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Abstract: Our purpose of this paper is to solve a class of stochastic linear complementarity problems
(SLCP) with finitely many elements. Based on a new stochastic linear complementarity problem
function, a new semi-smooth least squares reformulation of the stochastic linear complementarity
problem is introduced. For solving the semi-smooth least squares reformulation, we propose a
feasible nonsmooth Levenberg–Marquardt-type method. The global convergence properties of the
nonsmooth Levenberg–Marquardt-type method are also presented. Finally, the related numerical
results illustrate that the proposed method is efficient for the related refinery production problem
and the large-scale stochastic linear complementarity problems.
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1. Introduction

Suppose (Ω, F, P) is a probability space with Ω ⊆ <n and P is a known probability distribution.
A stochastic linear complementarity problem takes the form:

x ≥ 0, M(ω)x + q(ω) ≥ 0, xT [M(ω)x + q(ω)] = 0 a.e. ω ∈ Ω, (1)

where Ω ⊆ <n is the underlying sample space, for given probability distribution P and ∀ ω ∈ Ω,
M(ω) ∈ <n×n and q(ω) ∈ <n. (1) is denoted as SLCP (M(·), q(·)) or SLCP; see [1–4]. If Ω has only
one element, (1) is the standard linear complementarity problem (LCP), which has been studied in [5,6].

Generally, there is no x satisfying (1) for all ω ∈ Ω. In order to obtain a reasonable solution of
Problem (1), several types of models have been proposed (one can see [1–4,7–14]). One of them is the
expected value (EV) method (see [1]). The EV model is to find a vector x ∈ <n, such that:

0 ≤ x ⊥ M̄x + q̄ ≥ 0, (2)

where M̄ = E[M(ω)], q̄ = E[q(ω)], and E[.] is the mathematical expectation. Another is the expected
residual minimization (ERM) method (see [2]). The ERM model is to find a vector x ∈ <n

+ that
minimizes the expected residual function:

min
x≥0

n

∑
i=1

E[ϕ(xi, Mi(ω)x + qi(ω))]2,
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where Mi(ω)(i = 1, · · · , n) is the i-th line of random matrix M(ω) and ϕ satisfies:

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

In addition to [1,2], Luo and Lin first considered a quasi-Monte Carlo method in [8,9]; they proved
that the ERM method is convergent under mild conditions and studied the properties of the ERM
problems. In [10], Chen, Zhang and Fukushima considered SLCP including the expectation of matrix
is positive semi-definite. Under the condition of a new error bound, they use the ERM formulation
to solve the SLCP. In [11], they also studied the ERM formulation, where the involved function is a
stochastic R0 function. In [12], Zhou and Caccetta put forward a new model of the stochastic linear
complementarity problem with only finitely many elements. A feasible semi-smooth Newton method
was also given. In [14], Ma also considered a feasible semi-smooth Gauss–Newton method for solving
this new stochastic linear complementarity problem. The stochastic linear complementarity problem
with only finitely many elements is to find a vector x ∈ <n, such that:

x ≥ 0, M(ωi)x + q(ωi) ≥ 0, xT [M(ωi)x + q(ωi)] = 0 i = 1, · · · , m, m > 1, (3)

where Ω = {ω1, ω2, · · · , ωm}. Denote:

M̄ =
m

∑
i=1

pi M(ωi), q̄ =
m

∑
i=1

piq(ωi),

where pi = P(ωi ∈ Ω) > 0, i = 1, · · · , m. Then, (3) is equivalent to:

x ≥ 0, M̄x + q̄ ≥ 0, xT(M̄x + q̄) = 0, (4)

M(ωi)x + q(ωi) ≥ 0, i = 1, · · · , m. (5)

where (4) is called the linear complementarity problem.

As we all know, in [15–29], many methods were given for solving the nonlinear complementarity
problem (NCP) and linear complementarity problem (LCP), such as Kanzow and Petra, who presented
a nonsmooth least squares reformulation of (4) in [15]. They defined Φ : <n → <2n as:

Φ(x) =

 λφFB(xi, M̄ix + q̄i), i = 1 · · · n
...

(1− λ)φ+(xi, M̄ix + q̄i), i = 1 · · · n

 ,

where λ ∈ (0, 1), φFB(a, b) = ‖(a, b)‖2− (a+ b), φ+(a, b) = a+b+, z+ = max{0, z} for z ∈ <. This least
squares formulation can gave a faster reduction of the complementarity gap xT(M̄x + q̄).

On the other hand, the authors of [16,18,19] studied the generalized Fischer–Burmeister function,
i.e., φp : <n → < given by φp(a, b) = ‖(a, b)‖p − (a + b) (p ∈ (1,+∞)). Additionally, their research
work has shown that this class of functions enjoys some favorable properties as other NCP-functions.
The given numerical results for the test problems from mixed complementarity problem library
(MCPLIB) have shown that the descent method has better performance when p decreases in (1,+∞).

