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Abstract: Species distribution models can be used to direct early detection of invasive species,
if they include proxies for invasion pathways. Due to the dynamic nature of invasion, these models
violate assumptions of stationarity across space and time. To compensate for issues of stationarity,
we iteratively update regionalized species distribution models annually for European gypsy moth
(Lymantria dispar dispar) to target early detection surveys for the USDA APHIS gypsy moth program.
We defined regions based on the distances from the invasion spread front where shifts in variable
importance occurred and included models for the non-quarantine portion of the state of Maine,
a short-range region, an intermediate region, and a long-range region. We considered variables that
represented potential gypsy moth movement pathways within each region, including transportation
networks, recreational activities, urban characteristics, and household movement data originating
from gypsy moth infested areas (U.S. Postal Service address forwarding data). We updated the
models annually, linked the models to an early detection survey design, and validated the models
for the following year using predicted risk at new positive detection locations. Human-assisted
pathways data, such as address forwarding, became increasingly important predictors of gypsy
moth detection in the intermediate-range geographic model as more predictor data accumulated
over time (relative importance = 5.9%, 17.36%, and 35.76% for 2015, 2016, and 2018, respectively).
Receiver operating curves showed increasing performance for iterative annual models (area under
the curve (AUC) = 0.63, 0.76, and 0.84 for 2014, 2015, and 2016 models, respectively), and boxplots
of predicted risk each year showed increasing accuracy and precision of following year positive
detection locations. The inclusion of human-assisted pathway predictors combined with the strategy
of iterative modeling brings significant advantages to targeting early detection of invasive species.
We present the first published example of iterative species distribution modeling for invasive species
in an operational context.
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1. Introduction

Effective targeting for early detection of invasive species requires knowledge of an organism’s
biology and mechanisms of invasion, as well as the ability to translate that information into an optimized
surveillance program [1]. A popular tool for invasive species managers is the use of species distribution
models (SDMs) to define the geographic extent over which an invading species may occur [2,3]. Factors
that influence realized distributions (e.g., where a species is actually found) may be categorized by
the biotic-abiotic-movement (or “BAM”) framework [4]. In practice, researchers most often define
distributions by an organism’s potential niche [5], estimated by the range of abiotic variability within
which it can survive and reproduce. However, potential distributions may be further limited by biotic
interactions that arise from other processes, such as competition [6,7], predation [8], and parasitism [9,10].
The movement component of the BAM diagram describes habitat accessibility through dispersal,
such that areas of the predicted niche are within reach of dispersing organisms [11]. For invasive species
distribution models (iSDMs), dispersal may be assisted by human movement, which can transport
organisms across long distances [12–15]. The inclusion of dispersal mechanisms or “pathways” within
iSDMs may be an effective approach for optimizing early detection programs to areas with high
potential for invasion [16–18].

Pathways can be defined as the mechanisms or routes by which species arrive at new regions
or ecosystems [19]. Invasion success is partially defined by the magnitude and spatio-temporal
variability of propagule pressure across invasion pathways [20,21]. Therefore, development of
pathway predictors for iSDMs will be most informative when they are proximate to the mechanism
of dispersal [2] and include information on origin, destination, and rate of movement per time
step [22–25]. Examples of pathway predictors in iSDMs are sparse and typically involve spatial kernels
as dispersal predictors [18,26,27]. Pathways models fitted to large geographic extents are particularly
under-represented [28,29], and even fewer examples exist of volume-based pathways predictors [30].
However, there is potential for using such pathway models [31] to guide early detection and rapid
response, or EDRR [32]. Pathways data in SDMs not only refines potential distribution to more targeted
risk areas, but also more explicitly supports the operational use of SDMs for EDRR by targeting the
mechanisms for how invasive species enter an ecosystem [22]. The quantification of major pathways
can guide policy programs [33] to target high risk pathways in outreach campaigns designed to prevent
human-assisted spread [34].

