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Abstract: The evergreen laurel forest is a relic of ancient subtropical/tropical forests, of which the
best remnant in the Canary Islands is in Garajonay National Park, on La Gomera island. The soil
microbiome associated with a mature undisturbed (unburned) laurel forest was characterized at two
locations at different topographical positions on the mountain: The slope and the ridge crest. Given
the unusual circumstance of an intense wildfire that severely affected part of this forest, the burned
soils were also studied. The soil in undisturbed areas was relatively uniform. The bacterial community
composition was dominated by bacteria from phyla Proteobacteria, Acidobacteria, and Actinobacteria.
The wildfire changed the composition of the bacterial communities. The Acidobacteria, Actinobacteria,
and Alphaproteobacteria (dominant class in unburned forests) significantly decreased in burned soils
along with a parallel high increase in Betaproteobacteria, Bacteroidetes, and Firmicutes. We further
showed the dramatic effect of a wildfire on the soil microbiome of the laurel forest, appearing as
a loss of species richness and diversity, species dominance, and changes in the composition of the
bacterial communities.
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1. Introduction

The evergreen laurel forest of the Canary Islands is a relic of subtropical/tropical Tethyan forests.
Widely developed on all continents around 40◦ N in the Miocene, they were forced to shift southward,
being replaced in Europe by Mediterranean vegetation, as a consequence of Pleistocene glacial periods
and the later development of the Mediterranean climate [1]. Part of that arboreal vegetation reached the
Canary Islands and found refuge within the cloudy belts on their windward slopes [2], influenced by
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condensation from the moist trade-wind regime that mitigates the dryness of the Mediterranean
climate elsewhere. In this humid forest, laurifolious trees (Lauraceae) predominate, along with other
broadleaf evergreen trees from diverse families. Laurus novocanariensis, Ilex canariensis, and Morella faya
are species widely distributed in this forest and constitute the principal matrix in which other typifying
species are interspersed [2]. In its Garajonay National Park (NP) (UNESCO World Heritage since 1981),
the small island of La Gomera hosts the best remnant of laurel forests in the Canary Islands.

The effects of wildfires are particularly important on oceanic islands like the Canaries. They are
small and fragile ecosystems that contain a high percentage of endemic species, which have few
opportunities to escape from a sudden threat like habitat destruction. Most fires in the archipelago
occur in the pine forest dominated by Pinus canariensis, favored by the more arid conditions typical of
this higher altitude vegetation belt, with easily combustible material like pine-litter and understorey
vegetation. In contrast, in mature laurel forests, the fire spreads with difficulty due to the characteristic
high humidity in this formation, and the comparative shortage of easily combustible elements.
However, preceded by a winter and spring with scarce rainfall, 2012 was one of the driest summers
ever registered in these islands, with temperatures above 30 ◦C and 20% relative humidity. This set the
conditions for a fire that burned more than 10% of La Gomera [3], affecting 750 ha of Garajonay NP.

Wildfires produce great impact in the short, medium, and long term on the whole forest ecosystem.
Soil microbial populations are first directly affected by the high temperatures reached during wildfires
and later, indirectly, as a consequence of the changes in the physicochemical properties of burned soils.
Quantity and quality of organic matter, fluctuations in carbon and nitrogen contents, increase in soil
pH, and changes in nutrient availability and water content are common examples [4–6] that alter the
dynamics of the microbial communities, causing severe disturbances in biogeochemical cycles [7–10].
Assessment of the changes in the activities of specific microbial groups from conventional culture-based
approaches or from DNA fingerprints and sequence analyses of particular genes [8–13] have produced
valuable information on the immediate effect of fires. However, this approach provides a limited
vision of the true impact of fire on the overall microbial community composition. Furthermore, many
conclusions about the impact of fires on soil microorganisms have been inferred from studies monitoring
prescribed or controlled fires with moderate effects [8,10,14–16]. The transitory fire release of nutrients
easily available to microorganisms causes rapid recolonization by specific groups. Through the increase
of microbial biomass and certain activities of the carbon and nitrogen cycles [8–13], these may even
lead to a stimulating benefit of fire on surviving soil microorganisms. However, other studies based
on evidence accumulated during recent years from data analyses obtained from high-throughput
sequence technologies show that wildfires damage the overall microbial biome and the impact of
wildfires on the microbial community composition can persist for more than a decade [17–21].