The main motivation of this paper is to use the advantages of [12,15,16,18,19] to solve the stochastic
linear complementary problem denoted as (3). Firstly, we put forward a new robust reformulation
of the complementarity Problem (3). Then, based on the new robust reformulation, we propose a
feasible nonsmooth Levenberg–Marquardt-type method to solve (3). The numerical results in Section 4
showed that the given Method 1 is efficient for the related refinery production problem and the
large-scale stochastic linear complementarity problems. We also make a comparison with Method
1 and the scaled trust region method (STRM) in [20]; preliminary numerical experiments showed
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that the numerical results of Method 1 are as good as the numerical results of the STRM method.
Additionally, it generates less iterations in contrast to the STRM method. Additionally, we also make a
comparison with Method 1 and the method in [13] for solving the related refinery production problem.
The preliminary numerical experiments also indicate that Method 1 is quite robust. In other words,
Method 1 has the following advantages.

• Faster reduction of the complementarity gap xT(M̄x + q̄).
• Flexible NCP functions φp.
• Randomly-chosen initial points and less calculation.

Now is the time to give a new reformulation of (4); the new reformulation of (4) is:

φn(x) =

 λφp(xi, M̄ix + q̄i), i = 1 · · · n
...

(1− λ)φ+(xi, M̄ix + q̄i), i = 1 · · · n

 , (6)

where φn : <n → <2n, λ ∈ (0, 1). Then, x is a solution of (4)⇐⇒ φn(x) = 0. Additionally, solving (4)
is also equivalent to finding a solution of the unconstrained optimization problem:

min
x∈<n

Ψ(x), (7)

where:
Ψ(x) =

1
2
‖φn(x)‖2. (8)

Then, (4) and (5) can be rewritten as:

F(x, y) = 0, y ≥ 0, (9)

where:

F(x, y) =


φn(x)

M(ω1)x + q(ω1)− y1

M(ω2)x + q(ω2)− y2
...

M(ωm)x + q(ωm)− ym

 .

Additionally, y = [yT
1 , yT

2 , ..., yT
m]

T ∈ <mn is a slack variable with yi ∈ <n, i = 1, 2, ..., m. Then, we
know that F(x, y) = 0 has (m + 2)n equations with (m + 1)n variables.

The remainder of this paper is organized as follows. In Section 2, we review some background
definitions and some useful properties. In Section 3, we define a merit function θ(z) = 1

2‖F(z)‖2 and
give a feasible nonsmooth Levenberg–Marquardt-type method. Some discussions about this method
are also given. In Section 4, the numerical results indicate that the given method is efficient for solving
stochastic linear complementarity problems, such as the related refinery production problem and the
large-scale stochastic linear complementarity problems.

2. Preliminaries

In this section, we give some related definitions and some properties; some of them can be found
in [6,14,15,19–23]; some of them are given for the first time.

Let G : <m −→ <n be a locally-Lipschitzian function. The B-subdifferential of G at x is:

∂BG(x) = {V ∈ <m×n|∃{xk} ⊆ DG : {xk} → x, G′(xk)→ V},

where DG is the differentiable points set and G′(x) is the Jacobian of G at a point x ∈ <n.
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The Clarke generalized Jacobian of G is defined as:

∂G(x) = conv{V ∈ <m×n|∃{xk} ⊆ DG : {xk} → x, G′(xk)→ V}.

Furthermore,
∂CG(x)T = ∂G1(x)× · · · × ∂Gm(x)

denotes the C-subdifferential of G at x.
If

lim
V∈∂G(x+th′),h′→h,t→0+

Vh′

exists for any h ∈ <m, we call G is semi-smooth at x.

Definition 1. ([6]) Matrix M ∈ <n×n is called a:

(a) P0-matrix, if each of its principal minors is nonnegative.
(b) P-matrix, if each of its principal minors is positive.

Definition 2. ([23]) Let G : <n −→ <n; the following statements are given:

(a) We call G monotone, if (x− y)T(G(x)− G(y)) ≥ 0, for x, y ∈ <n.
(b) G is a P0 function, if:

max
1≤i≤n

(xi − yi)(Gi(x)− Gi(y)) ≥ 0

for all x, y ∈ <n, x 6= y and xi 6= yi.

Proposition 1. ([6]) M ∈ <n×n is a P0-matrix⇐⇒ ∀x 6= 0, xi(Mx)i ≥ 0, xi 6= 0.

Proposition 2. ([21]) Suppose G is a locally-Lipschitzian function and strongly semi-smooth at x. Additionally,
it is also directionally differentiable in a neighborhood of x; we get:

lim
h→0,H∈∂G(x+h)

‖G(x + h)− G(x)− Hh‖
‖h‖2 < ∞.

Definition 3. We call x∗ an R-regular solution of the complementarity problem x ≥ 0, G(x) ≥ 0, xTG(x) = 0,
if G′(x∗)αα is nonsingular and G′(x∗)ββ − G′(x∗)βαG′(x∗)−1

αα G′(x∗)αβ is a P-matrix, where α = {i|x∗i >

0, Gi(x∗) = 0}, β = {i|x∗i = 0, Gi(x∗) = 0}, γ = {i|x∗i = 0, Gi(x∗) > 0}.

Proposition 3. ([15]) The generalized gradient of φP at a point (a, b) is defined as:

∂φ(a, b) = (ga, gb) =

 ( sgn(a)|a|p−1

‖(a,b)‖p−1
p
− 1, sgn(b)|b|p−1

‖(a,b)‖p−1
p
− 1), (a, b) 6= (0, 0)

(ε− 1, ζ − 1), (a, b) = (0, 0)
,

where ‖(ε, ζ)‖P ≤ 1. The generalized gradient of φ+ at a point (a, b) is defined as ∂φ+(a, b) =

{(b+∂a+, a+∂b+)}, where:

∂Z+ =

{
1, Z > 0
0, Z < 0

,

∂Z+ = [0, 1], if Z = 0.