However, there remain significant challenges [35–37] in the development of iSDMs, particularly
to target early detection. The process of biological invasion is both spatially and temporally dynamic,
which violates assumptions of stationarity in SDMs for invasive species [38]. The assumption of
a species in equilibrium with its environment (i.e., temporal stationarity) results in underprediction
of risk area [39], especially in earlier stages of the invasion process [38,40]. Spatial stationarity is
often violated, especially over large geographic extents, because abiotic/biotic constraints may vary
over space [39] or the organism exhibits characteristics of stratified dispersal [41,42]. Predictive
models following suggested guidelines [43–45] and iterated over time to test hypothetical processes of
invasion [46] provide a more informative and adaptive framework for managing species distributions
than single model development [47]. Iteratively updating iSDMs improves the detection of new
invasion hotspots [48,49], expands predicted geographic distributions [50], and increases the reliability
of model predictions [51,52], particularly when paired with a targeted survey design [53]. We apply
these principles of handling non-stationarity and iterative modeling to the European gypsy moth
(Lymantria dispar dispar Linnaeus 1758) to increase our understanding of its mechanisms for spread and
how to increase effectiveness for early detection within operational contexts.

The European gypsy moth is a forest pest accidentally introduced to Medford, Massachusetts,
USA. in 1869 that has steadily spread across the north-eastern United States, establishing as far north
as Maine, west toward Wisconsin and Minnesota, and as far south as Virginia. Gypsy moth feed
on more than 300 species of trees and shrubs, making it a generalist species [54]. This destructive
forest pest has impacted forests in invaded areas by reducing mast production [55], quality of
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timber products [56], affecting native species [57,58], nutrient cycling [59], and human health [60],
with an economic impact estimated at >$250 million per year [61]. Because of these impacts, the gypsy
moth is a well-studied species with detailed information on population biology [62,63], climate
suitability [64–66], pathways [67–71], detection [72,73], and optimal management strategies [74–76].
Most of the United States is climatically suitable to gypsy moth [77]. The combination of broad climatic
suitability and extensive host list means that gypsy moth can potentially establish in most of the United
States [78], making early detection of the spread into new areas difficult to target.

However, targeting surveillance to gypsy moth’s pathways for spread may yield efficiency in
limited program resources. Gypsy moth naturally disperses by larval ballooning [79]. While male
moths can fly, the females are incapable of flight. Dispersal by larval ballooning generally occurs over
a distance of 1–3 km [80], but may extend over much greater distances depending on topography and
wind [81]. Humans also play a role in transporting the insect [80], because its sticky egg masses may
be deposited on most outdoor objects. Bigsby et al. [67] developed an anthropogenic model to estimate
the contribution of anthropogenic factors on gypsy moth spread for counties with a historical record of
infestation. They found that locations with greater proximity to source populations, higher household
income, and higher household consumption of firewood were correlated with a higher likelihood
of gypsy moth presence. A second study on anthropogenic pathways for gypsy moth [71] used
proxies, such as population density and road accessibility, but it lacked proximate predictors for spread
mechanisms. A national model of spread pathways is not likely to be stationary across geographic
space, which affects how management actions target different stages of invasion or pathways of spread
occurring across the landscape.

Our goal is to develop a species distribution model to support the early detection of European
gypsy moth that addresses geographic and temporal variability of spread mechanisms. Our specific
objectives are to identify proximate predictors for spread mechanisms, evaluate regional differences in
spread, and to demonstrate the utility of iteration. We developed origin-destination data as a predictor
for human-assisted spread, developed regionalized models based on geographic changes in predictor
strength, and analyzed the value of iterative model development by assessing model performance
with following year survey data.

2. Materials and Methods

2.1. Study Area

Our study area consisted of the continuous U.S. Within the U.S., 11 states that cover the leading
edge of the infestation cooperate with the US Forest Service in the Slow the Spread [82] program
to monitor population levels and implement treatment programs to slow the natural spread rate of
the gypsy moth. The United States Department of Agriculture (USDA) Animal and Plant Health
Inspection Service, Plant Protection, and Quarantine (APHIS-PPQ) similarly coordinates with state
departments of agriculture and forestry for detection and eradication efforts of isolated populations
outside the Slow the Spread (STS) project area (Figure 1). In addition to operational duties, APHIS has
authority to enact and enforce regulatory policy to limit interstate movement of gypsy moth life stages
hitchhiking on private or commercial traffic, as well as to designate/terminate domestic quarantines to
delineate the areas of general infestation under effect of limited interstate movement (7 C.F.R. §301.45).
Nearly 225 million acres are currently under federal quarantine, which are considered generally
infested. Therefore, active surveillance does not occur within the quarantine area. All analyses used
data from the entire U.S., but final model predictions were masked to exclude the current federal
quarantine and active Slow the Spread project zone.
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Figure 1. The APHIS-PPQ gypsy moth survey program area, defined by the region outside the generally
infested area (federal quarantine area) and the spread front (managed by the Slow the Spread program).

