: different uppercase letters indicate a significant difference between the three time
periods of each treatment (p < 0.05).
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Figure 3. (A) The number of eggs on oviposited, neighboring, and control plants of ‘108’ and ‘111’.
ANOVA was used to compare the numbers. Multiple comparisons and significant means were
separated using the Tukey HSD test. Note: different lowercase letters indicate a significant difference
between three treatments of ‘108’ (p < 0.05), and different uppercase letters indicate a significant
difference between three treatments of ‘111’ (p < 0.05). (B) Number of eggs on the oviposited or control
plants of ‘108’ and ‘111’ was compared using independent-samples T test. Note: different lowercase
letters indicate a significant difference between oviposited plants of ‘108’ and ‘111’ (p < 0.05), and
different uppercase letters indicate a significant difference between control plants of ‘108’ and ‘111’
(p < 0.05).



Forests 2019, 10, 110 6 of 15

3.2. Comparison of Volatiles Emitted from Oviposited Plants, Neighboring Plants, and Control Plants

Coupled gas chromatography-mass spectrometry revealed that there were differences in the
relative content of the main volatile components in three treatments of ‘108’ and ‘111’. Ten volatile
components were detected in the processing of most ‘108’ samples (Table 1). p-Xylene, styrene, 3-carene,
2-ethylhexyl acrylate, 2,6,10-trimethyl tetradecane, C26H42O4 (unknown), and methyl palmitate were
detected in every processed sample. β-Pinene was detected in oviposited and neighboring plants but
was not detected in control plants. 3-carene was significantly higher in oviposited and neighboring
plants than in control plants at 24 h, 48 h, and 72 h. The relative content of styrene and 2-ethylhexyl
acrylate in oviposited plants was significantly higher than that in control plants at 24 h and 48 h,
while the content of these compounds was significantly lower than that in control plants at 72 h.
Methyl palmitate was significantly lower in oviposited plants than in control plants at 48 h. Styrene
was significantly lower in neighboring plants than in control plants at 48 h and 72 h. 2-Ethylhexyl
acrylate was significantly lower in neighboring plants than in control plants at 24 h and 48 h. Methyl
palmitate was significantly lower in neighboring plants than in control plants at 24 h, 48 h, and
72 h. In addition, 1,3-diethylbenzene and 1,4-diethylbenzene both only had a high relative content in
neighboring plants at three time periods.

Eight volatile components were detected in most of the processed ‘111’ samples (Table 2). p-Xylene,
styrene, 3-carene, 2-ethylhexyl acrylate, 2,6,10-trimethyl tetradecane, C26H42O4 (unknown), and methyl
palmitate were detected in every process. β-Pinene was detected in oviposited and neighboring plants,
but was not detected in control plants, similar to ‘108’. The relative content of 3-carene in oviposited
and neighboring plants was significantly higher than that in control plants at 24 h, 48 h, and 72 h,
similar to ‘108’. The relative content of styrene in oviposited plants was significantly lower than that in
control plants at 48 h and 72 h. 2-Ethylhexyl acrylate was significantly higher in oviposited than in
control plants at 24 h. Methyl palmitate was significantly higher in oviposited plants than in control
plants at 48 h and 72 h, while it was significantly lower at 24 h. The relative content of styrene in
neighboring plants was significantly lower than that of the control at 24 h and 72 h. 2-Ethylhexyl
acrylate was significantly lower in neighboring plants than in the control at 24 h and 48 h. Methyl
palmitate was significantly higher in neighboring plants than in the control at 48 h.
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Table 1. Main volatile components of oviposited plants, neighboring plants, and control plants after 24 h, 48 h, and 72 h of ‘108’. The relative content of the same
chemical components of three treatments in each time period was compared by ANOVA. Multiple comparisons and significant means were separated using the Tukey
HSD test. Note: Different lowercase letters in the same line show significant differences between the three treatments in the same time period (p < 0.05).