Definition 4. When x∗ > 0, M̄x∗ + q̄ > 0, then (4) is called strictly feasible at x∗.
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Proposition 4. ([15]) All H ∈ ∂Cφ(x) can be defined as:(
λH1

(1− λ)H2

)
,

where H1 ⊆ diag{ai(x)} + diag{bi(x)}M̄, H2 ⊆ diag{ãi(x)} + diag{b̃i(x)}M̄, (ai(x), bi(x)) ∈
∂φP(xi, (M̄x + q̄)i), (ãi(x), b̃i(x)) ∈ ∂φ+(xi, (M̄x + q̄)i), ∂φP(xi, (M̄x + q̄)i) and ∂φ+(xi, (M̄x + q̄)i)

are given in Proposition 3.

Proposition 5. ([15]) Suppose that (4) is R-regular at x∗, then, all elements of ∂Cφ(x∗) have full rank.

For any (x, y) ∈ <(m+1)n, we know that:

∂CF(x, y) =




Vφn 0 0 · · · 0
M(ω1) − I 0 · · · 0

M(ω2) 0 − I · · · 0
...

M(ωm) 0 0 · · · − I

 : Vφn ∈ ∂Cφn(x)


,

where I is the n× n identity matrix. Hence, by Proposition 5, we know that the following proposition
is set up.

Proposition 6. Suppose (4) is R-regular at x∗ and (x∗, y∗) is a solution of (9). Then, all V ∈ ∂CF(x∗, y∗)
are nonsingular.

Proposition 7. If (4) is R-regular at a solution x∗, then, there exits α > 0, β > 0, such that ‖(HT H)−1‖ ≤ β

for all x∗ ∈ <n with ‖x− x∗‖ ≤ α, where H ∈ ∂Cφ(x).

Proof of Proposition 7. The proof is similar to the ([15], Lemma 2.5) and therefore omitted here.

In the following part of this paper, we rewrite Ψ as:

Ψ(x) =
1
2
‖φn(x)‖2 =

n

∑
i=1

ψ(xi, (M̄x + q̄)i),

where ψ : <2 → < is defined as:

ψ(a, b) =
1
2

λ2φ2
P(a, b) +

1
2
(1− λ)2a2

+b2
+.

Proposition 8. The function Ψ : <n → < defined in (8) satisfies:

(a) ∇Ψ(x) = VTφn(x), for any V ∈ ∂Cφn(x).
(b) If ∇Ψ(x∗) = 0 and M̄ is a P0 matrix, we know that x∗ is a solution of (4).
(c) If (4) is strictly feasible and x 7−→ M̄x + q̄ is monotone, then L(c) = {x ∈ <n|Ψ(x) ≤ c} are compact

for all c ∈ <.

Proof of Proposition 8. The proof is similar to the one of ([15], Theorem 2.7), so we skip the
details here.

3. The Feasible Nonsmooth Levenberg–Marquardt-Type Method and Its Convergence Analysis

In this section, we define a merit function θ(z) = 1
2‖F(z)‖2 and give a feasible nonsmooth

Levenberg–Marquardt-type method. At the same time, we also give some discussions about
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this method.

Let z = (x, y) ∈ <(m+1)n; define a merit function of (9) by:

θ(z) =
1
2
‖F(z)‖2.

If (3) has a solution, then solving (9) is equivalent to finding a global solution of the following
constrained optimization problem:

min θ(z)

s.t. z ≥ 0. (10)

If z satisfies:
PZ[z−∇θ(z)]− z = 0, (11)

where PZ(·) is an orthogonal projection operator onto Z = {z ∈ <(m+1)n|z ≥ 0}, then z is a stationary
point of (10). Obviously, (11) is equivalent to the following problem:

∇θ(z) ≥ 0, z ≥ 0, zT∇θ(z) = 0. (12)

Lemma 1. ([14]) Let PZ(·) be an orthogonal projection operator onto Z = {z ∈ <(m+1)n|z ≥ 0}. The following
statements hold:

(a) ‖PZ(x)− PZ(y)‖ ≤ ‖x− y‖ for all x, y ∈ <(m+1)n.
(b) For any y ∈ Z, (PZ(x)− x)T(PZ(x)− y) ≤ 0 for all x ∈ <(m+1)n.

Proposition 9. ([15]) The merit function θ has the following properties.

(a) θ(z) is continuously differentiable on <(m+1)n with ∇θ(z) = HT F(z) for any H ∈ ∂CF(z).
(b) Assume x 7−→ M̄x + q̄ is monotone, if LCP(M̄, q̄) has a strictly feasible solution, then for all c > 0,

we know that the level set:
L(c) = {z ∈ <(m+1)n|θ(z) ≤ c}

is bounded.

For some monotone stochastic linear complementarity problems, the stationary points of (10) may
not be a solution. Such as let n = 1, m = 2, Ω = {ω1, ω2} = {0, 1}, M(ω1) = M(ω2) = 1, q(ω1) = 1,
q(ω2) = −1, and pi = P{ωi ∈ Ω} = 0.5, i = 1, 2, (see [12] ).