In the Canary Islands, studies of fire impact on soils have mainly focused on changes in
physicochemical properties [3,22,23], whereas those regarding soil microorganisms are almost inexistent,
being only performed on burned pine forest soils [24,25]. The wildfire affected highly valuable areas
from a botanical, zoological, and edaphological point of view. Indeed, recovery of the natural vegetation
is predicted to take several decades [3]. However, the impact on soil microbiota was not evaluated
by the NP authorities. There is no previous characterization of the microbial diversity in the laurel
forest soils, nor a description of the effects of the fire on it beyond the effect on the physicochemical
properties. Here, we used 454-pyrosequencing to describe the diversity of the bacterial community
composition of Garajonay laurel forest in undisturbed areas and in a severely burned area. One main
objective was therefore to describe and compare the soil bacterial diversity associated with undisturbed
mature Canarian laurel forest soils in Garajonay NP, which hosts the best remnant of this forest in the
islands. For this purpose, we chose two undisturbed (unburned) mature laurel forests differing in
their topographical location on the mountain, a crest and a slope forests (UCLF, unburned crest laurel
forest and USLF, unburned slope laurel forest). As a second objective, using this previous knowledge,
we assessed the short-term (15–16 weeks after fire) impact of that wildfire on the forest.
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2. Materials and Methods

2.1. Sampling Localities

The soils analyzed in this study were collected in a northern area of Garajonay NP. Plots were
selected in two localities at 1040 and 1060 m a.s.l. (meters above sea level), where mature laurel forest is
well represented (over 100 years old). Two laurel forests with similar orientations were distinguished
by their different topographical location on the mountain: The crest forest on the summit and the slope
cloud forest growing at mid-altitude on the mountainside. The crest forest is much more subject to
fog-laden winds and is more effective in moisture catchment. Nevertheless, the slope forest is a cloud
forest that also receives extra water through fog precipitation. Although both forests represent the
mature stage of laurel forest, they differ in species composition and abundance, particularly the greater
abundance of Erica arborea in crest forest, a response to the paradoxical drying effect of wind in the
canopy. Thus, two types of bulk soil samples (separated 120 m in distance and 20 m in altitude) were
collected in areas not affected by the fire (undisturbed soils). Samples named USLF (unburned slope
laurel forest) were taken from a 20 × 20 m unburned plot, and the so-called UCLF (unburned crest
laurel forest) samples were taken from a 15 × 15 m unburned plot. The USLF plot had trees up to 19 m
tall and a canopy cover of 90%. The tree species composition (number of individuals in the 20 × 20 m
plot) was: Laurus novocanariensis (16 individuals), Ilex canariensis (11 individuals), Picconia excelsa (10
individuals), and Morella faya (5 individuals). The UCLF plot had trees with maximum heights of 16 m
and a canopy cover of 85%. The tree species composition (individuals in the 15 × 15 m plot) was: L.
novocanariensis (18 individuals), E. arborea (14 individuals), M. faya (7 individuals), and I. canariensis
(6 individuals). A third location in the surroundings of these two plots was an area where the 2012
summer wildfire burned a crest laurel forest stand near the UCLF plot, 250 m away. This forest on the
top of the ridge, BCLF (burned crest laurel forest), was a severely burned zone (all vegetation was dead)
with the characteristics of a crest forest before the wildfire. Soil samples were taken 3 to 4 months after
the wildfire from non-rhizospheric soils (bulk soil at 1 to 2 m from the closest trees) and 5 to 10 cm deep.
From each location, three replicates were taken, separated at least 3 m from each other. Soil samples
were collected from plots UCLF and BCLF on 11 December 2012. In plot USLF, soil samples were taken
on 21 December 2012 and kept frozen at −20 ◦C for no more than seven weeks, before DNA extraction.

2.2. Physicochemical Analysis of the Soils

Chemical analyses were performed on air-dried, 2-mm-sieved soil. Three replicas collected at
each location were separately analyzed for burned soils. A mixture resulting from three replicates
was analyzed for unburned soils, for which a large body of data were available from previous
studies (Rodríguez-Rodríguez et al., 2009). Soil organic carbon (SOC) was determined by wet
oxidation of the carbon by the 1N dichromate Walkley-Black procedure [26]. Total nitrogen (N)
was determined by Kjeldahl digestion, followed by distillation and titration. Mineralization was
performed in a mixture of concentrated H2SO4 and acetylsalicylic acid using Se as a catalyst, in a
TECATOR Mod. 1007 digester. Soil pH was measured in water (1:2.5 soil:liquid ratio). Plant-available
phosphorous was extracted [27] and colourimetry determined by the molybdenum blue method [28,29].
Available cations were determined by the ammonium acetate extraction method at pH 7. Sodium and
potassium were determined by flame spectrophotometry, and calcium and magnesium by an atomic
absorption spectrophotometer (Perkin Elmer Mod. 3100) in the presence of 1% lanthanum. Soil particle
size distribution was calculated [30]. Moisture retention capacity was measured in fire-disturbed
samples [31]. Water repellence was measured using the WDPT (water drop penetration time) [32].
Five classes of WR persistence were used for WDPT: Wettable (WDPT ≤ 5 s), slightly water repellent
(5–60 s), strongly water repellent (60–600 s), severely water repellent (600–3600 s), and extremely water
repellent (>3600 s) [33]. The molarity of the ethanol droplet (MED) test quantifies water repellence as
the lowest ethanol concentration permitting droplet penetration within 5 s.
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2.3. DNA Extraction, PCR Amplification, and Pyrosequencing of Bacterial Soil DNA

