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Abstract: To estimate mangrove biomass at finer resolution, such as at an individual tree or clump
level, there is a crucial need for elaborate management of mangrove forest in a local area. However,
there are few studies estimating mangrove biomass at finer resolution partly due to the limitation of
remote sensing data. Using WorldView-2 imagery, unmanned aerial vehicle (UAV) light detection
and ranging (LiDAR) data, and field survey datasets, we proposed a novel method for the estimation
of mangrove aboveground biomass (AGB) at individual tree level, i.e., individual tree-based inference
method. The performance of the individual tree-based inference method was compared with the
grid-based random forest model method, which directly links the field samples with the UAV LiDAR
metrics. We discussed the feasibility of the individual tree-based inference method and the influence
of diameter at breast height (DBH) on individual segmentation accuracy. The results indicated that
(1) The overall classification accuracy of six mangrove species at individual tree level was 86.08%.
(2) The position and number matching accuracies of individual tree segmentation were 87.43% and
51.11%, respectively. The number matching accuracy of individual tree segmentation was relatively
satisfying within 8 cm ≤ DBH ≤ 30 cm. (3) The individual tree-based inference method produced
lower accuracy than the grid-based RF model method with R2 of 0.49 vs. 0.67 and RMSE of 48.42 Mg
ha−1 vs. 38.95 Mg ha−1. However, the individual tree-based inference method can show more detail
of spatial distribution of mangrove AGB. The resultant AGB maps of this method are more beneficial
to the fine and differentiated management of mangrove forests.
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1. Introduction

Mangroves have attracted considerable attention due to their unique morphological characteristics
and diverse eco-environmental service functions [1]. These services include coastal protection,
biodiversity maintenance, and carbon sequestration [2–5]. The organic carbon in mangrove forests
per unit area is four times higher than that of other terrestrial forest ecosystems [6]. Mangroves are
therefore considered a strong candidate for the United Nations Framework Convention on Climate
Change (UNFCCC), the payments for ecosystem services (PES) program [7], and the policymaking
and implementation in blue carbon. However, all these initiatives require accurate biomass and
carbon stock estimations. The aboveground biomass (AGB) of mangroves is one of the fundamental
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parameters describing a mangrove ecosystem’s functioning and is essential for determining its storage
of carbon. Accurate estimate of AGB is critical for mangrove monitoring and management. To build a
beautiful China and protect the ecological marine environment, local governments of coastal areas
in China have been asked to fully implement the bay chief system (A leader responsible system in
governance of bays began in 2017, which was proposed by the State Oceanic Administration, China.)
and conduct pilot work on carbon sinks in marine ecosystems. Strengthening the research on mangrove
biomass will help to support this work.

Biomass estimation methods can be categorized into direct and indirect methods. The direct
approach is a traditional field harvesting method. Among the indirect methods, the allometric
estimation is the most common approach and has become a standard tool for biomass prediction [8].
The basic theory of allometric relationships suggests that in many organisms, the growth rate of one
part of an organism is proportional to the growth rate of growth of another [9]. Thus, researchers have
often used allometric regression equations based on available and measurable woody plant parameters
such as stem diameter, tree height, or crown diameter to estimate biomass [10,11].

To improve the accuracy of mangrove biomass estimation and mapping, more remote sensing data
and methods have been tested and applied to mangroves [4,12–20]. Very high resolution images, such
as WorldView-2 (Digitalglobe, Westminster, CO, USA), GeoEye (GeoEye, Herndon, VA, USA), IKONOS
(Spacing Imaging, Herndon, VA, USA), QuickBird (Digitalglobe, Westminster, CO, USA), digital
photographs, and light detection and ranging (LiDAR) point cloud data, can be used for extracting
individual trees [21–26], as well as the accurate estimation of AGB or carbon stocks at the individual
tree level [27–34]. Yin and Wang (2019) used UAV LiDAR to study the individual tree detection and
delineation (ITDD) of mangroves and proposed a rule-of-thumb that the spatial resolution should be
finer than one-fourth of the crown diameter for ITDD [26]. To date, to the best of our knowledge, no
study has discriminated mangrove species and estimated mangrove biomass in a finer resolution, such
as individual tree or clump level. In addition, despite the wide use of remote sensing techniques to
obtain and retrieve mangrove information, there is no general consensus approach [35]. Because of the
ability to provide spectral information, optical images are considered to be very useful in distinguishing
plant species [36]. While, LiDAR data can provide more information about forest structure [32,33].
Therefore, the integration use of very high spatial resolution WorldView-2 imagery and UAV LiDAR
data may provide the potential for mangrove biomass estimation and mapping at finer resolution.

The overall aim of this study was to use optical remote sensing, UAV LiDAR, field survey
data sets, and allometric equations to estimate and map the AGB of mangroves in Qinglan harbor,
Hainan province, China. In this study, we aimed to (1) compare the merits and demerits of AGB
estimation based on the newly proposed individual tree-based inference method and the grid-based
RF model method, (2) examine the accuracies of AGB estimation for two methods, and (3) map the
AGB of mangroves.

2. Materials and Methods

2.1. Study Site

The study was conducted in the core area of the Qinglan Harbor Provincial Nature Reserve,
located on the northeastern part of Hainan Island, China (Figure 1). The Qinglan Harbor Nature
Reserve is the reserve that has the most abundant mangrove species in China, including 24 true
mangrove species and 10 semi-mangrove species, which account for 88.89% and 100% of the total
number of true- and semi-mangrove species in China, respectively. In China, mangroves in the Qinglan
Harbor Nature Reserve are distributed with the tallest plants, the oldest forests, the most complete
community preservation, and many rare and endangered mangrove species. The total mangrove area
of the Qinglan Harbor Nature Reserve is about 835.5 ha.
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Figure 1. Location of the study area and the sampling plots.