By simple computation, we know that the above of problem is a monotone SLCP, obviously; all
points x ≥ 1 are feasible, but this example has no solution. By:

F(x, y1, y2) =


λ(2xp)

1
p − 2|x|

(1− λ)(x+)2

x + 1− y1

x− 1− y2

 ,

and (0, 1, 0) is a stationary point of the constraint optimization problem:

min
1
2
‖F(x, y1, y2)‖2

s.t. x ≥ 0, y1 ≥ 0, y2 ≥ 0.

However, x = 0 is not a solution of this example.
Therefore, in the following proposition, we give some conditions for (3).
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Proposition 10. For monotone Problem (3), let z∗ = (x∗, y∗) be a stationary point of (10). If M(ωi)x∗ +
q(ωi)− y∗i = 0, i = 1, 2, ...m, then x∗ is a solution of (3).

Proof of Proposition 10. Assuming that z∗ = (x∗, y∗) is a stationary point of (10), if M(ωi)x∗ +
q(ωi)− y∗i = 0, i = 1, 2, ...m, by (12), we know that x∗ is the stationary point of the following problem:

min{Ψ(x)|x ≥ 0}.

Similar to the proof of Theorem 3 in [24], it can be shown that x∗ is a solution of Ψ(x) = 0. Thus, x∗

is a solution of (3).

Now, we present the feasible nonsmooth Levenberg–Marquardt-type method for solving (3).

Method 1. Choose z0 ∈ Z, σ ∈ (0, 1
2 ), ε ≥ 0, β, γ ∈ (0, 1). Set k = 0.

Step 1. If |θ(zk)| ≤ ε, stop.
Step 2. Choose Hk ∈ ∂CF(zk), νk = ‖F(zk)‖ > 0, and find the solution dk of the equations:

(HT
k Hk + νk I)d = −∇θ(zk). (13)

Step 3. If
‖F(PZ(zk + dk))‖ ≤ γ‖F(zk)‖,

then set zk+1 = PZ(zk + dk), k = k + 1, and go to Step 1; otherwise, go to Step 4.
Step 4. Compute tk = max{βl |l = 0, 1, 2 · · · }, such that:

θ(zk(tk)) ≤ θ(zk) + σ∇θ(zk)
T(zk(tk)− zk),

where zk(tk) = PZ[zk − tk∇θ(zk)]. Set zk+1 = zk(tk), k = k + 1, and go to Step 1.

We now investigate the convergence properties of Method 1. In the following sections, we assume
that Method 1 generates an infinite sequence.

Theorem 1. Method 1 is well defined for a monotone SLCP (3). If Method 1 does not stop at a stationary
point in finite steps, an infinite sequence {zk} is generated with {zk} ⊂ Z, and any accumulation point of the
sequence {zk} is a stationary point of θ.

Proof of Theorem 1. Method 1 is well defined for the reason of νk > 0, and dk is always a descent
direction for θ. Now, we consider the following two situations respectively.

(I) If the direction dk is accepted by an infinite number of times in Step 3 of Method 1, we get:

zk+1 = PZ[zk + dk] ∈ Z.

Since ∇θ(zk) 6= 0 implies dk 6= 0, we have:

∇θ(zk)
Tdk = −((HT

k Hk + νk I)dk)
Tdk < 0.

From [17], we know that {θ(zk)} is monotonically decreasing. Obviously, this implies that the
sequence {‖F(zk)‖} is also monotonically decreasing. Since ‖F(PZ(zk + dk))‖ ≤ γ‖F(zk)‖ is
accepted by an infinite number of times in view of our assumptions, therefore we get ‖F(zk)‖ → 0
for k → ∞ by γ ∈ (0, 1). This means that any accumulation point of {zk} is the solution of (10);
therefore, it is also a stationary point of θ.
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(II) This case is the negation of Case (I); without loss of generality, we assume that the
Levenberg–Marquardt direction is never accepted. If the direction PZ[zk − tk∇θ(zk)] − zk is
accepted by an infinite number of times in Step 4 of Method 1, we have:

zk+1 = PZ[zk − tk∇θ(zk)] ∈ Z.

By (b) in Lemma 1, taking x := zk − tk∇θ(zk), y := zk, we get:

0 ≥ [PZ(zk − tk∇θ(zk))− (zk − tk∇θ(zk))]
T [PZ(zk − tk∇θ(zk))− zk]

= [PZ(zk − tk∇θ(zk))− zk + tk∇θ(zk)]
T [PZ(zk − tk∇θ(zk))− zk]

= (PZ(zk − tk∇θ(zk))− zk)
2 + tk∇θ(zk)

T [PZ(zk − tk∇θ(zk))− zk]

that is,

∇θ(zk)
T [PZ(zk − tk∇θ(zk))− zk] ≤ −

(PZ(zk − tk∇θ(zk))− zk)
2

tk
≤ 0,

where tk = max{βl |l = 0, 1, 2 · · · } with β ∈ (0, 1). By the Armijo line search properties, we know
that any accumulation point of {zk} is a stationary point of θ, and this completes the proof.

Theorem 2. Let x∗ ∈ <n be a R−regular solution; then the whole sequence generated by Method 1 converges
to z∗ Q-quadratically.