Total bacterial genomic DNA was extracted from soils using the “PowerSoil DNA Isolation
Kit” (MoBio Laboratories Inc., Carlsbad, CA, USA). DNA was extracted from collected soil samples
(kept at −20 ◦C) 6 to 7 weeks after collection. Extracted genomic DNA was checked in 1.5% agarose
gel electrophoresis Gel Red™ (Biotium, Hayward, CA, USA) and quantified in a NanoDrop 1000
Spectrophotometer. Extracted DNA was kept at −80 ◦C until sequencing. 16S rRNA fragments were
obtained by amplification of hypervariable V3-V5 using the universal primers U341F and U926R [34].
Primers contained pyrosequencing adaptors (MIDs) and 8-bp barcodes associated with the reverse
primer [35]. The PCR mix reaction (25 µL final volume) contained 25 pmoles of each primer, 1.8 mM
MgCl2, 0.2 mM dNTPs, 1× PCR buffer, 5 µL TaqMaster PCR Enhancer, 1U TaqMaster (5 Prime Inc.,
Gaitherburg, MD, USA), and 10 ng template DNA. The temperature profile consisted of 4 min 94 ◦C,
25 × (15 s 94 ◦C; 45 s 55 ◦C; 1 min 72 ◦C), and 10 min 72 ◦C. Various replicate PCRs were made for each
sample. Amplicons of the same sample were pooled to reduce per-PCR variability and were purified
through Filter Units Ultracel-100 K membranes (Amicon, Cork, Ireland). DNA was quantified using
the Quant-iT PicoGreen® dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA). Equimolecular
amounts of DNA samples (3 replicates per each soil type) were prepared and pyrosequenced in Roche
454 FLX Titanium Plus (LifeSequencing S.L., Valencia, Spain).

2.4. Pyrosequencing Data Analysis

Raw sequences were processed with MOTHUR version 1.40.2 [36]. Trimming followed the
criteria defined [37], leaving out those sequences (1) with homopolymers longer than 8 bp, allowing
two mismatches to the barcode and three to the primer sequences; (2) sequences with unidentified
nucleotides (Ns); (3) sequences with a quality index less than 20; and (4) those identified as chimeras,
virtual operational taxonomic units (OTUs). Only fragments of sizes ≥390 nt were considered for the
analysis. Sequence alignment was performed [36], and the bacterial sequences were clustered into OTUs
with a similarity of at least 97%. OTU distribution among samples was used to calculate rarefaction
curves, Chao 1 richness estimator index, Simpson index and its inverse, Shannon diversity index, equity,
and coverage. Alpha diversity was calculated from normalized rarefaction curves; for other analyses,
we used non-rarefied reads. To compare alpha diversity indices, a one-way ANOVA was performed for
each index after confirming that these data were parametric (Levene and Shapiro tests) and Tukey HSD
as a post-hoc test to perform pairwise comparisons using R version 3.5.2. Statistics of the taxonomic
profiles found in the samples were done with STAMP v2.0.9, (http://kiwi.cs.dal.ca/Software/STAMP)
using a parametric t-test at a 95% confidence interval [38]. Ginkgo [39] was applied in principal
component analysis (PCA) and principal coordinate analysis (PCoA), using relative abundance of
sequence at genus level. The Bray–Curtis dissimilarity was used to generate the distance matrix in
PCoA. CANOCO v4.5 [40] was used for canonical correspondence analysis (CCA) after transformation
of some physicochemical parameters as recommended [41]. InteractiVenn [42] was used for Venn
graphics, modified with CorelDraw X3 (Corel Corporation, Ottawa, Canada). Alpha diversity was
calculated from normalized rarefaction curves; for other analyses, we used non-rarefied reads.

3. Results

3.1. Chemical Characteristics of Soils from Laurel Forest in Garajonay NP

Data shown in Table 1 correspond to the three locations studied in the present study.
The undisturbed laurel forest soils in the NP are acidic, have very high soil organic carbon contents
(SOC) and total nitrogen (N), and a high C/N ratio, while showing a deficit for available P, K, Ca, and
Mg (except Mg in UCLF). Particle size and texture analyses indicated the predominant texture was
silty-loam and loamy. As is usual for andic soils in Garajonay, water retention and available water was
high or very high, indicating high water retention at wilting point as well as low water repellence,
coinciding with earlier results [22]. These results agree with the values obtained in a previous large
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study of the soils in the National Park [43], which included the locations sampled here. In the burned
soils, losses of 47% in SOC and 17% in total N decreased the C/N ratio by 36%, the soil pH increased
by 9%, probably due to the alkalizing effect of dissolved ash [4], P and Ca contents increased slightly,
and K doubled, while Mg decreased to half. Texture was altered in the silt fraction (37% increase) and
a moderate increase (7%) was observed in the clay fraction. A slight increase was detected in water
repellence (probably due to ash). There was a 54% decrease in water retention capacity at field capacity
and this decrease was about 32% at wilting point, meaning a 68% drop in the plant-available water
retention capacity, which indicates that the fire reached a high level of severity [44].