2.2. Survey Data Acquisition and Preparation

The survey and detection data for European gypsy moth were collected from various sources,
with the primary sources being the (1) national and state offices of the USDA APHIS-PPQ, (2) the Slow
the Spread program, and (3) the National Agricultural Pest Information System (NAPIS). This is the
first time that a national survey database has been compiled across data sources for gypsy moth in
the U.S., resulting in 1.9 million records spanning the period of 1974–2017. Completeness of data
reporting is not consistent over time, and trapping density varied tremendously from state-to-state.
Records were tested for spatial quality (removing locations where coordinates did not occur within
the recorded county or state) and screened for duplicate records. We also compiled historical gypsy
moth eradication treatment polygons from the western U.S. (beyond the Slow the Spread zone),
as these treatment areas were indicative of a population that was introduced and then established
at a level requiring eradication. Most of these historical treatment areas were not present in the
detection database, therefore, exact detection locations were unknown. We converted these polygons
to a raster, matching the scale, projection, and snapped extent of a raster template (a 1-km national
survey grid). We converted the raster centroid locations to presence point locations, resulting in
additional potential presence locations. These locations were spatially thinned in later described steps
to algorithmically choose the presence locations for model training. We assume that the benefits of
adding potentially unique site characteristics for model training outweigh the cost of adding noise
from inexact, but auto-correlated locations.

The response variable varied between presence-absence and count data, and were standardized to
presence-absence. We defined ‘presence’ differently based on the region (i.e., short-range or long-range
mechanisms). For the short-range geographic model, counts of ≥3 gypsy moths were considered
an established, reproducing population (presence) based on a conservative estimate of the number of
male moths caught in a trap and relative female mating success [62,83–85]. These presence locations
were used to estimate distances to next year detections for a spread kernel, which was computed as
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a rolling average of the five most recent survey years (to capture more recent spread front dynamics).
Observations inside treatment polygons within the short-range region were removed for the current
and following survey years due to the effects of treatment applications such as mating disruption by
the synthetic pheromone disparlure, Bacillus thuringiensis var. kurstaki (Btk), and/or pesticides [86].
The other geographic models included any count >0 as a ‘presence’, because the purpose of early
detection is to find moths before they become a reproducing population. Therefore the count data in
the intermediate and long-range models do not represent reproducing populations. The short-range
geographic model was temporally dynamic, and so was calculated from the prior year’s ‘presence’
locations. Long-range geographic models collapsed data over time, due to the lower number of unique
spatial observations.

California did not report absence data; therefore, some assumptions were made to generate
background locations. We used a two-step method for creating a survey bias surface on which to
base the location of background points: (1) We generated a kernel density surface for the clustering of
survey efforts, and (2) applied a fitted function to detections along an accessibility surface to represent
survey bias with respect to road/urban center accessibility. Both bias surfaces were standardized,
0–1, and multiplied together to create a combined survey bias surface (Supplementary S1). Due to
the inclusion of background data, all absence locations were treated as background, which relaxed
assumptions regarding the true detection value of that location.

We analyzed detection data using Moran’s I, then spatially thinned the data within 5-km to
reduce spatial autocorrelation between observations [87]. We found that the data thinning process
also reduced computation time and errors during numerical fitting. Remaining observations were
then snapped and re-projected (Albers equidistant) to our 1-km2 raster template. For the short-range
geographic model, data was spatially thinned by year to allow variability in the annual dispersal
range. For the intermediate and long-range models, all presence/absence data was collapsed over the
historical period.

2.3. Predictor Variables

The selection and development of candidate predictors was based on input from the Interagency
Gypsy Moth working group and guidelines from the USDA APHIS gypsy moth program manual [88],
which categorizes urban and environmental factors suspected to have an associated risk of gypsy
moth introduction. The selected predictors represent different pathways of potential movement
for the pest, including proximity to infested areas, directional traffic volume on transportation
networks, and household movement. Other predictors include potential point source locations
(sawmills, rest stops, campgrounds, etc.) as well as urban predictors (population density, traffic
volume, and household income). All predictors (Table 1) were standardized to our raster template in
the Alber’s Equidistant projection. Included predictors were identical across model iterations, aside
from updating predictors with more recent data. The methods for model regionalization evolved
across model iterations (see Supplementary S2).