The study area was 386.32 ha, with a mangrove area of 209.99 ha. The landforms are mainly sea
alluvial plain, lagoon plain, sea platform, and mangrove beach. The soil type is mostly alluvial soil
with a smooth soil texture (silty clay). The mean annual temperature is about 24.1 °C, the average
annual rainfall is around 1650 mm and the average tidal range is about 0.89 m. The salinity of its water
ranges between 3%� and 25%�.

2.2. Field Data Collection

The field surveys were conducted from July to September 2018 and March 2019. A total of 45
plots were surveyed. The base plot area was 10 × 10 m, which was expanded up to 600 m2 depending
on the specific field situation. All individual trees with a diameter at breast height (DBH) of ≥1.5cm
and height that was ≥1.5 m within the plots were counted and measured for species, number, height,
stem girth at breast height (GBH, cm; DBH = GBH/π), and crown cover. A real-time kinetic global
positioning system (RTK-GPS) was used to measure the geographical position of each plot and most
of measured trees. A total of 3832 individual trees and 13 species (Bruguiera sexangula (Lour.) Poir.,
Excoecaria agallocha Linn., Rhizophora apiculata Blume, Aegiceras corniculatum (Linn.) Blanco, Kandelia
candel (Linn.) Druce, Xylocarpus granatum Koenig, Ceriops tagal (Perr.) C. B. Rob., Lumnitzera racemosa
Willd., Heritiera littoralis Dryand., Hibiscus tiliaceus Linn., Sonneratia apetala Buch-Ham., Sonneratia alba J.
Smith, Sonneratia ovata Backer) were recorded in the 45 field plots. 68.89% of the plots had at least 3
types of mangrove species. The mangrove forest was dominated by B. sexangula. The tree density of B.
sexangula was highest among all mangrove species, which was 1.5 times and 2.0 times higher than that
of E. agallocha and L. racemosa, respectively. The summary of the community structure of the mangrove
forest in Qinglan Harbor Nature Reserve was presented in Table 1.
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Table 1. Summary of the community structure of the mangrove forest in 45 sample plots.

Species Count Density
(Individuals·100 m−2)

RD
(%)

F
(%)

ReF
(%)

BA
(m2)

Dominance
(m2 ha−1)

RDo
(%) IVI

B. sexangula 1063 8.93 27.74 67.31 20.02 16.514 13.877 46.75 31.50
E. agallocha 694 5.83 18.11 71.11 21.15 4.462 3.750 12.63 17.30
H. tiliaceus 250 2.10 6.53 35.56 10.58 1.371 1.152 3.88 7.00
H. littoralis 18 0.15 0.47 4.44 1.32 1.187 0.997 3.36 1.72
X. granatum 98 0.82 2.56 31.11 9.25 0.887 0.745 2.51 4.77
R. apiculata 402 3.38 10.49 35.56 10.58 3.938 3.309 11.15 10.74
A. corniculatum 469 3.94 12.24 8.89 2.64 0.655 0.550 1.85 5.58
K. candel 4 0.03 0.10 6.67 1.98 0.009 0.007 0.03 0.70
L. racemosa 543 4.56 14.17 28.89 8.59 1.516 1.274 4.29 9.02
C. tagal 112 0.94 2.92 2.22 0.66 0.213 0.179 0.60 1.39
S. ovata 50 0.42 1.31 13.33 3.97 1.453 1.221 4.12 3.13
S. apetala 48 0.40 1.25 13.33 3.97 1.859 1.562 5.26 3.49
S. alba 81 0.68 2.11 17.78 5.29 1.259 1.058 3.57 3.66

Total 3832 32.20 100.00 336.20 100.00 35.322 29.682 100.00 100.00

BA is basal area, BA =
∑

(DBH2
× π)/(4 × 10,000); RD is relative density; F is frequency, which calculated as: F

= number of sample plots occurring in some kind of plant/total number of sample plots × 100; ReF is relative
frequency; RDo is relative dominance; IVI is importance value index, IVI = (relative density + relative frequency +
relative dominance)/3 [37].

The AGB in each field plot was estimated by the allometric equation method. The selection
principles were as follows: (1) Domestic models take precedence over foreign models; (2) the closer the
study area of the model to Hainan, the more preferred it is; (3) the closest forest age takes precedence;
and (4) species with similar DBH are preferred. When no specific allometric equation was available, a
common allometric equation was used (Table 2). We first calculated the AGB of each tree using the
species-specific allometric equations presented in Table 2 and then summed the AGBs in each field
plot. To obtain the AGB density for each plot, we divided the summed AGB of a plot by the plot’s area.

Table 2. Allometric equations for mangrove species used in this study.

No. Species Allometric Equations References

1 B. sexangula AGB = 0.168 × DBH2.42 [38]
2 E. agallocha LogAGB = 1.0996 × logDBH2

− 0.8572 [39]
3 R. apiculata AGB = 0.235 × DBH2.420 [40]
4 C. tagal AGB = 0.1885 × DBH2.3379 [38]
5 L. racemosa AGB = 0.1023 × DBH2.50 [41]
6 A. corniculatum LogAGB = 1.496 + 0.465 × log (DBH2

× H) [42]
7 X. granatum AGB = 0.0823 × DBH2.5883 [38]
8 K. candel LogAGB = 2.814 + 1.053 × log (DBH2

× H) [42]

9 Sonneratia spp. (S. ovata, S.
apetala, and S. alba) AGB = 0.258 × DBH2.287 [43]

10 Others (H. littoralis, H. tiliaceus) AGB = 0.251 × ρ × DBH2.46 [44]

2.3. Remote Sensing Data and Processing

2.3.1. WorldView-2 Imagery

The WorldView-2 optical images were acquired on 5 October 2018. They included a 0.5 m
panchromatic band and eight 2.0 m multispectral bands.