Table 1. Physicochemical characteristics of soils from Garajonay National Park in unburned and burned
areas of the laurel forest.

Soil Sample

Parameter USLF UCLF BCLF a

SOC (g kg−1) 105 155 83 (±13.26)
Total N (g kg−1) 6.6 10.5 8.7 (±0.09)
C/N 15.9 14.8 9.5 (±3.02)
pH (H2O) 5.8 5.8 6.3 (±0.75)
Available P (mg kg−1) 13.7 15.0 16.0 (±3.25)
Available K (cmolckg−1) 0.5 0.8 1.5 (±0.4)
Available Ca (cmolckg−1) 5.9 9.4 10.6 (±6.48)
Available Mg (cmolckg−1) 2.0 4.4 2.2 (±0.22)
Clay (%) 15.8 10.4 11.1 (±3.35)
Silt (%) 50.1 47.8 65.7 (±5.74)
Sand (%) 34.1 41.8 23.2 (±6.19)
Coarse fragments (g kg−1) 150 150 233 (±32.3)
Texture Silty loam Loamy Silty loam

Water retention b

33 kPa 626 867 403(±56.0)
1500 kPa 262 345 236 (±38.0)
Available water 364 522 167 (±23.8)

Water repellency c

MED Wettable Slightly w.r. Slightly w.r.
WDPT Slightly w.r. Wettable Wettable

USLF = Unburned Slope Laurel Forest; UCLF = Unburned Crest Laurel Forest: BCLF: Burned Crest Laurel forest.
a Mean values of three replicates and standard deviations. b Water retention, 33 kPa = Water retention at field capacity,
1500 kPa = Water retention at wilting point = Water available for plants. c Water repellency (w.r.), MED = Molarity
of Ethanol Droplet test, WDPT = Water Drop Penetration Time).

3.2. Alpha Diversity of the Microbial Communities

We obtained 163,286 raw reads, which, after the trimming step, resulted in 106,864 high-quality
sequences. Sequence numbers ranged from 4370 to 56,914 per sample. Rarefaction curves tended
towards asymptote (Figure S1), and coverage values (Table 2) ranged from 89.31% to 98.68%, indicating
that the sequencing effort was sufficient and the sequences obtained were representative of the bacterial
communities in these soils. Alpha diversity (Table 2) was calculated from normalized data using 4370
sequences per sample (in total, 13,110 sequences per type of forest soil). The number of operational
taxonomic units (OTUs) was significantly higher in unburned soils that in BCLF (average of about 50%
lower). The total species richness and diversity was similar in unburned soils and significantly lower
in BCLF. In comparison with the unburned soils, the higher equity indices in the BCLF soils suggest
species dominance.
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Table 2. Alpha diversity. Diversity indices for the three replicates from laurel forest soils on the
unburned slope (USLF) and crest (UCLF) and the burned crest (BCLF) forests. Results correspond to
normalized 4370 sequences. The average is shown with the standard deviation between brackets. Bold
letters after the standard deviation indicate statistically significant differences in the averages along
columns according to Turkey HSD test results (p value < 0.05).

Group OTUs Chao InvSimpson Simpson Shannon Equity Coverage

USLF A 624.63 963.82 86.61 0.01 5.27 0.8180 0.9388
USLF B 853.64 1482.89 152.87 0.01 5.77 0.8551 0.9048
USLF C 958.09 1566.26 152.51 0.01 5.90 0.8599 0.8931

average 812.12 (170.56) a 1337.66 (326.43) a 130.66(38.15) a 0.01 (0.00) a 5.65 (0.33) a 0.8443 (0.0229) a 0.9122 (0.0237) a

UCLF A 660.23 1006.26 84.99 0.01 5.31 0.8181 0.9335
UCLF B 704.29 1026.83 59.37 0.02 5.29 0.8061 0.9313
UCLF C 761.70 1076.88 96.81 0.01 5.54 0.8356 0.9274

average 708.74 (50.88) a 1036.66 (36.32) ab 80.39 (19.14) a 0.01 (0.01) a 5.38 (0.14) a 0.8199 (0.0148) a 0.9307 (0.0031) ab

BCLF A 182.84 241.45 13.39 0.07 3.36 0.6442 0.9868
BCLF B 514.64 820.26 12.14 0.08 4.17 0.6676 0.9464
BCLF C 258.00 313.12 26.98 0.04 4.02 0.7244 0.9831

average 318.49 (173.98) b 458.28 (315.53) b 17.50 (8.23) b 0.06 (0.02) b 3.85 (0.43) b 0.6787 (0.0412) b 0.9721 (0.0223) b