It has long been recognized that egg masses and other gypsy moth lifestages may hitchhike
on household items moving from the generally infested area within the federal quarantine area to
other parts of the U.S. [80,89–91]. We obtained the number of total address forwarding movements
originating from postal zip codes within the federal quarantine area to destination census tracts from
the U.S. Postal Service. An address forwarding record is generated when an individual files a change
of address form with the U.S. Postal Service when they move their household. Predictor maps of
address forwarding data were represented as total counts of movements from the quarantine zone
to destination areas. For the 2015 model, this included data between January 2012 and December
2014. Subsequent model iterations added more years of address forwarding data. These aggregate
movements served as a proximate measure of propagule pressure from source populations in the
northeast to new destinations in the west.
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Table 1. Summary descriptions of the potential predictors for the 2015 model (some of which are updated in subsequent years), indicated by type of pathway:
Biologic 1 or anthropogenic 2 dispersal.

Predictor Description Value Range Source

Distance from STS 1 Euclidean distance from a historical merge of STS action areas
dating from 2005–2016. “Distance from the spread front”. 0–1,032,550 m Slow the Spread

Distance From Prior Year Source Population 1
Euclidean distance of current year detection from previous
year’s population source (≥3 moths in a trap). Functions as

a basic spread kernel.
0–1,097,132 m APHIS PPQ

Traffic Volume (20-mile moving window) 2

Traffic volume was selected for highways/interstates and
queried on directionality of gypsy moth spread (west/south).
Within quarantine bounds, the maximum traffic volume was
used regardless of direction. Volumes were interpolated over

a 20-mile moving window to represent multiple highway
introduction potential within urban areas. “NoData” values

were reclassed to zero.

0–207,028 AADT
(or equivalent metric) TrafficMetrix

Road Density 2

Developed from rasterized 2003 TeleAtlas Dynamap
/Transportation v. 5.2 for each state at 100 m. Density was
calculated by summing the number of 100 m road pixels

within a 1 km pixel and standardized to a 0–100 scale.

0–100 US Forest Service FHAAST

Address Forwards 2

Summary of the number of United States Postal Service
(USPS) address forwards originating from zipcodes within
the gypsy moth quarantine area to that destination census

tracts for a two-year period. Forwarding data was compiled
by USPS from January 2012–December 2014, and provided to

USDA/APHIS under a memorandum of understanding.
“NoData” values were reclassed to zero.

0–14,332 forwards per
census tract US Postal Service

Median Household Income 2
12 months (2012) median household income reported on

census tract level and joined to 2011 U.S. Census TIGER tracts
boundaries. “NoData” values were reclassed to zero.

$0–$250,000 US Census Bureau, American Commodity Survey.

Population Density 2 Population density reported by block group, and joined to
2010 TIGER census block boundaries.

0–732,314 people/
square mile 2010 Census, US Census Bureau

Distance From Campgrounds 2
Euclidean distance from campgrounds identified by federal
and state cooperators, or compiled by APHIS from federal,

state, and private data sources.
0–83,451 m ReserveAmerica,

APHIS PPQ, USCampgrounds.info

Distance From Nurseries 2 Euclidean distance from regulated nurseries
(wholesale and retail). 0–1,080,628 m APHIS PPQ
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Table 1. Cont.

Predictor Description Value Range Source

Distance From Intermodal Facilities 2
Euclidean distance from intermodal facilities,

where commodities exchange modes of transportation
(road, rail, sea port, etc.)

0–1,081,072 m Bureau of Transportation Statistics, NTAD 2012

Distance From Weigh Stations 2 Euclidean distance from weigh stations. 0 – 1,128,904 m POI-Factory.com

Distance From Military Bases 2 Euclidean distance from military bases. 0–1,079,191 m Bureau of Transportation Statistics, NTAD 2012

Distance From Rest Stops 2 Euclidean distance from rest stops. 0–1,111,864 m POI-Factory.com

Distance From Saw Mills 2 Euclidean distance from primary sawmills. 0–1,356,683 m US Forest Service, Southern Research Station 2005

Distance From Universities 2 Euclidean distance from universities. 0–1,085,964 m ArcGIS Online, 2010

Distance From Wood Pallet Manufacturers 2 Euclidean distance from wood pallet manufacturers. 0–1,079,592 m Hoovers, NAICS code 321920, pulled December 2013