Proof of Theorem 2. By Proposition 6, there is a constant c1 > 0, such that, for all zk ∈
⋃
(z∗, δ1),

where δ1 is a sufficiently small positive constant, the matrices HT
k Hk + νk I are nonsingular, and

‖(HT
k Hk + νk I)−1‖ ≤ c1 hold. Furthermore, by Proposition 2, there exists a constant c2 > 0, such that:

‖F(zk)− F(z∗)− Hk(zk − z∗)‖ ≤ c2‖zk − z∗‖2,

for all zk ∈
⋃
(z∗, δ2), where δ2 is a sufficiently small positive constant. Moreover, in view of the upper

semicontinuity of the C-subdifferential, we have:

‖HT
k ‖ ≤ ζ,

where Hk ∈ ∂CF(zk), ζ > 0, zk ∈
⋃
(z∗, δ3), and δ3 is a sufficiently small positive constant. Denote

δ = min(δ1, δ2, δ3), for zk ∈
⋃
(z∗, δ). Note that, from (13) and Lemma 1, we have:

(HT
k Hk + νk I)(zk+1 − z∗)

= (HT
k Hk + νk I)(PZ(zk + dk)− z∗)

= (HT
k Hk + νk I)(zk + dk − z∗ + PZ(zk + dk)− (zk + dk))

= (HT
k Hk + νk I)(zk + dk − z∗) + (HT

k Hk + νk I)(PZ(zk + dk)− (zk + dk))

= (HT
k Hk + νk I)(zk − z∗)− HT

k F(zk) + (HT
k Hk + νk I)(PZ(zk + dk)− (zk + dk))

= HT
k Hk(zk − z∗) + νk(zk − z∗)− HT

k F(zk) + (HT
k Hk + νk I)(PZ(zk + dk)− (zk + dk))

= HT
k (F(z∗)− F(zk) + Hk(zk − z∗)) + νk(zk − z∗) + (HT

k Hk + νk I)(PZ(zk + dk)− (zk + dk))
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Since F is a locally-Lipschitzian function and νk = ‖F(zk)‖, by premultiplying this equation by
(HT

k Hk + νk I)−1 and taking norms both sides, we get:

‖zk+1 − z∗‖
≤ c1(‖HT

k ‖‖F(z
∗)− F(zk) + Hk(zk − z∗)‖+ ‖F(zk)− F(z∗)‖‖zk − z∗‖) + ‖PZ(zk + dk)− (zk + dk)‖

≤ c1(ζc2‖zk − z∗‖2 + L‖zk − z∗‖2) + ‖zk + dk − z∗‖
≤ c1(ζc2 + L)‖zk − z∗‖2 + ‖zk − z∗ − (HT

k Hk + νk I)−1HT
k Fk‖

= c1(ζc2 + L)‖zk − z∗‖2 + ‖(HT
k Hk + νk I)−1((HT

k Hk + νk I)(zk − z∗)− HT
k Fk)‖

= c1(ζc2 + L)‖zk − z∗‖2 + ‖(HT
k Hk + νk I)−1(HT

k (F(z∗)− F(zk) + Hk(zk − z∗)) + νk(zk − z∗))‖
≤ c1(ζc2 + L)‖zk − z∗‖2 + c1(‖HT

k ‖‖F(z
∗)− F(zk) + Hk(zk − z∗)‖+ ‖F(zk)− F(z∗)‖‖zk − z∗‖)

≤ c1(ζc2 + L)‖zk − z∗‖2 + c1(ζc2 + L)‖zk − z∗‖2

= 2c1(ζc2 + L)‖zk − z∗‖2

= τ‖zk − z∗‖2,

where τ = 2c1(ζc2 + L). Therefore, similar to the proof of ([20], Theorem 2.3), we know that the rate of
convergence is Q-quadratic. This completes the proof.

4. Numerical Results

In this section, firstly, we make a numerical comparison between Method 1 and the scaled trust
region method (STRM) in [20]. We apply Method 1 and the scaled trust region method to solve
Examples 1 and 2. Secondly, we use Method 1 to solve the related refinery production problem,
which also has been studied in [4,13]. Finally, numerical results about large-scale stochastic linear
complementarity problems are also presented. We implement Method 1 in MATLAB and test the
method on the given test problems using the reformulation from the previous section. Additionally,
all of these problems were done on a PC (Acer) with i5-3210M and RAM of 2 GB. Throughout the
computational experiments, the parameters in Method 1 are taken as:

σ = 0.3, β = 0.5, γ = 0.5.

The stopping criteria for Method 1 are ‖θ(zk)‖ ≤ 10−15 or kmax = 5000.
The parameters in the STRM method (see [20]) are taken as:

∆0 = 10, ∆min = 10−6, ρ1 = 10−4, ρ2 = 0.75, σ1 = 0.5, σ2 = 2, η = 0.5.

The stopping criteria for the STRM method are ‖Dkgk‖ ≤ 10−15 or kmax = 5000.
In the tables of the numerical results, DIM denotes the dimension of the problem (the dimension

of the variable x); x∗ denotes the solution of θ(x, y) = 0; In the following part of this section, we give
the detailed description of the given test problems.

Example 1. Consider SLCP(M(ω), q(ω)) with:

M(ω) =

(
1− 2ω − 1
0 −ω

)
, q(ω) =

(
1

ω + 1

)
,

where Ω = {ω1, ω2} = {0, 1}, and pi = P(ωi ∈ Ω) = 0.5, i = 1, 2.