3.3. Bacterial Community Composition of the Soil Microbiome in Undisturbed Laurel Forests

The soil microbiomes from unburned laurel forests, UCLF and USLF, were very alike to each
other (Figure 1, Figure 2). Both soils were characterized by the presence of bacteria from three
main phyla: Acidobacteria (38.55%–26.83%), Proteobacteria (23.66%–37.13%), and Actinobacteria
(17.78%–17.35%) (Figure 1a). Bacteroidetes, Firmicutes, Gemmatimonadetes, Planctomycetes,
Chloroflexi, Verrucomicrobia, and candidate division WPS2 were less abundant phyla (<2%).
Unclassified phyla represented 7.54% to 8.12%. Statistically significant differences (p value < 0.05) at the
phylum level (Figure S2a) were only found for the relative abundance of Proteobacteria, Acidobacteria,
and Latescibacteria. This latter phylum was not detected in crest samples, and in USLF, it only
accounted for less than 0.08% of the sequences. Significant differences were obtained for the two most
represented classes in unburned soils (Figure S2b): The Alphaproteobacteria, more abundant in USLF
(19.88%) than in UCLF (11.77%), and the Acidobacteria-Gp1 with an opposite trend (9.41% USLF,
16.59% UCLF). Three other underrepresented classes, Acidobacteria-Gp25, Armatimonadetes-Gp4, and
Latescibacteria, were also significantly more abundant on USLF (Figure S2b). Acidobacteria Gp1 and Gp2
were the most abundant genera in both forests (12.66% and 14.14% in UCLF and 7.31% and 7.47% in
USLF, Figure S3a). Other abundant genera (>1.0% relative abundance) in both undisturbed forest soils
were Actinoallomurus, Gemmatimonadetes, Gaiella, Gp3, Gp6, Solibacter, Bradyrhizobium, Mycobacterium,
Steroidobacter, Phenylobacterium, WPS-2, Rhizomicrobium, and Conexibacter. Statistically significant
differences (p values < 0.05) (Figure S3b) were only found for less abundant genera (<1% relative
abundance, except Mycobacterium). The large percentage of sequences showing no close similarity with
any previously described genera is noteworthy; these made up 44.40% to 53.84% of the sequences from
the undisturbed laurel forest soils.
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classes alpha, beta, and gamma are also shown. Phyla accounting for less than 0.7% relative 
abundance are included under ‘Others’. # and * refer to taxa with a significantly increased relative 
abundance in two to two comparisons. Statistically significant differences in the relative abundance 
are shown in Supplementary Figure S2. 
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A heatmap plot of taxonomic groups at the phylum level (Figure 2) shows the relationships 
among replica samples, confirming the likeness of the microbiome in the undisturbed areas (USLF 
and UCLF) and further distinguishing them from burned soils, BCLF. One BCLF replicate occupied 
an intermediate position between undisturbed and burned soils, which could be due to a soil patch 
being somehow partially protected from fire, probably due to the heterogeneous effects of fire on 
particular soil characteristics at the specific sample point or to changes in wind direction during the 
fire [45]. Differences in the bacterial structure communities, the beta diversity, between unburned 
and burned soils were assessed by principal coordinate analysis (PCA) (Supplementary Figure S4). 

Comparing the bacterial community composition of UCLF versus BCLF (Figures 1 and 3 and 
Supplementary Figures S5–S8), fire caused profound changes in the soil microbiome. Although all 
phyla present in UCLF were still detected in BCLF, their relative abundance significantly varied 

Figure 1. Relative abundance of the dominant bacterial phyla in undisturbed and burnt soils of the
laurel forest at the Garajonay National Park. Comparison of two undisturbed forests, the slope and
crest laurel forests (USLF and UCLF) and burnt crest forest (BCLF) areas. For phylum Proteobacteria,
classes alpha, beta, and gamma are also shown. Phyla accounting for less than 0.7% relative abundance
are included under ‘Others’. # and * refer to taxa with a significantly increased relative abundance in
two to two comparisons. Statistically significant differences in the relative abundance are shown in
Supplementary Figure S2.
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Figure 2. Heatmap plot of dominant phyla in undisturbed (USLF and UCLF) and burnt (BCLF) laurel
forest soils.