First the images were radiometrically corrected. Then, the multispectral images were
pan-sharpened by the panchromatic image using the NNDiffuse tool in ENVI 5.3 (Harris Geospatial,
Melbourne, FL, USA). Finally, this pan-sharpened imagery was co-registered to the UAV LiDAR data.
The precision was controlled within 0.5 pixels. The mangrove extent of the study area was extracted
using this processed imagery. The detail process of how to extract mangrove extent using high spatial
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resolution imagery can refer to our previous work [45]. The main flowchart of remote sensing data
processing and AGB estimation was presented in Figure 2.

Forests 2019, 10, x FOR PEER REVIEW 
 5 of 22 

 

The WorldView-2 optical images were acquired on 5 October 2018. They included a 0.5 m 
panchromatic band and eight 2.0 m multispectral bands. 

 
Figure 2. Workflow of estimating mangrove aboveground biomass (AGB). Case 1 denotes the 
mangrove AGB estimation at individual tree level, namely the individual tree-based inference 
method. Case 2 denotes the common model-based AGB estimation at grid level, namely the grid-
based random forest model method, which is used as a benchmark in this study. 

Figure 2. Workflow of estimating mangrove aboveground biomass (AGB). Case 1 denotes the mangrove
AGB estimation at individual tree level, namely the individual tree-based inference method. Case 2
denotes the common model-based AGB estimation at grid level, namely the grid-based random forest
model method, which is used as a benchmark in this study.



Forests 2019, 10, 871 6 of 21

2.3.2. UAV LiDAR Data and Mangrove Canopy Height Model Production

The UAV LiDAR data were collected in March 2018 using a Velodyne VLP-16 puck sensor
(Velodyne LiDAR, San Jose, CA, USA) with a laser wavelength of 903 nm. The sensor can emit 300,000
points per second with an accuracy of 3 cm. The average point density was 94 points/m2. The flight
elevation was 52 m with a speed of 5 m/s. An RTK-GPS was simultaneously used to obtain the base
station position of the UAV LiDAR system with centimeter-level accuracy.

The raw LiDAR data were first computed using aerial triangulation algorithm to obtain accurate
position of each LiDAR point cloud. Then, the noise and outlier points of the LiDAR data were filtered
using LiDAR360 software (GreenValley, Beijing, China). Subsequently, the point clouds were classified
as non-ground and ground points. The ground points were used to produce the digital elevation
model (DEM) using the triangulated irregular net (TIN) interpolation method. Both the ground points
and non-ground points were utilized to generate the digital surface model (DSM) using the inverse
distance weighted (IDW) interpolation method. The canopy height model (CHM) was produced
through subtracting the DEM from the DSM [5]. Finally, the point clouds were normalized using the
DEM subtraction method [26] and masked by the mangrove extent, which was produced from the
WorldView-2 imagery.

2.4. Mangrove Species Classification and Individual Tree Detection

The mangrove classification was conducted in the R language platform using random forest (RF)
algorithm. RF, proposed by Leo Breiman (2001) [46], is an integrated machine learning algorithm based
on decision trees. The bootstrap re-sampling is used to construct the decision tree model by randomly
sampling from the original sample set. The final result is obtained by voting on the prediction of
multiple decision trees. The RF algorithm can be used to classify remote sensing images with complex
spatial distribution or to identify multiple data of different statistical distributions and scales.

From the spectral curves of different mangrove species in Figure 3 and the 0.5 m pan-sharpened
WorldView-2 imagery, we found that S. ovata, S. apetala, and S. alba communities and the mixed
community of S. ovata and A. corniculatum have similar appearances, textures, and spectral features
overall, which means they are difficult to separate. In addition, S. ovata, S. apetala, and S. alba belong to
the same genus of Sonneratia. Therefore, these three species were merged into a class of Sonneratia spp.
H. littoralis and K. candel were hard to discriminate because of their small coverage areas. C. tagal was
usually mixed with L. racemosa in the study area. A. corniculatum and X. granatum were companion
species growing with dominant species, so it was difficult to identify them. Thus, the mangrove species
in the study area were categorized into six types: B. sexangula (BS), E. agallocha (EA), Sonneratia spp.
(SS, including S. alba, S. apetala, and S. ovata), R. apiculata (RA), H. tiliaceus (HT), and L. racemosa (LR).

With the development of remote sensing technology, individual tree extraction based on very
high-density point clouds is becoming possible [19,26,47–54]. Using the marker-controlled watershed
segmentation (MCWS) algorithm [55], Yin and Wang (2019) well detected and delineated individual
mangrove tree [26]. Their result indicated that the spatial resolution of CHM should be finer
than one-quarter of the crown diameter (CD) in order to correctly delineate crown boundaries and
characterize the crown shapes. In the field survey, we found that the crown diameters of a large
amount of L. racemosa and low B. sexangula ranged from 1.0 to 1.5 m. Therefore, the individual tree
was detected based on a 0.25 m spatial resolution CHM, which obtained from the point cloud data of
UAV LiDAR.
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After mangrove individual tree detection, a total of 6800 samples of the six mangrove species
types were randomly collected based on our field survey with a uniform distribution in the study
area. These samples all lay in homogeneous and monoculture communities. Of the 6800 patches,
70%, namely, 4760, were used as training samples and the other 30%, namely, 2040, were used as
independent validation samples.