Abbreviations: STS: Slow the Spread; APHIS: Animal and Plant Health Inspection Service; APHIS PPQ: Animal and Plant Health Inspection Service, Plant Protection and Quarantine;
FHAAST: Forest Health Assessment and Applied Sciences Team; TIGER: Topologically Integrated Geographic Encoding and Referencing; NTAD: National Transportation Atlas Database;
POI: points of interest.
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2.4. Model Development

In the 2014 model, we regionalized the study area (non-quarantine areas of the U.S.) based
on program management zones: Slow the Spread [92] versus the APHIS survey area (Figure 1),
so that we had two regional models: A short range model and a long range model. Beginning
with the 2015 model, we regionalized the study area based on changes in the pathway’s importance
across space (Supplementary S2). We created regional divisions for model development, including
a Maine region (remaining, non-quarantine area), short-range region (0–200 km from the spread
front), intermediate region (201–500 km from the spread front), and long-range region (501+ km).
We used the Vistrails Software for Assisted Habitat Modeling (SAHM) v3.3.1 module [93] to develop
the distribution models for each region (model template available in Supplementary S4). The first
model developed for 2014 included five statistical algorithms common in species distribution models:
MaxEnt [94,95], Multivariate Adaptive Regression Splines (MARS) [96,97], Generalized Linear Models
(GLM) [98], Boosted Regression Trees (BRT) [44,99], and Random Forest (RF) [100,101]. We found
that model performance (in terms of AUC), spatial continuity across regional models, and reduced
model complexity [102] was best expressed using the MARS algorithm, so we limited future model
iterations to MARS only. The MARS model is also robust to moderate levels of collinearity in model
predictors [103].

For each regional model (Supplementary S2: Figure S1), we started with all predictors listed in
Table 1. We evaluated the set of candidate predictors for collinearity (Pearson or Spearman correlation
coefficient ≥0.70) [103]. We dropped predictor variables that explained less variability in a univariate
model than the identified collinear variable(s), were not retained in the MARS backward pruning
process, or had nonsensical response curves (such as increasing risk with distance from an introduction
source location). For example, we dropped “Distance from STS” as a predictor in the long-range
regional model because detections along the Pacific coast resulted in a “bump” near the tail of the
response curve. We determined that this was not a realistic response of propagule pressure from the
spread front and would be explained by other predictors, so we dropped the predictor. The remaining
predictors were used as input to the models. We repeated this predictor selection process for every
regional model and annual iteration. Each regional model’s variability was assessed with a random
10-fold cross validation.

After initial model fitting, we optimized the model fit via sensitivity analysis of the MARS model
complexity parameters: Degree (number of interaction terms) and penalty (cost per freedom of degree).
Final models were optimized by selecting parameter settings that maximized the area under the curve
(AUC) and percent correctly classified (PCC) with the lowest MARS degree setting. We chose this
approach to balance the model accuracy with generalizability across space. Once the models were
optimized, we applied the fitted short range model to current year source populations of gypsy moth
in order to predict the spread risk for the next survey year. We combined regional models by taking the
maximum value from each regional raster, with the exception of the Maine model (other model values
were ignored for that region). We assumed that the maximum risk for each cell was defined by the
pathways defining that risk. A simple re-visualization of the overlay process confirmed that individual
cell values tended to derive from the appropriate regional model. The final model’s performance
was assessed by combining the training data sets for all regional models, intersecting them with the
final risk map, and running the data through the PresenceAbsence package (v1.1.9) in R (v3.4.3) [104]
to generate an overall receiver operating curve. For each regional model, we assessed predictor
importance by permutating predictor values between presence and absence data while holding other
predictors constant and calculating the resulting change in AUC values.

Prior to survey application, we applied establishment masks (Supplementary S3) to limit
introduction risk to areas where gypsy moth would be more likely establish. The final risk surface
(masked by host availability, climate suitability, and outside the survey exclusion area) was used
as an inclusion probability surface for a survey design tool to allocate spatial locations of next year
survey traps.
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2.5. Survey Design

The Forest Service Forest Health Assessment and Applied Sciences Team (USFS FHAAST)
developed an Invasive Species Sample Design Tool for APHIS [105], using the “Create Spatially
Balanced Points” tool in ArcGIS (versions 10.0 and higher). This was designed as a custom ArcGIS
toolbox that requires information on the sample area, the probability surface, the number of sample
locations to be allocated, and any exclusion areas. Survey locations are stochastically distributed within
the sample area (minus any exclusion areas) in a spatially balanced design [106,107], reducing spatial
autocorrelation of samples and maximizing information on survey detection within the landscape.
The implementation of the sample design tool was optional with state-level operations, but was used
by APHIS-PPQ’s national program as one of many criteria to evaluate how national survey funding
allocation could be distributed to states according to risk.