Compound Composition
of ‘108’

Oviposited-24 h Neighboring-
24 h Control-24 h Oviposited-

48 h
Neighboring-

48 h Control-48 h Oviposited-
72 h

Neighboring-
72 h Control-72 h

Relative Content (%)

p-Xylene 3.79 ± 0.08 a 1.32 ± 0.06 b 1.05 ± 0.09 b 4.45 ± 0.19 a 1.26 ± 0.08 b 0.85 ± 0.04 b 2.21 ± 0.06 b 3.41 ± 0.19 a 1.81 ± 0.12 b
Styrene 8.08 ± 0.28 a 2.70 ± 0.46 b 3.19 ± 0.10 b 8.46 ± 0.06 a 2.70 ± 0.12 c 5.79 ± 0.13 b 2.77 ± 0.04 b 3.98 ± 0.22 b 6.09 ± 0.62 a

3-Carene 9.65 ± 0.58 a 4.63 ± 0.52 b 1.26 ± 0.17 c 14.22 ± 0.77 a 4.29 ± 0.10 b 1.85 ± 0.09 c 6.82 ± 0.12 b 9.26 ± 0.72 a 1.51 ± 0.06 c
β-Pinene 2.17 ± 0.12 a 0.42 ± 0.03 b 0.00 ± 0.00 c 1.63 ± 0.13 a 0.28 ± 0.01 b 0.00 ± 0.00 c 2.22 ± 0.07 a 2.49 ± 0.12 a 0.00 ± 0.00 b

1,3-Diethylbenzene 0.00 ± 0.00 b 17.44 ± 1.20 a 0.00 ± 0.00 b 0.00 ± 0.00 b 21.53 ± 0.75 a 0.00 ± 0.00 b 0.00 ± 0.00 b 18.12 ± 1.05 a 0.00 ± 0.00 b
1,4-Diethylbenzene 0.00 ± 0.00 b 22.35 ± 1.11 a 0.00 ± 0.00 b 0.00 ± 0.00 b 28.15 ± 1.54 a 0.00 ± 0.00 b 0.00 ± 0.00 b 12.03 ± 1.27 a 0.00 ± 0.00 b

2-Ethylhexyl acrylate 2.21 ± 0.06 a 0.55 ± 0.01 c 1.45 ± 0.03 b 5.73 ± 0.08 a 0.82 ± 0.03 c 1.78 ± 0.35 b 0.83 ± 0.08 b 1.74 ± 0.05 a 1.86 ± 0.10 a
2,6,10-Trimethyl tetradecane 5.26 ± 0.04 b 1.99 ± 0.16 c 12.80 ± 0.81 a 2.55 ± 0.12 b 1.33 ± 0.10 b 12.36 ± 0.79 a 1.36 ± 0.09 b 1.83 ± 0.08 b 13.33 ± 0.71 a

C26H42O4 (Unknown) 6.75 ± 0.23 a 3.73 ± 0.19 b 6.63 ± 0.17 a 4.46 ± 0.14 b 2.80 ± 0.23 c 6.09 ± 0.12 a 3.85 ± 0.21 b 2.29 ± 0.13 c 6.81 ± 0.44 a
Methyl palmitate 61.71 ± 0.88 a 38.61 ± 1.97 b 67.61 ± 1.67 a 54.47 ± 0.42 b 28.38 ± 0.13 c 67.84 ± 1.42 a 69.90 ± 2.83 a 26.67 ± 1.54 b 63.32 ± 1.80 a

Table 2. Main volatile components of oviposited plants, neighboring plants, and control plants at 24 h, 48 h, and 72 h for ‘111’. ANOVA was used to compare the
relative content of the same chemical components of the three treatments in each time period. Multiple comparisons and significant means were separated using the
Tukey HSD test. Note: Different lowercase letters on the same line show significant differences between the three treatments in the same time period (p < 0.05).