For the RF classification model, the parameter ntree was set to 1000 and mtry was set to the default
value

√
mtry (mtry denotes the number of predictor variables input). We have tested the values of 500,

600, 700, 800, 1000, 1500, and 2000 for the ntree parameter, and found that when ntree reached 1000 with
mtry using

√
mtry, the error become convergent. For the detail tuning process of the ntree parameter,

refer to the study of Pham and Brabyn (2017) [18]. Because the default value was also widely used in
previous studies [56], we directly utilized this default setting.

2.5. AGB Estimation

Based on the mangrove species classification map at individual tree level and the obtained tree
heights and crown diameters from the UAV LiDAR data, we could divide the mangrove trees into
five strata for each species. The nature break method in ArcGIS (ESRI, Redlands, CA, USA) was used
for the stratification. Because we have measured 3832 trees and obtained their heights, crown cover,
and species, we first classified these trees into the above five strata for each species. Subsequently,
we summed the AGB and the crown cover area according to the six mangrove species and the five
tree height levels (Equation (1)). We divided the summed AGB by the corresponding summed area
to obtain an AGB density for each species at each height level. Finally, these stratum AGB density
values were applied to each individual tree and clump based on its species and height level to produce
a mangrove AGB map for this study area (case 1, Figure 2). The proposed AGB estimation method was
named individual tree-based inference method.

AGBS−h =

∑n
i AGBs−h

i∑n
i Areas−h

i

(1)

where AGBS−h denotes the AGB density of s species at h height level, AGBs−h
i and Areas−h

i respectively
denote the AGB and the area of the ith tree, which belongs to s species and h height level.

In this study, we also estimated the mangrove AGB using the common model-based method at
grid level (case 2, Figure 2), which was used as a benchmark in this study. To construct the inversion
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model, the random forest algorithm was employed due to the good performance of RF in biomass
prediction [18,46]. The size of the grid is 10 × 10 m, which is the same to the minimum size of field
plots. Prior to fitting model, we extract 52 LiDAR metrics for each field sample plot and each 10 × 10
m grid. We first linked the field estimated AGB with these LiDAR metrics and selected 11 optimal
metrics (presented in Table 3). Subsequently, we constructed a prediction model based on the 11 LiDAR
metrics. For the RF regression model, ntree was set to 1000 and mtry was set to the default value

√
mtry.

Finally, we applied this model to all grids and obtained the mangrove AGB map at grid level. This
benchmark method was named the grid-based random forest mode method.

Table 3. List of the selected light detection and ranging (LiDAR) metrics.

LiDAR Metrics Explanation

CC1.3 Canopy cover above 1.3 m.
HSD Standard deviation of heights.

D01 The number of canopy return points in the 1th slice relative to the total points. There
are 12 density metrics in this study from 0 to 24 m with an interval of 2 m

HVAR Variance of heights.
HIQ Interquartile distance of percentile height.
H05 The 5th percentile of height.
H10 The 10th percentile of height.
H80 The 80th percentile of height.
H90 The 90th percentile of height.
H95 The 95th percentile of height.

CTHK Canopy thickness.

2.6. Accuracy Assessment

2.6.1. Validation Mangrove Classification

The producer accuracy, user accuracy, and overall accuracy were employed to assess
mangrove species classification accuracy based on a confusion matrix using the 2040 independent
validation samples.

2.6.2. Validation Biomass Result

The accuracy of the biomass prediction was assessed using the coefficient of determination (R2),
and root mean square error (RMSE) between field estimated and predicted values.

For finer resolution AGB estimation, we used the 45-field estimated AGBs as reference data to
assess the predicted AGBs. For the grid AGB estimation, namely, the benchmark case, we employed
the 10-fold cross-validation method to validate the predicted AGBs. This cross-validation method is
also based on the 45-field estimated AGBs.

2.6.3. Individual Tree Detection

The actual position of the trees was determined by visual interpretation of the UAV LiDAR point
clouds. The average point spacing of the UAV LiDAR point clouds is 0.16 m. So, in most cases,
individual tree or clump could be identified by inspecting the point clouds from different angles [57–59].
When compare the visual interpretation trees and clumps with the machine segmentation trees and
clumps, we could obtain accuracy from spatial matching aspect. Because the visual analysis and
discrimination of individual tree and clump cannot avoid arbitrary and subjective issues. We also
compared the number of actual mangrove trees within a field plot with the number of machine
segmentation trees in the field plot. Therefore, the accuracy of individual tree detection was assessed
by above two aspects: spatial position and number.
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For the spatial position aspect, we overlaid the LiDAR point clouds and the segmentation layer to
identify errors. The position of each segmented tree was established as the location of the highest pixel
in the set of cloud points or pixels that make up the crown [58]. The matching procedure pairs the
closest observed tree location within a given radius for any segmented tree and then eliminates all
the non-minimal pairs with the same observed tree [58]. The search radius in this study was set to
2 m. The mismatch types included omission (OM) and commission (CM) cases. The two mismatch
cases were added up to compose the total number of mismatch (TNM, Equation (2)). Then, the total
accuracy rate of segmentation (TAR) could be obtained by a ratio of the number of right segmented
trees to the total number of segmented trees (TNS, Equation (3)) [58,60].

TNM = OM + CM (2)

TAR = (TNS − TNM)/TNS × 100 (3)

where, TNM denotes the total number of mismatches, TAR denotes the total accuracy rate of tree
segmentation, TNS denotes the total number of segmented trees, OM denotes omission cases, and CM
denotes commission cases.