Numerical results of Example 1 are given in Table 1, Figures 1 and 2, respectively. x0 are chosen
randomly in <2; y0 are chosen randomly in <4 and λ = 0.1.
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Table 1. Numerical results for Example 1.

Method 1 STRM
p x* Final Value Iteration x* Final Value Iteration

1.1 1.0× 10−8 × (0.6159, 0.3060) 1.7595× 10−16 9 (0, 0) 4.9304× 10−32 10
1.3 1.0× 10−8 × (0.8603, 0.3628) 2.1217× 10−16 9 (0, 0) 2.9582× 10−31 10
1.5 1.0× 10−7 × (0.1079, 0.0394) 2.5396× 10−16 9 (0, 0) 2.4652× 10−32 9
2.0 1.0× 10−7 × (0.1122, 0.0394) 2.5960× 10−16 9 1.0× 10−16 × (0.7218, 0) 2.9399× 10−32 9
2.5 1.0× 10−7 × (0.1113, 0.0391) 2.5505× 10−16 9 1.0× 10−16 × (0.1165, 0) 1.2360× 10−34 9
3.0 1.0× 10−7 × (0.1106, 0.0389) 2.5224× 10−16 9 (0, 0) 2.4652× 10−32 9
3.5 1.0× 10−7 × (0.1102, 0.0387) 2.5040× 10−16 9 1.0× 10−16 × (0.1162, 0) 1.2310× 10−34 9
4.0 1.0× 10−7 × (0.1099, 0.0387) 2.4909× 10−16 9 1.0× 10−16 × (0.7209, 0) 2.9388× 10−32 9
4.5 1.0× 10−7 × (0.1097, 0.0386) 2.4807× 10−16 9 1.0× 10−15 × (0.0725, 0.1748) 7.3648× 10−32 9
5.0 1.0× 10−7 × (0.1095, 0.0385) 2.4724× 10−16 9 1.0× 10−16 × (0.1185, 0) 1.2804× 10−34 9
5.5 1.0× 10−7 × (0.1094, 0.0385) 2.4656× 10−16 9 1.0× 10−16 × (0.7262, 0.1903) 5.5480× 10−33 9
6.0 1.0× 10−7 × (0.1092, 0.0384) 2.4598× 10−16 9 1.0× 10−16 × (0.1199, 0) 1.4804× 10−31 9
6.5 1.0× 10−7 × (0.1091, 0.2213) 2.4549× 10−16 9 1.0× 10−16 × (0.1232, 0) 1.3827× 10−34 9
7.0 1.0× 10−7 × (0.1090, 0.0384) 2.4508× 10−16 9 1.0× 10−16 × (0.1259, 0) 1.4449× 10−34 9
7.5 1.0× 10−7 × (0.1090, 0.0383) 2.4473× 10−16 9 1.0× 10−16 × (0.1181, 0) 1.2715× 10−34 9
8.0 1.0× 10−7 × (0.1089, 0.0383) 2.4444× 10−16 9 1.0× 10−16 × (0, 0.3123) 8.1621× 10−33 9
9.0 1.0× 10−7 × (0.1088, 0.0383) 2.4399× 10−16 9 1.0× 10−16 × (0.1255, 0.0082) 6.3079× 10−33 9
10 1.0× 10−7 × (0.1087, 0.0382) 2.4368× 10−16 9 1.0× 10−15 × (0.7305, 0.4090) 5.7596× 10−32 9
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Figure 1. Numerical results for Example 1 by Method 1. The x-axis represents the iteration step; the
y-axis represents θ(x, y) = 1

2‖F(x, y)‖2.
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Figure 2. Numerical results for Example 1 by the STRM method. The x-axis represents the iteration
step; the y-axis represents θ(x, y) = 1

2‖F(x, y)‖2.
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From Table 1, we can see that the merit functions associated with p ∈ (1, 2), for example p = 1.5,
are more effective than the Fischer–Burmeister merit function, for which exactly p = 2.

In Table 2, we give the numerical comparison of Method 1 with fmincon, which is a MATLAB
tool box for constrained optimization. We use the sequential quadratic programming (SQP) method in
the fmincon tool box to solve Example 1 by p = 1.1 and the same initial points.

Table 2. Numerical results for Example 1 by Method 1 and fmincon.

x* Final Value

Method 1 1.0× 10−8 × (0.6159, 0.3060) 1.7595× 10−16

fmincon (0.0002, 0) 1.2188× 10−14

From Table 2, we can see that Method 1 is more effective than fmincon.

Example 2. Consider SLCP(M(ω), q(ω)) with:

M(ω) =

 1 −ω 0
−ω 2 ω

0 ω 3

 , q(ω) =

 3− 2ω

−2−ω

−3−ω

 ,

where Ω = {ω1, ω2} = {0, 1}, and pi = P(ωi ∈ Ω) = 0.5, i = 1, 2.

Numerical results are given in Table 3, Figures 2 and 3; x0 are chosen randomly in <3; y0 are
chosen randomly in <6; and λ = 0.00000001.

From Table 3, Figures 3 and 4, we can see that the iterations of Method 1 are less than the STRM
method. In Method 1, when p = 5, the function value falls faster. When p is larger, a greater number
of iterations is needed in the STRM method.

Table 3. Numerical results for Example 2.