Composition Compound
of ‘111’

Oviposited-24 h Neighboring-
24 h Control-24 h Oviposited-

48 h
Neighboring-

48 h Control-48 h Oviposited-
72 h

Neighboring-
72 h Control-72 h

Relative Content (%)

p-Xylene 8.90 ± 0.81 a 4.05 ± 0.10 b 2.05 ± 0.10 c 2.85 ± 0.09 b 3.61 ± 0.11 a 3.46 ± 0.07 a 3.32 ± 0.06 b 3.98 ± 0.18 a 2.07 ± 0.15 c
Styrene 15.52 ± 1.34 a 9.75 ± 0.64 b 17.82 ± 1.04 a 4.62 ± 0.18 b 7.82 ± 0.18 a 8.23 ± 0.25 a 3.15 ± 0.03 c 6.21 ± 0.22 b 8.31 ± 0.41 a

3-Carene 20.46 ± 1.13 a 12.53 ± 0.71 b 5.53 ± 0.17 c 7.97 ± 0.21 b 10.79 ± 0.12 a 5.14 ± 0.02 c 7.33 ± 0.06 b 9.82 ± 0.65 a 4.40 ± 0.06 c
β-Pinene 1.65 ± 0.09 a 0.18 ± 0.01 b 0.00 ± 0.00 c 0.36 ± 0.01 b 1.09 ± 0.04 a 0.00 ± 0.00 c 1.34 ± 0.07 a 0.94 ± 0.08 b 0.00 ± 0.00 c

2-Ethylhexyl acrylate 5.72 ± 0.18 a 3.55 ± 0.09 c 4.78 ± 0.09 b 7.77 ± 0.27 a 4.06 ± 0.03 b 8.85 ± 0.78 a 4.99 ± 0.14 a 6.54 ± 0.38 a 7.41 ± 0.88 a
2,6,10-Trimethyl tetradecane 1.20 ± 0.09 b 2.13 ± 0.04 a 2.00 ± 0.19 a 2.06 ± 0.02 b 2.23 ± 0.12 b 3.59 ± 0.21 a 1.14 ± 0.03 b 1.67 ± 0.10 b 3.52 ± 0.07 a

C26H42O4 (Unknown) 2.63 ± 0.06 b 5.55 ± 0.08 a 5.77 ± 0.13 a 4.90 ± 0.17 b 5.28 ± 0.06 b 7.96 ± 0.18 a 3.18 ± 0.10 b 3.17 ± 0.10 b 6.97 ± 0.27 a
Methyl palmitate 41.52 ± 1.42 b 59.84 ± 0.23 a 59.66 ± 1.41 a 64.17 ± 1.25 a 63.48 ± 0.85 a 55.87 ± 0.50 b 72.95 ± 0.98 a 60.26 ± 1.18 b 59.49 ± 1.66 b
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3.3. Electroantennogram (EAG) Response of the Males, Females, and Mated Females to the Five Volatile Compounds

There was a difference in the active EAG of males, females, and mated females with respect to the
five compounds at different concentrations, including methyl palmitate, 3-carene, β-pinene, styrene,
and 2-ethylhexyl acrylate. The EAG reaction of males to methyl palmitate (F(4,10) = 22.644, p = 0.000)
and 2-ethylhexyl acrylate (F(4,10) = 6.990, p = 0.006) was greatest at 50 ng/µL. The EAG reaction of
males to 3-carene (F(4,10) = 57.584, p = 0.000) and β-pinene (F(4,10) = 13.699, p = 0.000) at 5 ng/µL
was significantly greater than that at other concentrations. The EAG reaction of males to styrene
at 10 ng/µL was significantly greater than that at other concentrations (F(4,10) = 20.726, p = 0.000)
(Figure 4).
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Figure 4. Electroantennogram responses of Micromelalopha sieversi males to different concentrations
of the five volatile compounds. The concentration of the five compounds was 1 ng/µL, 5 ng/µL,
10 ng/µL, 50 ng/µL, and 100 ng/µL. ANOVA was used to compare the averages of three absolute
values of each concentration for each chemical composition. Multiple comparisons and significant
means were separated using the Tukey HSD test.