For the number aspect, the number of trees (Ni) surveyed in a field plot was used as observed
value. The number of individual trees (ni) derived from the individual tree segmentation in the same
field sample plot was used as predicted value. Then, the ratio of the difference between the two values
was used to evaluate the number accuracy. The calculation formula is as follows:

Di = (ni − Ni)/Ni (4)

DA = (
∑

M|Di|≤0.4/N) × 100 (5)

where Di is deviation degree, DA is the accuracy of the summary metric, M is the number of plots that
have different segmentation results, and N is the total number of plots. Di > 0 denotes over-segmentation
and Di < 0 denotes under-segmentation. When |Di| > 0.4, the deviation of segmentation is large
and the accuracy is poor. When 0.3 < |Di| ≤ 0.4, the accuracy of segmentation is acceptable. When
0.2 < |Di| ≤ 0.3, the accuracy of segmentation is moderate. When 0.1 < |Di| ≤ 0.2, the segmentation
accuracy is good. When |Di| ≤ 0.1, the segmentation accuracy is very good and individual tree can be
accurately identified.

3. Results

3.1. Individual Mangrove Tree Extraction

The mismatching statistic of visual interpretation and segmentation results showed that the total
accurate rate of segmentation position in 45 sample plots was 87.43% (Table 4).

Table 4. Accuracy assessment of individual tree segmentation in spatial position aspect. TA denotes
the total accuracy of individual segmentation.

Number of Mismatches Number of Segmentations TA
Type Commission Omission Sum

Number 221 47 268
2132 87.43%Ratio (%) 10.37 2.2 12.57

Table 5 shows the accuracy of the number of individual tree segmentation. The accuracy of all
tree species except A. corniculatum tree was 57.78% and that of all tree species was 51.11% (Table 5).
Because A. corniculatum trees in the study area were small, appearing as lower wood and clustering,
this was not conducive to the segmentation of individual tree based on crown.
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Table 5. Accuracy assessment of individual tree segmentation in number aspect. OS: over-segmentation,
US: under-segmentation.

Scenario Item |Di| ≤ 0.1 0.1 < |Di| ≤ 0.2 0.2 < |Di| ≤ 0.3 0.3 < |Di| ≤ 0.4 |Di| > 0.4 Total DA

All species except
A. corniculatum

No. plots 5 7 5 9 19 45
Percentage (%) 11.11 15.56 11.11 20.00 42.22 100.00 57.78
No. OS plots 1 1 0 0 4 6
No. US plots 4 6 5 9 15 39

All species

No. plots 4 7 4 8 22 45
Percentage (%) 8.89 15.56 8.89 17.78 48.89 100.00 51.11
No. OS plots 1 1 0 0 3 5
No. US plots 3 6 4 8 19 40

There were 5 or 6 cases with over-segmentation and deviations greater than 0.4 among 45 samples,
of which more than 75% had an average DBH value larger than 20 cm. The number of samples with
under-segmentation and deviations greater than 0.4 in 45 samples was 15–19, and in about 80% of
these samples, the average DBH value was less than 10 cm. This means that when DBH < 10 cm, the
individual tree segmentation was more likely to have under-segmentation and a large deviation value.

3.2. Finer Resolution Mangrove Classification

Table 6 shows the classification accuracy of mangrove species at individual tree level. Table 7
describes the characteristics of tree patches in different mangrove species in the whole study area.
Figure 4 presents the thematic map of the mangrove species.

Table 6. Accuracy of mangrove species classification at individual tree level.

Predicted Producer Accuracy (%) User Accuracy (%)
BS EA HT LR RA SS Sum

O
bs

er
ve

d

BS 470 14 1 3 18 4 510 92.16 82.89
EA 37 158 15 3 13 0 226 69.91 74.53
HT 6 26 219 2 4 5 262 83.59 90.12
LR 3 7 1 321 11 11 354 90.68 93.31
RA 51 7 6 10 165 10 249 66.27 74.66
SS 0 0 1 5 10 423 439 96.36 93.38

Sum 567 212 243 344 221 453 2040 Overall accuracy = 86.08%

BS: B. sexangula; EA: E. agallocha; HT: H. tiliaceus; LR: L. racemosa; RA: R. apiculata; SS: Sonneratia spp.

Table 7. Characteristics of tree patch in different mangrove species in the whole study area.

Species Mean Tree
Height (m) Patch Number Mean Area of

Patches (m2) Total Area (ha) Percentage of
Total Area (%)

BS 8.00 117,413 6.26 73.53 35.01
EA 5.03 76,348 5.21 39.81 18.96
SS 7.84 42,738 6.03 25.78 12.28
RA 6.90 41,450 6.24 25.88 12.32
HT 5.85 40,334 6.19 24.95 11.88
LR 3.78 50,467 3.97 20.05 9.55

Sum 6.43 368,750 5.69 209.99 100.00
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The overall classification accuracy was 86.08% with the kappa coefficient of 0.83. The majority of
mangrove species could be well discriminated with the producer and user accuracies higher than 80%,
except for E. agallocha and R. apiculata. The accuracies of the two species ranged from 66.27% to 74.66%.

Table 7 portrays that B. sexangula and Sonneratia spp. were the two highest mangrove species
(mean height 8.00 and 7.84 m, respectively) in the study area followed by R. apiculata (mean height
6.90 m). The lowest tree species is L. racemosa. Table 7 also indicates that B. sexangula and E. agallocha
covered 35.01% and 18.96% of the study area, respectively, ranking first and second. The other four
species each covered approximately 10% of the study area.

3.3. AGB Estimates and Prediction

The resultant AGB density values for each species at five height levels were presented at Table 8.
By applying these AGB density values to individual tree and clump, which have the species and
height attributes derived from the UAV LiDAR and WorldView-2 data, the AGB of each patch and
the mangrove AGB map of the study area at individual tree level could be obtained. The RF model
based on 10 × 10 m grids and LiDAR metrics was used as benchmark and to predict the AGB. Figure 5
delineates the field estimated AGBs versus the predicted AGBs with the accuracy metrics.
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Table 8. AGB density of different mangrove species in five height levels (Height: m; AGB: Mg ha−1).
The division of five height levels for each species is based on all this type of trees using the nature
break method.