3.4. Effect of a Wildfire on the Soil Microbiome in the Crest Laurel Forest

A heatmap plot of taxonomic groups at the phylum level (Figure 2) shows the relationships
among replica samples, confirming the likeness of the microbiome in the undisturbed areas (USLF and
UCLF) and further distinguishing them from burned soils, BCLF. One BCLF replicate occupied an
intermediate position between undisturbed and burned soils, which could be due to a soil patch being
somehow partially protected from fire, probably due to the heterogeneous effects of fire on particular
soil characteristics at the specific sample point or to changes in wind direction during the fire [45].
Differences in the bacterial structure communities, the beta diversity, between unburned and burned
soils were assessed by principal coordinate analysis (PCA) (Supplementary Figure S4).
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Comparing the bacterial community composition of UCLF versus BCLF (Figures 1 and 3 and
Supplementary Figures S5–S8), fire caused profound changes in the soil microbiome. Although all
phyla present in UCLF were still detected in BCLF, their relative abundance significantly varied
(Figure 1, Figure S5). Acidobacteria and Actinobacteria, two phyla prevailing in UCLF soils (38.5%
and 17.9% relative abundance, respectively), dropped to almost 6% after fire exposure. Proteobacteria
continued to be a dominant phylum in burned soils, and was even slightly increased (Figure 1),
although at the class level (Figure S6), the decrease in Alphaproteobacteria was statistically significant,
dropping from 11.78% to 4.21%. Delta- and Gammaproteobacteria also underwent a drop from 2.98%
and 3.42% to 0.79% and 0.88%, respectively. The parallel high increase in Betaproteobacteria from
4.45% to 32.36% was also significant (Figure 1, Supplementary Figure S6). Minor phyla (<2% relative
abundance in UCLF), such as Gemmatimonadetes, Planctomycetes, and candidate WPS2, became
almost undetectable in BCLF, while unclassified phyla dropped from 7.54% to 4.26% in BCLF samples.
Quite the opposite, phyla Bacteroidetes and Firmicutes, scarcely represented in UCLF (1.75% and
0.70% relative abundance), became predominant in BCLF (23.23% and 20.48% relative abundance,
respectively) (Supplementary Figure S5), and Sphingobacteria (Bacteroidetes) and Bacilli (Firmicutes)
were the most significantly abundant classes (Figure S6). Striking changes were also observed in the
genus composition (Figure 3, Supplementary Figure S7) and distribution (Supplementary Figure S8).
A decrease in Acidobacteria Gp1 and Gp2 stands out (more than 80% in BCLF compared to UCLF). The
opposite effect was found in genera Paenibacillus (Firmicutes), Pedobacter (Bacteriodetes), and Massilia
(Betaproteobacteria), which became dominant in BCLF (from almost undetectable percentages to 14.16%,
12.72%, and 9.1%, respectively. Dyadobacter (Bacteroidetes), Cohnella (Firmicutes), and Arthrobacter
(Actinobacteria) were also statistically more abundant in BCLF (p-value < 0.04) (Figure 3).
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3.5. Influence of Environmental Variables on Soil Communities

Canonical correspondence analysis (CCA) (Supplementary Figure S9) was performed to study
the influence of soil organic carbon (SOC), total nitrogen, C/N ratio, pH, cations (Mg, K, Ca, and P),
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soil texture, and available water in genus distribution, in terms of relative abundance. The Monte
Carlo test was statistically significant (999 permutations, p-value = 0.005), indicating a strong
positive correlation between pH (p-value = 0.003), and was marginally significant for the C/N
ratio (p-value = 0.077) and genus distribution in burned and unburned soils. Other variables not
influencing the bacteria distribution are not shown in the figure.

3.6. The Core Microbiome

The OTU numbers and sequence percentages characteristic of each soil and in the core microbiome
are shown in a Venn diagram (Figure 4). USLF soil had the largest number of exclusive OTUs, 983 (6.4%
of sequences, relative abundance), while the crest forest had 723 (4.23% of sequences) and 302 (5.46% of
sequences) OTUs in unburned and burned soils, respectively. However, the core microbiome with only
249 OTUs constituted 62% of the total sequences. In the unburned soils, the large number of OTUs
belonging to the genus Gaiella (Actinobacteria) and the Acidobacteria Gp6 in USLF (Table S1) and to
Acidobacteria Gp1 and Gp2 in the UCLF (Table S2) was remarkable. OTUs in BCLF (Table S3) belonged to
genera Paenibacillus (Firmicutes), Flavobacterium, Pedobacter, Dyadobacter (Bacteroidetes), Amycolatopsis
(Actinobacteria), and Delftia (Betaproteobacteria). It is worth mentioning that in USLF and UCLF soils,
genera with a large percentage of sequences also had a large number of OTUs (Tables S1 and S2),
whereas in BCLF soils, the genera contained a large percentage of the sequences with a low number of
OTUs (Table S3). This suggests a dominance of particular species, supporting data from α-diversity.
The core microbiome was characterized by OTUs belonging to: (i) The Acidobacteria Gp1, Gp2, Gp3,
Gp6, Gemmatinomas and the candidate Solibacter; (ii) Actinobacteria from genera Gaiella, Actinoallomurus,
Arthrobacter, and Mycobacterium; (iii) Proteobacteria of genus Massilia and Bradyrhizobium; and (iv) the
Bacteroidetes Flavobacterium and Pedobacter (Table S4). In this core microbiome (Table S4), the genera
Massilia (Betaproteobacteria) and Pedobacter (Bacteroidetes) stood out for their high percentage of
sequences in the core microbiome (above 3% each of total sequences) belonging to one single OTU.
Also represented by one OTU were genera Arthrobacter, Bradyrhizobium, and Mycobacterium, with a
relatively large percentage of sequences: 0.66% to 0.895% of the total core genome sequences. A large
percentage of sequences in the core microbiome (28.54%) were unclassified.
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4. Discussion