2.6. Model Validation

Gypsy moth detection data on gypsy moth is typically collected from all states at the end of each
survey season (approximately October–December), although some states may be late or incomplete
in reporting catch data in time for model validation/ next year development. Each survey year’s
data were intersected with the predicted risk model developed the prior year (starting with the
2014 model) before application of establishment masks. We evaluated the model performance on
continuous risk values because the survey design tool uses a continuous risk surface to allocate
sampling effort. Additionally, the gypsy moth program is interested in early detection of this species;
therefore, correct prediction of positive survey detections was of primary interest. We generated
receiver operating curves as well as boxplots of the predicted risk at positive detection locations by
survey year. We compared this information to evaluate the overall model performance over continuous
thresholds, and to evaluate the precision and accuracy of model predictions for positive detections
over time. New detection data were integrated to the survey detection database and implemented in
building the next year’s risk model. Each model development year, we delivered a presentation on the
model performance and the newest iteration of model development to the stakeholder community
(state-level program managers and pest surveyors) in the spring before survey season.

3. Results

3.1. Spatial Targeting

The spatial distribution of likelihood for gypsy moth detection varied the most between the 2014
and 2015 iterations (Figure 2), due to a change in the methodology for the model regionalization.
The 2014 risk model predicted abrupt transitions in risk from the quarantine area to the APHIS survey
area, and tight clusters of risk within urban areas. The application of a pathways-driven regionalization
approach for the 2015 and later models resulted in a smoothing effect to the spatial distribution of risk
between the invasion front and urban areas. Smoothing of the geographic risk also appeared to be
a function of allowing predictor retention to be a function of the MARS backward pruning algorithm,
rather than user-specified variable retention.

Another change between the 2014 versus the 2015 and later models was the addition of
a Maine-only regional model. The spread dynamics for this spatial region were significantly different
from the spread dynamics along the western edge (the STS program area). We can see from Figure 2
that risk is annually dynamic in Maine, compared to the slower changing dynamics near the STS
program area. The relative differences in spread variability between Maine and the area near the
STS zone may be due to northern weather variability affecting population establishment success and
the lack of a population suppression program. This region in Maine lies near the edge of climate
suitability for gypsy moth population establishment [77], so the effect of annual weather variability
may be diminishing the predictor importance of the local spread kernel relative to the STS spread
front (Supplementary S2). This dynamic is occurring at similar latitudes as affected provinces in
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Canada [108], and climate change may expand this pest’s suitable range northward [109]. Gypsy moth
egg mass overwintering survival may be enhanced near the Great Lakes by lake effect snow providing
thermal insulation [110].
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Figure 2. Annual risk models depicting the likelihood of gypsy moth detection. Area in grey is
the federal quarantine area and the active spread front. Areas in black are climatically unsuitable
for establishment.

Nationally, the highest density of detections occurred in areas where the spread kernel interacted
with urban areas near the spread front. While the majority of gypsy moth detections occurred within
the Slow the Spread and short-range geographic areas, there were a large number of detections that
occurred in the intermediate and long-range regions in 2015 (n = 162). That year, the risk model
correctly predicted the spatial distribution of a population outbreak in the Pacific Northwest (Figure 3).
Washington and Oregon experienced incursions in various locales, triggering eradication programs
and follow-up surveys in subsequent years.
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Figure 3. Validation of the 2015 gypsy moth risk model with survey detection data. The 2015 survey
year coincided with population outbreaks of introduced gypsy moth in Washington and Oregon.

Predictor importance varied with each regional model, which aligns with the purpose for model
regionalization (Supplementary S2). Distance from a population source was the most important in
the short-range model, contributing 81% of the relative importance compared to 16% contributed
by address forwarding in the 2018 model. Anthropogenic movement played a larger role in the
intermediate model, such that address forwarding and distance from the STS action area were the
most important predictors and had a similar influence (36% and 39% for the 2018 model, respectively).
Anthropogenic variables were the most important predictors in the long-range model, with population
density, traffic volume, and median household income as the top three predictors. These patterns were
fairly consistent across the annual model iterations. The Maine model had the most annual variation,
with both the spread kernel and anthropogenic factors (e.g., distance from sawmills, distance from rest
stops, and distance from wood pallet manufacturers) being important.