Level 1 Level 2 Level 3 Level 4 Level 5

BS
Height <5.54 5.54–7.48 7.48–8.91 8.91–10.94 10.94–19.21
AGB 27.03 77.99 112.32 261.87 363.65

EA
Height <3.61 3.61–4.77 4.77–5.89 5.89–7.51 7.51–15.77
AGB 16.62 36.53 45.25 58.53 71.04

HT
Height <4.77 4.77–6.34 6.34–8.17 8.17–10.82 10.82–19.53
AGB 30.93 48.92 78.49 95.27 174.47

LR
Height <3.25 3.25–4.33 4.33–5.25 5.25–6.07 6.07–8.81
AGB 13.19 16.76 23.27 30.58 38.08

RA
Height <5.64 5.64–7.46 7.44–9.46 9.46–12.15 12.15–20.20
AGB 61.47 110.60 191.81 245.74 270.73

SS
Height <5.92 5.92–8.85 8.85–11.33 11.33–14.20 14.20–21.85
AGB 50.14 145.83 465.34 654.25 747.58
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individual tree-based inference method. (b): Case 2, grid-based RF model method.

The R2 of the individual tree-based inference method is 0.49 with an RMSE of 48.42 Mg ha−1.
While, the benchmark, the grid-based RF model method, produced a higher R2 of 0.67 and a lower
RMSE of 38.95 Mg ha−1. Compared with field-estimated AGB, the maximum deviation value of AGB
derived from the individual tree-based inference method was 194.01 Mg·ha−1, and the minimum
deviation was 1.93 Mg·ha−1. The AGB density of the whole study area calculated from the individual
tree-based inference method was 119.34 Mg·ha−1, which was lower than the AGB density produced
from the grid-based RF model method (148.97 Mg·ha−1). The results show that it is feasible to use
the proposed individual tree-based inference method for mangrove AGB estimation in this relatively
complex mangrove forest.

3.4. Spatial Distribution of Mangrove AGB

The comparison of the resultant AGB maps derived from the individual tree-based inference
method and the grid-based RF model method are presented in Figure 6. According to above accuracy
assessment of the two methods, the spatial distribution of the mangrove AGB in the whole study
area can be better represented by the grid-based RF model method based on LiDAR metrics than the
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individual tree-based inference method. While, the AGB map derived from the latter method was able
to portray the AGB distribution at individual tree level for each mangrove species.
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The two mangrove AGB maps both show that the mangrove AGB hot spots lie in the southwest
and middle of the study area, while the AGB cold spots lie in the southeast and north of the study area
(Figure 6). There are also several conspicuous differences between these two maps. First, the low and
middle AGB areas of the left map is overall lower than the low and middle AGB areas of the right map
with one level difference. Second, the very high AGB areas (>300 Mg ha−1) are more obvious in the left
map and cover larger area than those in the right map. Third, the AGB values in the left map are more
heterogeneous than the AGB values in the right map.

Figure 7 portrays the AGB maps of different mangrove species, which were produced by the
individual tree-based inference method. The AGB of B. sexangula showed obvious concentrated
distribution characteristics in space with a range of 112.32 to 363.65 Mg ha−1. E. agallocha spread out
the study area with middle AGB (36.53–58.53 Mg ha−1) accounting for the largest percentage. The
AGB of L. racemosa was no more than 40 Mg ha−1 due to its small individuals and represented disperse
distribution. Sonneratia spp. had the largest AGB value in the study area, which was mainly distributed
in fringe areas to water.
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4. Discussion

4.1. Effect of Mangrove DBH on Individual Tree Segmentation

To explore the relationship between the precision of individual-tree segmentation and the size of
the mangroves, the measured DBHs in 45 samples were graded in two-centimeter intervals, and the
maximum, minimum, and average DBH values in each sample were determined. Then, the Pearson
correlation analysis between the DBH classification and deviation of individual-tree segmentation was
completed (Table A1, Appendix A).

The relationship between the DBH and the deviation was as follows: (1) The relationship between
DBH and the deviation degree of individual-tree segmentation is relatively complex. Taking 14 cm as
the boundary, when DBH < 14 cm, the deviation degree was negatively correlated with DBH, i.e., the
deviation degree increased with the decrease in DBH. When DBH >14 cm, the deviation degree was
positively correlated with DBH, and the deviation increased with the increase in DBH. This indicates
that the accuracy of individual-tree segmentation decreased with the increase in DBH. When DBH < 8
cm, it was significantly negatively correlated with the DBH and the deviation, and when DBH > 30 cm,
the correlation coefficient reached the maximum (0.799), it means that the accuracy of individual-tree
segmentation decreased considerably. The variation of the correlation coefficient also shows that
the accuracy of the segmentation number was relatively ideal within 8 cm ≤ DBH ≤ 30 cm. (2) The
deviation degree has a moderate positive correlation with the maximum DBH and average DBH, but
has little correlation with the minimum DBH. This means that the maximum and average DBHs are
more likely to affect the accuracy of individual-tree segmentation.



Forests 2019, 10, 871 15 of 21

4.2. Comparison of the Individual Tree-Based Inference Method and the Grid-Based RF Model Method

Concerning to AGB estimation accuracy, the grid-based RF model method was relatively higher
than the individual tree-based inference method. This may be due to the fact that the former had
taken fully into account and selected a large number of vegetation indicators reflecting mangrove
biomass information.