The EAG reaction of females to methyl palmitate (F(4,10) = 36.004, p = 0.000) and 2-ethylhexyl
acrylate(F(4,10) = 10.763, p = 0.001) was greatest at 50 ng/µL. Females exhibited the largest response to
3-carene (F(4,10) = 53.307, p = 0.000) and β-pinene (F(4,10) = 3.769, p = 0.040) at 5 ng/µL respectively.
Females exhibited the greatest response to styrene (F(4,10) = 25.381, p = 0.000) at 10 ng/µL (Figure 5).

There was no significant difference in the response of mated females to the EAG with different
concentrations of styrene (F(4,10) = 1.911, p = 0.185), and the response was greatest at 10 ng/µL. The EAG
reaction of mated females to methyl palmitate (F(4,10) = 13.968, p = 0.000) and 2-ethylhexyl acrylate
(F(4,10) = 38.743, p = 0.000) was greatest at 50 ng/µL. The EAG reaction of mated females to 3-carene
(F(4,10) = 55.409, p = 0.000) and β-pinene (F(4,10) = 110.77, p = 0.000) was greatest at 5 ng/µL, and was
significantly greater than that of the other concentrations (Figure 6).
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Figure 5. Electroantennogram responses of Micromelalopha sieversi females to different concentrations
of the five volatile compounds. The concentration of the five compounds was 1 ng/µL, 5 ng/µL,
10 ng/µL, 50 ng/µL, and 100 ng/µL, ANOVA was used to compare the average of three absolute
values of each concentration for each chemical composition. Multiple comparisons and significant
means were separated using the Tukey HSD test.
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Figure 6. Electroantennogram responses of mated Micromelalopha sieversi females to different
concentrations of the five volatile compounds. The concentration of the five compounds was 1 ng/µL,
5 ng/µL, 10 ng/µL, 50 ng/µL, and 100 ng/µL. ANOVA was used to compare the average of three
absolute values of each concentration for each chemical composition. Multiple comparisons and
significant means were separated using the Tukey HSD test.

The males, females, and mated females exhibited the greatest response to the EAG at 50 ng/µL
of methyl palmitate and 2-ethylhexyl acrylate, 5 ng/µL of 3-carene and β-pinene, and 10 ng/µL of
styrene, respectively.

3.4. Differences in Oviposition on the Plants Treated with Volatile Compounds

There was a difference between the number of eggs from the treated plants and control plants.
The number of eggs on ‘108’ plants treated with 3-carene, β-pinene, and styrene was significantly
lower than that of the controls (F(5,18) = 5.496, p = 0.003). There was no significant difference between
the controls and plants treated with methyl palmitate, 2-ethylhexyl acrylate. ‘108’ plants treated
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with 3-carene had significantly fewer eggs than plants treated with methyl palmitate. There was
no significant difference in the number of eggs laid on plants treated with β-pinene, styrene, and
2-ethylhexyl acrylate. The number of eggs on ‘111’ plants treated with 3-carene and β-pinene was
significantly lower than that of the controls (F(5,18) = 4.823, p = 0.006). There was no significant difference
in the number of eggs on the controls versus plants treated with methyl palmitate, 2-ethylhexyl acrylate
and styrene. Plants treated with 3-carene and β-pinene had significantly fewer eggs than that treated
with methyl palmitate (Figure 7).
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Figure 7. Number of eggs on ‘108’ and ‘111’ plants treated with the five compounds. The compounds
were methyl palmitate, 3-carene, β-pinene, styrene, and 2-ethylhexyl acrylate. ANOVA was used
to compare the number of eggs. Multiple comparisons and significant means were separated using
the Tukey HSD test. Note: Different lowercase letters indicate a significant difference between six
treatments on ‘108’ (p < 0.05); different uppercase letters indicate a significant difference between six
treatments on ‘111’ (p < 0.05).