3.2. Temporal Targeting

Our iterative approach to model development increased the overall predictive performance of
the risk model over time (Figure 4). The first model iteration had poor performance, predicting worse
than random for sensitivity thresholds less than 0.5. This was due to the discontinuity of modeled risk
along the spread front (Figure 2, 2014 model), which under-predicted the detection likelihood near the
spread front. Changing the methodology for regionalizing models resulted in a large gain in model
performance for 2015, while the 2016 iteration showed improvements primarily in low risk locations.
There were also gains within the regional models when we evaluated the predicted risk using the
next year’s survey’s positive gypsy moth detections. Predicted risk increased in accuracy (higher
mean), increased in precision (smaller interquartile range), or both for all regional models even though
the regionalization methodology remained identical between the 2015 and 2016 models (Figure 5).
We omitted a boxplot for the Maine-only geographic model because it had insufficient information for
a temporal comparison. Maine had a static risk value of 0.51 in the 2014 model (see Supplementary S2),
and the state did not report survey data for validation of the 2016 model.
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3.3. Pathways Predictor Performance

Address forwarding data (cumulative number of people moving from within the quarantine area
to a destination census tract) was used as a proxy for propagule pressure. Our assumption that more
household movements resulted in more gypsy moth egg mass introductions appears to be supported
by regional model outputs. In the intermediate geographic model, predictor strength for address
forwarding data more than quadrupled between the 2015 and the 2018 model iterations, and was the
highest ranked predictor of gypsy moth occurrence in the intermediate region in the most recent model
iteration (Table 2). This increase in predictor strength was concurrent with the increase in available
USPS data to inform the predictor. As our detection dataset is historical and the result of several years
of detection data, we found increased predictor performance when the predictor also accumulated
more data over time. While we did use address forwarding data in the 2014 model, it was summarized
to the zip code level. Due to the historic nature of that model, we no longer had access to the variable
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importance of address forwarding for the 2014 model, so it is omitted from the comparative analysis in
Table 2.

Table 2. Average relative importance for the address forwarding predictor explaining gypsy moth
occurrence increase as more data was accumulated to develop the predictor layer.

Year Relative Importance Variable Rank Accumulated Data (# Years)

2015 5.9% 6 3
2016 17.36% 2 4
2018 35.76% 1 5

4. Discussion

The inclusion of origin-destination pathway predictors in invasive species distribution models
brings significant advantages to targeting the early detection of invasive species. Inclusion of
pathways were useful in predicting long-range, human-mediated dispersal of mussels [25,111] and in
intermediate-range, human-mediated dispersal with campground reservations for gypsy moth [69].
The increasing variable importance of address forwarding, a proximate predictor for long-distance
dispersal of gypsy moth egg masses, with a concurrent increase in model performance and
precision over time, was similar to the Leung et al.’s [25] recreational boat movement approximating
human-mediated long distance dispersal of mussels. While a change in methodology between 2014
and 2015 accounts for some performance increase, it does not explain the continued increasing trend
in subsequent model iterations with stable methodology. The increase in model performance may be
due to the accumulation of the address forwarding data as an approximation of propagule pressure,
rather than the addition of new detection data. While the risk models were available for the states
to target their surveillance, it was optional. There was not an explicit feedback loop between survey
design and the risk model, which may have increased the informatic value of new data being collected.
Also, given that the gypsy moth program is historically rich in data and collects more than 100,000 new
data samples each year, novel detections (new detections in low risk areas) to inform the risk model
are rare.

Some research has suggested that predictions of invasion dynamics should be hierarchical,
with data gathered from multiple spatial scales [112]. Specific to invasive species distribution models,
however, inclusion of a dispersal kernel, which focuses on short range dispersal, to limit over-prediction
of risk has been encouraged [3,26]. However, for targeting early detection of invasive species with
a human-assisted spread pathway, this suggestion may be too conservative. Dispersal kernels focus
detection effort along the spread front, where prevalence is high and fewer samples are required
to detect the species. This method fails for early detection in uninfested areas far from the spread
front, as illustrated by the gypsy moth 2015 outbreak in the Pacific Northwest. Our regionalized
approach addresses the afore-mentioned biological phenomenon of stratified dispersal for gypsy moth.
Our approach recognizes the different mechanisms of dispersal by incorporating a dispersal kernel for
larval ballooning and other short-range mechanisms, while also addressing human-assisted pathways
to explore long-distance dispersal events important for early detection activities overseen by APHIS.