Here, we studied the soil microbiome of a laurel forest and showed that this relic forest hosted
a large diversity of novel bacteria, with 44.40% to 53.84% of sequences corresponding to potentially
novel undescribed genera. The use of a high-throughput sequencing methodology revealed the overall
composition of the soil bacterial communities of this forest, and evaluated the short-term impact (15–16
weeks after fire) of the wildfire. The two selected locations differed in their topographic situation,
tree composition, plant species abundance, and soil characteristics. However, these differences appeared
to not have had a great impact on the bacterial communities, since both unburned forests shared similar
soil microbiomes dominated by bacterial communities belonging to Proteobacteria, Acidobacteria, and
Actinobacteria. Only a few taxa showed significant differences in relative abundance. The wildfire
drastically affected the soil microbiome of the laurel forest. Burned soil had lower species richness
and diversity. Besides this, the composition of the bacterial communities was also strongly modified:
A soil microbiome dominated by Acidobacteria, Alphaproteobacteria, and Actinobacteria turned into
a community of Betaproteobacteria, Bacteroidetes, and Firmicutes. The severe fire completely burned
the vegetation at the sampled sites, and quite likely had an immediate direct effect on the soil microbial
biomass. Additional post-fire alterations observed in the physicochemical characteristics of the soil
should have altered the composition of the bacterial communities, especially due to the loss of the
upper organic layer that was completely burned. The laurel forest burned soils showed losses in SOC
and N content and a decrease in the C/N ratio and a pH increase that seems to have had a high influence
on the composition of the microbial communities (Figure S9), similar to other severe fires [6,46,47].
These effects all are the most common post-fire disturbances influencing normal bacterial activities,
eventually modifying bacterial communities [8–10,18,48]. Furthermore, as a probable consequence
of the losses in organic carbon [49,50], the water retention capacity and available water decreased.
Nevertheless, the increase in silt fraction may have partially compensated some losses in water
retention [51].

Acidobacteria is a large phylum of ubiquitous bacteria and one of the most abundant prokaryote
phyla in soils [52,53]. Likewise, these were dominant bacteria in the undisturbed laurel forest soils.
In UCLF soils, Acidobacteria were the most abundant group (38.5% relative abundance) and the one that
suffered the highest drop (84.4% decrease) in BCLF soils. The direct effect of fire on this non-sporulating
group of gram-negative bacteria is likely to be the main reason for it. The ecological role that this phylum
plays in soils remains broadly unknown due to their unculturability. Sequence-based approaches show
they are highly diverse [53] and that different subgroups show inconsistent correlations regarding
Ca, Mg, K, P, carbon content, C/N ratio, and soil pH [54–58], making it difficult to evaluate how
soil changes affect Acidobacteria. However, most studies agree that soil pH is the main driver
behind the abundance and composition of Acidobacteria, and several subgroups show a positive
correlation with low pH conditions [53,55,59,60], with subgroup Gp1 being especially sensitive to an
increase in pH [61]. Nevertheless, other subgroups, such as Gp2, negatively correlate with pH [53].
The two most abundant subgroups in UCLF were Gp1 and Gp2. Both underwent a drastic drop in
abundance in burnt soils, suggesting that the slight increase in soil pH of the BCLF did not affect them.
Furthermore, Acidobacteria are supposedly oligotrophic and more used to complex polymers of C and
N [53], which is more characteristic of undisturbed forests. A higher availability in soluble C, due to
mineralization being accelerated by fire, negatively correlates with Acidobacteria abundance [54].