Method 1 STRM
p x* Final Value Iteration Final Value Iteration

2.0 (0, 1, 1) 5.6439× 10−17 17 5.000× 10−17 80
3.0 (0, 1, 1) 5.0000× 10−17 16 5.000× 10−17 80
4.0 (0, 1, 1) 5.0002× 10−17 19 5.000× 10−17 72
5.0 (0, 1, 1) 5.0000× 10−17 15 5.000× 10−17 234
6.0 (0, 1, 1) 5.0000× 10−17 13 5.000× 10−17 234
7.0 (0, 1, 1) 5.0000× 10−17 14 5.000× 10−17 234
8.0 (0, 1, 1) 5.0000× 10−17 16 5.000× 10−17 234
9.0 (0, 1, 1) 5.0000× 10−17 11 5.000× 10−17 234
10 (0, 1, 1) 5.0000× 10−17 11 5.000× 10−17 234
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Figure 3. Numerical results for Example 2 by Method 1. The x-axis represents the iteration step; the
y-axis represents θ(x, y) = 1

2‖F(x, y)‖2.
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Figure 4. Numerical results for Example 2 by the STRM method. The x-axis represents the iteration
step; the y-axis represents θ(x, y) = 1

2‖F(x, y)‖2.

In Table 4, we also give the comparison of Method 1 with fmincon. For the propose of comparison,
we fixed p = 10 and the same initial points.

Table 4. Numerical results for Example 2 by Method 1 and fmincon.

x* Final Value

Method 1 (0, 1, 1) 5.0000× 10−17

fmincon (0, 1, 1) 4.9780× 10−14

From Table 4, we can see that Method 1 is also more effective than fmincon.
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Example 3. This example is a refinery production problem, which is also considered in [2,13].

The problem is defined as:

M(ω) =


0 0 1 − 2−ω1 − 3
0 0 1 − 6 ω2 − 3.4
−1 − 1 0 0 0

2 + ω1 6 0 −ω3 −ω3

3 3.4−ω2 0 −ω4 ω4

 ,

q(ω) =


c
−b

−180−ω3

−162−ω4

 ,

where ω1, ω2, ω3 and ω4 satisfy the following distribution:

distrω1 ≈ u[−0.8, 0.8],

distrω2 ≈ exp(λ = 2.5),

distrω3 ≈ N(0, 12),

distrω4 ≈ N(0, 9).

• Generate samples ωk
j , j = 1, 2, 3, 4, k = 1, 2, . . . , K, respectively, from their 99% confidence intervals

(except uniform distributions):
ω1 ∈ I1 = [−0.8, 0.8],

ω2 ∈ I2 = [0.0, 1.84],

ω3 ∈ I3 = [−30.91, 30.91],

ω4 ∈ I4 = [−23.18, 23.18],

• For each j, divide the Ij into mj cells Ij,i, i = 1, 2, . . . , mj.
• For each (j, i), calculate the average υj,i of ωk

j ; it belongs to Ij,i.
• For each (j, i), the estimated probability of υj,i is pj,i = k j,i/K, where k j,i is the number of ωk

j ∈ Ij,i.
• Let N = m1 ×m2 ×m3 ×m4, and set the joint distribution of {(ω`, p`), ` = 1, 2, . . . , N},

ω` =


υ1,i1
υ2,i2
υ3,i3
υ4,i4

 , p` = p1,i1 p2,i2 p3,i3 p4,i4

for i1 = 1, . . . , m1, i2 = 1, . . . , m2, i3 = 1, . . . , m3, i4 = 1, . . . , m4.

In the following part of this section, we use Method 1 to solve the constrained optimization
problem:

min
z≥0

θ(z) =
1
2
‖F(z)‖2,

where z = (x, y),

F(x, y) =

(
φn(x)

M(ω`)x + q(ω`)− y`, ` = 1 · · ·N

)
.
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and:

φn(x) =

 λφp(xi, M̄ix + q̄i), i = 1 · · · 5
...

(1− λ)φ+(xi, M̄ix + q̄i), i = 1 · · · 5

 .

Now, we examine the following two conditions:

Condition1 : ω1 ≡ 0, ω2 ≡ 0, m3 = 15, m4 = 15.

Condition2 : m1 = 5, m2 = 9, m3 = 7, m4 = 11.

The numerical results of Example 3 are given in Tables 5 and 6, where Ψ(x) = 1
2‖φn(x)‖2 is the

merit function; θ(x, y) = 1
2‖F(x, y)‖2; k = 10i, i = 3, 4, 5. 2x1 + 3x2 is the initial production cost; and

λ = 0.5.