4. Discussion

The present study demonstrated that neighboring plants had significantly fewer eggs than control
plants. These results indicate that neighboring plants of two clones of Populus from section Aigeiros
were probably induced to change the relative content and composition of volatile compounds that
resist oviposition by M. sieversi, when that of oviposited plants changed. Some plants rely on volatile
cues that are active over relatively short distances and might be subject to eavesdropping by other
plants [28]. For example, wild tobacco (N. attenuata) became more resistant to herbivores when grown
in close proximity to clipped sagebrush (A. tridentata) neighbors within 15 cm [30]. Furthermore, in
another study, pairs of sagebrush (A. tridentata) plants that were up to 60 cm apart were influenced
by the experimental clipping of their conspecific neighbor [31]. However, few studies have evaluated
egg deposition induced resistance of conspecific neighboring plants. In this experiment, the two areas
of oviposited plants and neighboring plants were about 50 cm apart. The neighboring plants clearly
produced induced resistance. Whether greater distances between the two areas would produce induced
resistance, along with the interaction between the plants in same area requires further verification.
In addition, once egg masses appeared on ‘108’ and ‘111’ clones, the number of eggs basically
remained unchanged until the end of the egg incubation period. Previous research demonstrated
that egg-free leaves neighboring those laden with eggs on the same plant show systemically induced
resistance [15,17,18]. The results showed that the oviposited plants of two P. nigra clones produced
systemic induced resistance.



Forests 2019, 10, 110 11 of 15

We recorded a difference in the composition and relative content of the volatiles collected from
oviposited plants, neighboring plants, and control plants of ‘108’ and ‘111’ at 24 h, 48 h, and 72 h after
egg-laying. The quantity and quality of terpenoid volatiles on bean plants [14], elm trees [13], and pine
needles [16] changes with the presence of egg masses. In this study, β-pinene and 3-carene caused
a significant reduction in the amount of eggs from M. sieversi (Staudinger). Thus, this compound
had a clear repellent effect on adults. In a previous study, β-pinene and 3-carene, which are volatile
compounds from the flowers and leaves of Rosa multiflora var. cathayensis, showed some antibacterial
activity [34]. 3-carene is often used as an active ingredient in repellents [35]. β-pinene and 3-carene
deter the presence of Monochamus alternatus (Hope) adults on plants, which could noticeably reduce
the number of grooves that the insect carves on the trunk [36]. 3- carene has a repellent effect on the
females of Dendrolimus superans, while β-pinene induces both males and females at low levels but
causes them to evade plants at high levels [37]. When the needles of Pinus massoniana Lamb release
high concentrations of β-pinene, the females of Dendrolimus punctatus Walker lay significantly fewer
eggs on the needles [38]. Our results confirmed these studies. In addition, the number of eggs laid on
the ‘108’ treated with styrene decreased significantly, indicating that it had some repellent effect on
adults. Styrene is the main volatile component of Salix ohsidare, Melia azedarach, and Acer negundo, and
might be an attractant to Anoplophora glabripennis [39]. Thus, styrene affects the behavior of different
insects differently. Compared to the control, there was no significant difference in the number of eggs
laid on ‘108’ and ‘111’ clones treated by methyl palmitate and 2-ethylhexyl acrylate. Thus, methyl
palmitate and 2-ethylhexyl acrylate had no obvious attraction or repellent effect to M. sieversi. Methyl
palmitate is a fatty acid methyl ester that is found in many plants and has bactericidal activity [40].
Methyl palmitate extracted from Juglans regia L. has strong acaricidal activity, with 10 mg/mL methyl
palmitate having a 97.9% mortality rate on Tetranychus cinnabarinus (Boisduval) and only 57.2% on
its eggs [41]. Insect eggs may be considered microbial pathogens at least at the molecular level [42].
Methyl palmitate increased or decreased in the oviposited and neighboring plants of ‘108’ and ‘111’.
Thus, the change of the relative content of methyl palmitate in two clones of Populus from section
Aigeiros might play a role in plant response to pathogen but did not affect the oviposition behavior
of M. sieversi. The EAG response and olfactory behavior of Apriona germari (Hope) were tested using
2-ethylhexyl acrylate from mulberry (Morus alba L.) [43] and Juglans mandshurica [44], both of which
attract A. germari (Hope). In this experiment, it did not affect the oviposition behavior of M. sieversi.
Thus, 2-ethylhexyl acrylate has different effects on the behavior of different insects.