In terms of mangrove AGB mapping, the grid-based RF model method can be well compared
with the field AGB due to the same size of resample grids and field plots. However, whether this grid
size is a more accurate AGB mapping method requires more tests and comparison of different sizes of
resample grid. The individual tree-based inference method can well reflect the spatial distribution
of AGB at different heights for mangrove species, and it is also more beneficial to managers to find
problems. From the workflow of this study (Case 1, Figure 2) and the method Section 2.5, we could find
that the proposed inference method is simple and it is easy to repeat this method in other mangrove
forests or fields.

The results of the detailed comparison between the two AGB estimation methods are shown
in Table 9. Although the individual tree-based inference method is considered to provide finer
individual-tree information, but the current CHM-based individual tree segmentation still has
insurmountable defects. For example, many lower and smaller trees are obscured by the upper
tree crown and cannot be effectively identified. In addition, clump mangrove species, such as L.
racemosa, cannot be well distinguished, too. These limitations inevitably reduce the accuracy of the
individual-tree segmentation and then pull down the overall estimation accuracy of the AGB.

Table 9. Comparison of the individual tree-based inference method and the grid-based RF
model method.

Individual Tree-Based Inference Method Grid-Based RF Model Method

M
er

it
s

(1) The AGB is extrapolated on the basis of species,
height stratification. The precise tree height can be
obtained from LiDAR point cloud data.
(2) Finer estimation and mapping of biomass can be
conducted on the tree scale, which is more conducive to
accurate and differentiated management.
(3) Producing large amount of data and detail expression,
so it is suitable for application in management or
management decision-making in small or specific areas.

(1) Using the RF selection of LiDAR indexes, the
relationship of AGB = f (LiDAR indexes) is
constructed, and the equal area extrapolation of
sample-plot AGB is conducted.
(2) The method is relatively mature, and it is the
popular method for AGB estimation and
mapping at present.
(3) The amount of data produced is moderate, the
operation speed is fast, and it is suitable for
application in government decision-making at
the regional level.

D
em

er
it

s

(1) The extrapolation of AGB lacks a strictly
mathematical model. And using tree height stratification
to extrapolate AGB, it implies a premise that there is an
internal relationship between tree height and AGB, but
how this relationship is still not clear.
(2) Owing to the survival competition of cluster
mangroves, the individuals may tend to have taller tree
height, but not necessarily have larger DBH. The AGB
estimated by species-specific allometric models based on
DBH is also not necessarily suitable for the AGB
estimation based on height stratification.
(3) Because the individual tree segmentation is mainly
based on the CHM layer, the AGB of the lower wood
layer under the CHM layer may be ignored.

(1) The AGB extrapolation method is affected by
the distribution details of gaps or non-trees in
sample plots.
(2) AGB estimation based on LiDAR indices focus
on the external structural characteristics of plants,
such as tree height, and crown width, while
neglecting the inherent characteristics of plants,
such as wood density, which affects the accuracy
of AGB estimation.
(3) This extrapolation is not conducive to the fine
expression of AGB at the mangrove plant type
and individual tree level.

C
om

m
on

gr
ou

nd

The initial AGB values for extrapolation depend on the estimation of species-specific allometric models in the
field survey.
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4.3. AGB Comparison with Mangroves in Other Areas

The mangroves in the study area had an AGB value of 82.088–209.520 Mg·ha−1. Compared with
the mangrove AGB in other parts of the world, the AGB of B. sexangular-dominated forest is 204.933
Mg·ha−1, lower than the value of 279.00 Mg·ha−1 in Indonesia [61]. The AGB of E. agallocha-dominated
forest is 82.088 Mg·ha−1, higher than the value of 14.93 Mg·ha−1 for pure E. agallocha forest in India
(Central Sundarbans) [62]. The AGB of Sonneratia spp.-dominated forest is 277.201 Mg·ha−1, higher
than the value of 169.61 Mg·ha−1 in India (Western Sundarbans) [62], the value of 22.30 Mg·ha−1 in
China (Guangdong, Futian) [63] and the value of 189.37 Mg·ha−1 in China (Guangdong, Leizhou) [64],
but lower than the value of 281.20 Mg·ha−1 in Thailand (Southern Ranong) [65]. The AGB of R.
apiculata-dominated forest is 209.52 Mg·ha−1, much lower than those of both pure and mixed forests
found in tropical regions (214.00 Mg·ha−1 in India (Andaman Island) [66], 216.00 Mg·ha−1 in Thailand
(Chumphon Sawi Bay) [67], 298.50 Mg·ha−1 in Thailand (Ranong Southern) [65], 295.50–350.30 Mg·ha−1

in Vietnam (Mekong delta) [68], 460.00 Mg·ha−1 in Malaysia (Matang) [69], and 356.80 Mg·ha−1 in
Indonesia (Halmahera) [70]).

Overall, the AGB of this study essentially aligns with the latitude law of AGB distribution in
mangroves, i.e., AGB increases with the decrease in latitude.

5. Conclusions

In this study, we combined the advantages of WorldView-2, UAV LiDAR, and field survey data
and proposed a novel method to estimate mangrove AGB at individual tree scale, i.e., individual
tree-based inference method, and compared it with the benchmark grid-based RF model method.
Although the AGB estimation accuracy of this new method is less than that of the grid-based RF
inversion method (R2 of 0.49 vs. 0.67 and RMSE of 48.42 Mg ha−1 vs. 38.95 Mg ha−1), the individual
tree-based inference method still has some merits. The individual tree-based inference method can
show the spatial distribution details of mangrove AGB in different mangrove species, which is more
beneficial to the fine management of mangroves. Considering that the mangrove forest in the study
area is complex, the results of the newly proposed method are relatively satisfying.