Table 5. Numerical results for Example 3 based on Condition 1.

p k xk θ(zk) Ψ(xk) 2xk
1 + 3xk

2

2 103 (42.6730, 15.8000, 0, 0.2848, 0.4688) 18.1932 5.1078 132.7462
2 104 (42.6057, 15.8216, 0, 0.2844, 0.4694) 5.2138 5.0089 132.6760
2 105 (42.0369, 16.0037, 0, 0.2791, 0.4740) 4.3894 4.2424 132.0850
4 103 (42.7120, 15.7720, 0, 0.2872, 0.4829) 1999.1 5.3083 132.7399
4 104 (42.6301, 15.7986, 0, 0.2844, 0.4694) 5.2164 5.0103 132.6559
4 105 (42.0487, 15.9888, 0, 0.2791, 0.4740) 4.3826 4.2359 132.0628
6 103 (42.7277, 15.7628, 0, 0.2853, 0.4687) 5.3534 5.1372 132.7438
6 104 (42.6539, 15.7870, 0, 0.2846, 0.4692) 5.2433 5.0360 132.6688
6 105 (42.0594, 15.9826, 0, 0.2791, 0.4740) 4.3925 4.2458 132.0667

Table 6. Numerical results for Example 3 based on Condition 2.

p k xk θ(zk) Ψ(xk) 2xk
1 + 3xk

2

2 103 (42.6799, 15.7988, 0, 0.2833, 0.4704) 5.3426 5.1369 132.7562
2 104 (42.5951, 15.8259, 0, 0.2826, 0.4706) 5.2120 5.0197 132.6679
2 105 (41.9961, 16.0177, 0, 0.2773, 0.4752) 4.3428 4.2083 132.0453
4 103 (42.7005, 15.7755, 0, 0.2846, 0.4717) 23.7543 5.1012 132.7276
4 104 (42.6135, 15.8036, 0, 0.2826, 0.4707) 5.2027 5.0096 132.6377
4 105 (41.9980, 16.0049, 0, 0.2772, 0.4753) 4.3207 4.1872 132.0108
6 103 (42.7599, 15.7531, 0, 0.2838, 0.4686) 55.2438 5.2217 132.7789
6 104 (42.6568, 15.7867, 0, 0.2829, 0.4703) 5.2612 5.0652 132.6738
6 105 (42.0153, 15.9977, 0, 0.2773, 0.4753) 4.3411 4.2060 132.0235

In [13], in the case of ω1 ≡ 0, ω2 ≡ 0.4, m3 = 15, m4 = 15. Kall and Wallace get the
optimal solution (x1, x2) = (38.539, 20.539); initial production cost 2x1 + 3x2 = 138.695. Here, by
Method 1, we get the optimal solution (x1, x2) = (41.6939, 16.1036), and the production cost is
2x1 + 3x2 = 131.6985.

Remark 1. In this paper, we use:

ωi =

{
ωj, i = j,

E(ωj), i 6= j.
(14)

The computation cost of our method is greatly reduced. In fact, when we think about the general case
of ω1, ω2, ω3 and ω4 varying the random distribution of discrete approximation by a 5-, 9-, 7- and 11-point
distribution, respectively. This yields a joint discrete distribution of 5× 9× 7× 11 = 3465 realizations. Then,
F(z) is a function of 17,335 (3465× 5+ 10 = 17,335) dimensions. This is a more complex optimization problem.
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In the following part of this subsection, we give a large-scale stochastic linear complementarity
problem named the stochastic Murty problem. When Ω = {ω|ω = 1

2}, the large-scale stochastic linear
complementarity problem reduces to the Murty problem, which is intensively studied in [25–29].

Example 4. (Stochastic Murty problem) Consider SLCP(M(ω), q(ω)) with:

M(ω) =


1
2 + ω 2 · · · 2
0 1

2 + ω · · · 2
...

...
. . .

0 · · · 1
2 + ω

 , q(ω) =


− 3

2 + ω

− 3
2 + ω

...
− 3

2 + ω

 ,

where M(ω) ∈ <n×n, q(ω) ∈ <n. Ω = {ω1, ω2} = {0, 1}, and pi = P(ωi ∈ Ω) = 0.5, i = 1, 2.

In Table 7, we give the comparison of Method 1 with the SQP method in the fmincon tool box,
when the dimensions of Example 4 are 10, 100, 200, 300 and 400; where θ(x, y) = 1

2‖F(x, y)‖2. x0 are
chosen randomly in <n. y0 are chosen randomly in <2n, λ = 0.0001.

Table 7. Numerical results for Example 4.

DIM p Final Value of Method 1 Final Value of Fmincon

10 2 1.6000× 10−3 0.4315
10 4 1.6000× 10−3 0.4315
10 6 1.6000× 10−3 0.4315
100 2 3.8000× 10−3 0.4426
100 4 4.5000× 10−3 0.4461
100 6 4.0000× 10−3 0.4502
200 2 4.6000× 10−3 0.5101
200 4 4.8000× 10−3 0.4123
200 6 4.6000× 10−3 0.5108
300 2 1.3263× 10−4 0.5394
300 4 0.4373× 10−3 0.5665
300 6 6.3331× 10−4 0.5395
400 2 4.6550× 10−4 0.4575
400 4 8.0495× 10−4 0.5365
400 6 3.2255× 10−4 0.5514

Remark 2. By the numerical results of Example 4, we can see that Method 1 is very suitable to solve large-scale
SLCP. Moreover, Method 1 can be used flexible by adjusting the value of p.

5. Conclusions

In this paper, we introduced a feasible nonsmooth Levenberg–Marquardt-type method to solve
the stochastic linear complementarity problems with finitely many elements. This method used a linear
least squares reformulation of the stochastic linear complementarity problem and applied a feasible
nonsmooth Levenberg–Marquardt-type method to solve the reformulated problem. The finally given
numerical results showed that the given method is efficient to solve the large-scale stochastic linear
complementarity problem and related refinery production problem. Additionally, the method can
choose the initial points in a large scope with less computations and high precision.
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