Bacteria from other phyla thrived quickly in burned soils. The huge increase observed in the
relative abundance of some bacterial groups in BCLF soils could be due to the opportunistic overgrowth
of fast-growing bacteria that take advantage of less acidic pH and more copiotrophic conditions or can
tolerate or are able to utilize chemical forms of carbon present in burned soils. Contrary to Acidobacteria,
higher C mineralization rates positively correlate with the abundance of Betaproteobacteria and
Bacteroidetes [54]. Consistent with previous reports that showed a predominance of Proteobacteria in
many types of soils, [52,55,62,63], they were an abundant phylum in the soils of the Garajonay laurel
forest. Moreover, coinciding with other frequent post-fire effects described in other forests, the previous
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dominance of Alphaproteobacteria was greatly diminished [13,18,21] in favor of Betaproteobacteria [13,
18,20,54,64] in burned soil. Especially predominant in BCLF soils were the Betaproteobacteria of genus
Massilia. Polycyclic aromatic hydrocarbons are released after a forest fire [65] and as they are able
to metabolize them [66,67], members of Massilia can flourish in burned soils. Moreover, Massilia is a
major group of rhizospheric bacteria colonizing the roots of many plants at early successional stages of
the root microbiome [68], suggesting that these bacteria could play a role in plant fitness. The fact that
its sequences were highly represented in the core microbiome but strikingly all belonged to one OTU is
very suggestive that this specific taxon is important for the laurel forest soil ecosystem and it might
play a positive role in the post-fire forest ecosystem. The high increase in Bacteroidetes detected in
BCLF soils is another common observation in many burned soils [18,20,64]. It has been related to a
shifted balance in the carbon cycle and carbon mineralization rates [52,54]. In our study, the increase in
genera Pedobacter and Dyadobacter was particularly high. Dyadobacter has been isolated from diverse
environments worldwide and the genus includes several species that can degrade heterocyclic aromatic
hydrocarbons. The abundance of Dyadobacter in the BCLF might correlate with an opportunistic
advantage to the chemical conditions prevailing in burned soils. Its potential use in bioremediation [69]
could be important for detoxifying burned soils. Pedobacter species have been described in very diverse
environments, including plant rhizosphere and forest soils [70,71], but to our knowledge, this is the
first time that Pedobacter has been related to burned soils and we cannot yet explain its striking increase
in BCLF soils. It is worth noting that similarly to Massilia, genus Pedobacter also has a high percentage
of sequences in the core microbiome, all belonging to one single OTU, which suggests a relevant role of
this particular species in the laurel forest ecosystem.

The Firmicutes-producing endospores take advantage of fires by withstanding the high
temperatures reached during a wildfire, so their predominance is frequent in the soils of many
burned habitats [12,13,18–21,64]. In the present study, we indeed detected a huge increase in the
endosporulates Paenibacillus and Cohnella. These two genera contain many free-living N2-fixing
species [70–74], in concordance with the fact that N cycle-related sequences found in burned soils
showed a dominance of such free-living spore-forming N2 fixers [11,12]. Furthermore, many species in
these two genera are frequent colonizers of the plant rhizosphere [70,73,74]. As N2 fixers, they may
play a role in recovering the N losses observed in BCLF.

The effect of fire on bacteria in the phylum Actinobacteria is more variable. An increase has been
reported [21,75] or apparently not been greatly affected [17,18]. Thus, the severe decrease detected in
members of Actinobacteria in burned soils from Garajonay does not appear to be common in other
research. In our study, the decrease in Actinobacteria could be due to the severity of the wildfire in the
sampled area. One main concern is how this decrease could negatively affect the N cycle in the mature
laurel forest ecosystem, where legumes are rare components usually limited to the forest margins.
Biological N2 fixation linked to the symbiosis between Morella faya (a dominant or common tree in laurel
forest) and Frankia is likely the key entry channel of N into the forest ecosystem. Frankia was not detected
among the most abundant genera in this study. This may be explained by the sampled soil being
non-rhizospheric. However, other free-living N2-fixing actinobacteria could have a prominent role in
the N cycle. In our work, while the decrease in Actinobacteria was reflected in most genera, Arthrobacter
greatly increased in BCLF during the next few months. By fixing N2, many members of genus
Arthrobacter [76] may contribute to N entering the ecosystem. This agrees with previous studies that
describe an abundance of Arthrobacter as a post-fire effect in other forests [21,76]. Arthrobacter has been
related to the degradation of aromatic compounds that appear in burned soils [77]. More interesting,
is its proposed role as an essential element in forest recovery, by acting as plant growth-promoting
bacteria [21]. Interestingly, in the core genome, Arthrobacter presented a large percentage of sequences,
all belonging to one OTU. This again points to this particular species being important in laurel forest
soils. Plant inoculation with culture-isolated bacteria of strains well-adapted to burned soil conditions
and showing plant growth promotion could be a useful strategy in re-afforestation after wildfires.
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5. Conclusions

This study revealed that about 50% of sequences correspond to undescribed genera, suggesting
that a wide unknown bacterial diversity may be specific to laurel forest soils. Our results also revealed
the dramatic effect of a wildfire on their bacterial community composition, despite the soil science
perspective having been that mature laurel forest soils are largely protected from fires by their high
humidity levels. The severity of the 2012 fire completely burned some areas of a forest over 100 years
old and practically eliminated the most abundant bacterial communities, substituting them with other
probably opportunistic bacteria. The recovery of the characteristic vegetation of this forest is thought
to require many decades. Microorganisms can be good indicators of the ‘health’ status of a forest
ecosystem and thus used to monitor soil recovery. Our results indicate that the bacterial groups likely
to play key functional roles in these soils were lost. Recovering them from unaltered soils for use as
inoculants aiding plants to be sown in reforestation campaigns could help accelerate forest recovery.
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