Some studies suggest that there is no difference between the sexes in the EAG response to plant
odors [45,46]. The EAG responses of females and males to 2-ethylhexyl acrylate in this experiment
was consistent with this suggestion. In addition, males and females might react differently to the EAG
response of the same compound. The EAGs of female moths to some volatiles are often about 2-fold
greater than those observed for male moths [47,48]. In this study, the response of female and mated
females to different concentrations of methyl palmitate and β-pinene confirmed this observation. Also,
each sex exhibits stronger EAG responses to specific volatile components in insects. For example, the
antennae of Ceratitis capitata Wied females respond more to dihydrocarvone, 4-ethyl acetophenone,
and carvone than males. In comparison, the antennae of males respond more to limonene oxide
than females [49]. Hexyl butyrate and (E)-2-hexenyl butyrate elicited greater EAGs in the males of
Lygus lineolaris than females; females were more sensitive to the monoterpene geraniol than males [50].
In the current study, the EAG response of female to 50 ng/µL methyl palmitate was significantly greater
than that of males, whereas the EAG response of males to 100 ng/µL 3-carene of was significantly
greater than that of females. Whether a female was mated also affected the EAG response. The EAG
responses of Dioryctria abietivorella females to monoterpenes generally increased with age and mating,
and were greater than those of males of the same age [51]. In this study, mated females exhibited
weaker responses to 3-carene, β-pinene, styrene, and 2-ethylhexyl acrylate than did males and unmated
females; however, certain concentrations of methyl palmitate generated more responses in mated
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females compared to males and unmated females. The results showed that both females and males
might be affected by the volatiles of plants during their search for hosts.

At present, studies on the response of various organisms in the tritrophic system to
induced-oviposition are mainly focused on synomones from oviposition-induced plant, which are
semiochemical cues used by egg parasitoids during host selection. For example, the induction
time for Brassica oleracea, Murgantia histrionica, and Trissolcus brochymenae was less than 24 h [52].
The egg parasitoid Telenomus podisi responds quickly to induced volatiles from soybean when damaged
following oviposition by Euschistus heros [53]. Oomyzus gallerucae is a major egg parasitoid of the elm
leaf beetle, and it responds to volatiles produced by elm leaves with eggs at 3 h after egg deposition
by herbivores [12,17]. This experiment confirmed that plants are able to detect changes to volatile
composition from conspecific plant in a short time. The eggs of M. sieversi usually require just three
days to hatch after being laid. Our study detected a significant induction response between neighboring
plants and oviposited plants within 24 h. The results showed that the neighboring plants of both two
clones of Populus from section Aigeiros could detect changes to volatile composition from oviposited
plants and quickly respond to these changes.

5. Conclusions

In this study, significantly fewer eggs were laid on plants neighboring oviposited plants. Thus,
neighboring plants were induced to change the relative content and composition of volatile compounds
to deter oviposition by M. sieversi. Resistance could be induced by changing the composition and
relative content of volatiles in neighboring plants by these plants detecting changes to the volatiles of
oviposited plants. β-pinene and 3-carene exhibited a clear repellent effect on the adults of M. sieversi,
so the development of a relevant repellent is feasible. The study could provide new ideas for future
pest resistance afforestation.
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