There are many uncertainties in mangrove AGB estimation due to sampling type, spatial resolution
of remote sensing data, local topography, biophysical conditions, forest structure, wood density, tree
species, size of trees, selection of allometric models, and technical factors related to data processing.
Traditional field surveys are still the most important base for establishing a reliable relationship
between biomass and remote sensing variables. With the support of a variety of remote sensing data,
more targeted field survey methods, such as tree species, habitat, forest age and wood density, will be
further tried.
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Appendix A

Table A1. Pearson correlation analysis of diameter at breast height (DBH) classification and deviation of individual-tree segmentation measured in
two-centimeter intervals.

DBH1 DBH2 DBH3 DBH4 DBH5 DBH6 DBH7 DBH8 DBH9 DBH10 DBH11 DBH12 DBH13 DBH14 DBH15 DBH16 DBH17 DBH18 DBH19 DBH20 DBH21 Max. Min. Mean

DBH1 1
DBH2 0.094 1
DBH3 0.078 0.173 1
DBH4 0.157 −0.244 0.258 1
DBH5 −0.002 −.202 0.258 0.834 ** 1
DBH6 0.243 −0.213 0.146 0.804 ** 0.814 ** 1
DBH7 0.292 −0.374 * −0.154 0.611 ** 0.541 ** 0.676 ** 1
DBH8 0.084 −0.276 −0.275 0.262 0.226 0.469 ** 0.604 ** 1
DBH9 0.086 −0.248 −0.208 0.323 * 0.304 * 0.523 ** 0.576 ** 0.535 ** 1
DBH10 −0.044 −0.064 −0.306 * −0.045 0.072 0.152 0.338 * 0.568 ** 0.489 ** 1
DBH11 −0.034 −0.097 −0.124 0.197 0.289 0.400 ** 0.475 ** 0.315 * 0.608 ** 0.347 * 1
DBH12 −0.056 0.084 −0.284 −0.145 −0.085 0.074 0.124 0.241 0.509 ** 0.508 ** 0.617 ** 1
DBH13 −0.074 −0.164 −0.268 −0.266 −0.131 −0.158 0.003 0.117 0.184 0.147 0.295 * 0.141 1
DBH14 0.087 −0.016 −0.249 −0.265 −0.154 −0.083 −0.052 0.328 * 0.381 ** 0.442 ** 0.275 0.390 ** 0.624 ** 1
DBH15 −0.094 0.075 −0.211 −0.085 −0.049 −0.023 0.008 −0.037 0.217 0.088 0.485 ** 0.531 ** 0.609 ** 0.345 * 1
DBH16 −0.081 −0.147 −0.197 −0.229 −0.115 −0.149 −0.020 −0.026 0.019 −0.043 0.286 0.146 0.835 ** 0.393 ** 0.659 ** 1
DBH17 0.087 −0.045 −0.053 −0.142 −0.028 0.018 −0.004 −0.036 0.036 −0.040 0.334 * 0.106 0.823 ** 0.347 * 0.623 ** 0.831 ** 1
DBH18 0.008 −0.098 −0.188 −0.147 −0.060 0.026 0.039 0.181 0.551 ** 0.234 0.405 ** 0.357 * 0.687 ** 0.791 ** 0.402 ** 0.376 * 0.464 ** 1
DBH19 −0.056 −0.105 −0.119 −0.081 −0.040 −0.008 0.056 0.221 0.294 * 0.109 0.200 0.145 0.499 ** 0.543 ** 0.096 0.139 0.218 0.764 ** 1
DBH20 −0.066 −0.103 −0.058 −0.058 0.042 0.062 0.059 0.102 −0.031 0.079 0.298 * −0.016 0.170 0.117 0.056 0.408 ** 0.159 −0.058 −0.044 1
DBH21 −0.039 −0.079 −0.097 −0.134 −0.066 −0.031 −0.017 0.102 0.383 ** 0.132 0.269 0.201 0.522 ** 0.628 ** 0.133 0.176 0.262 0.866 ** 0.892 ** −0.033 1
Max. 0.126 −0.294 −0.320 * 0.130 0.207 0.393 ** 0.465 ** 0.574 ** 0.528 ** 0.462 ** 0.622 ** 0.519 ** 0.518 ** 0.532 ** 0.469 ** 0.463 ** 0.422 ** 0.467 ** 0.382 ** 0.379 * 0.307 * 1
Min. −0.306 * −0.120 −0.162 0.031 −0.001 −0.090 0.140 −0.012 −0.155 −0.076 0.006 −0.110 0.001 −0.241 0.156 0.092 −0.031 −0.251 −0.215 0.038 −0.265 −0.159 1
Mean −0.005 −0.250 −0.518 ** −0.151 −0.037 0.040 0.260 0.372 * 0.412 ** 0.488 ** 0.487 ** 0.565 ** 0.692 ** 0.628 ** 0.660 ** 0.634 ** 0.483 ** 0.493 ** 0.296 * 0.306 * 0.309 * 0.791 ** 0.142 1
DA −0.211 −0.356 * −0.388 ** −0.116 −0.024 −0.002 0.302 * 0.309 * 0.371 * 0.289 0.360 * 0.226 0.799 ** 0.394 ** 0.569 ** 0.637 ** 0.603 ** 0.522 ** 0.395 ** 0.054 0.391 ** 0.556 ** 0.086 0.695 **

DBH1, DBH2, DBH20, DBH21 denote DBH < 4 cm, 4 ≤ DBH < 6cm, 40 ≤ DBH < 42 cm, DBH ≥ 42 cm, respectively; Max. means maximum DBH, Min. means minimum DBH; * Significant
at 5%; ** Significant at 1%.
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