The Slow the Spread program targets a 100-km “transition zone” to suppress gypsy moth spread,
which was determined to be the optimal distance for reducing the spread rate to a target rate of 9 km
per year [74]. Our short range model included an additional 100 km beyond the transition zone,
and it suggested that both areas had the same spread mechanisms. This result concurs with prior
analysis of new colony formation occurring as far as 250 km from the spread front [63]. While a spread
kernel (partially driven by ballooning and wind-driven transport) was the most important predictor,
anthropogenic predictors were also important in determining the detection likelihood within that
region. The single largest difference between the short and intermediate range regional models was the
change in primary predictor from a spread kernel (distance from prior year detections) to the address
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forwards. This changeover in pathway importance is demonstrated in the prediction surface as the
transition of detection likelihood from the spread front to urban area hot spots.

We expected that the long-range model would show an increasing importance of address
forwarding as a predictor of gypsy moth detection, as it does in the intermediate model. However,
predictors, such as household income, population density, and traffic volume, exhibited consistently
higher predictor performance than address forwarding. Areas of previous infestation in the long range
model area generally occur in high-density urban areas, where a higher level of household income
may be required for the higher cost of living. Urban areas also have smaller census tracts than rural
regions (such as those that dominate the intermediate range model area), and gypsy moth detections
frequently appear in very close proximity to high move-in areas without actually occurring in one.
This phenomenon adds noise to the model and likely explains the poor predictor performance of
address forwards in the long range model.

The need for an iterative approach to both sampling and distribution modeling for invasive
species has been acknowledged for many years [47,113]. Tests of the iterative sampling and modeling
framework revealed improvements in secondary models based on new information collected as a result
of initial models [53]. Here, we present an operationalized iterative modeling framework to support
adaptive management of invasive species. As with previous work, our example illustrates increased
model performance over time with the addition of new information (both detections and predictors
with accumulated information such as address forwarding).

Our model serves as a rapid investigative technique to test hypotheses regarding gypsy moth
spread pathways and to inform targeted surveillance. The iterative process allowed us to investigate
model prediction failures and test improvements for future model iterations. For example, stakeholders
and program management have provided feedback that there is too much risk area in Texas, which is
supported by the lack of detections in the region. These two lines of evidence indicate the model is
overpredicting in this region, leading us to hypothesize that biological limitations, such as supraoptimal
temperatures [114], high winter temperatures precluding a required diapause development stage [115],
or dessication [116], may be limiting life stage development in this area. We also detected several
false negatives in the intermediate range regional model, which may be a result of missing pathway
predictors, such as firewood movement [117–119] and recreational activity [16,120] in non-urban
landscapes. The lack of origin-destination data sources to estimate these pathways likely results in
underestimation of risk in this region. These examples highlight the importance of incorporating
expert knowledge [121] and proximate predictors [122] into risk models, ensuring that products are
appropriately targeted to the management need.

These operationalized iterative models of an invasive forest pest support management activities
at a national scale. Our regionalized approach to model development supports previously identified
policy and management objectives to invasive species management at different stages of invasion
in different geographic regions [40]. Efforts to prevent the spread of invasive species by targeting
pathways are less costly than even early detection efforts [123]. Our models can help target public
outreach campaigns to prevent human-assisted movement of gypsy moth through our identification
of the importance of these pathways. For example, APHIS partnered with the American Moving
and Storage Association in the “Remove Before You Move” outreach campaign [124] to educate the
public on how to check their household articles for egg masses before moving [125]. Our models also
support the next step in the invasion process by targeting early detection efforts to areas at high risk
for population establishment. We interact with the Slow the Spread program targeted at the spread
front, allowing for continuous surveillance effort across management areas. Thus, our framework
facilitates efforts across stages of the invasion process and the stages’ associated management options.
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5. Conclusions

Our results suggest that more effort in the collection and application of human-related,
origin-destination datasets that can serve as proximate predictors for invasive species movement
is warranted. The application of pathways data in invasive species distribution models should be
carefully inspected for geographic variation, and possibly regionalized to better target the variability of
pathways of invasion for early detection. Implementation of an iterative modeling approach provides
opportunity to improve model predictions over time, understand mechanisms of spread, and enhance
targeted management actions. We demonstrate that species distribution models can be effective in
an operational context for early detection of invasive species if they include pathways of spread and
accommodate variation in space and time.
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