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Abstract: In this paper, we present a variable block insertion heuristic (VBIH) algorithm to solve
the blocking flowshop scheduling problem with the total flowtime criterion. In the VBIH algorithm,
we define a minimum and a maximum block size. After constructing the initial sequence, the VBIH
algorithm starts with a minimum block size being equal to one. It removes the block from the
current sequence and inserts it into the partial sequence sequentially with a predetermined move
size. The sequence, which is obtained after several block moves, goes under a variable local search
(VLS), which is based on traditional insertion and swap neighborhood structures. If the new sequence
obtained after the VLS local search is better than the current sequence, it replaces the current sequence.
As long as it improves, it keeps the same block size. However, if it does not improve, the block
size is incremented by one and a simulated annealing-type of acceptance criterion is used to accept
the current sequence. This process is repeated until the block size reaches at the maximum block
size. Furthermore, we present a novel constructive heuristic, which is based on the profile fitting
heuristic from the literature. The proposed constructive heuristic is able to further improve the
best known solutions for some larger instances in a few seconds. Parameters of the constructive
heuristic and the VBIH algorithm are determined through a design of experiment approach. Extensive
computational results on the Taillard’s well-known benchmark suite show that the proposed VBIH
algorithm outperforms the discrete artificial bee colony algorithm, which is one of the most efficient
algorithms recently in the literature. Ultimately, 52 out of the 150 best known solutions are further
improved with substantial margins.

Keywords: meta-heuristics; blocking flowshop; block insertion heuristic; variable local search;
constructive heuristics

1. Introduction

There have been extensive studies about permutation flowshop scheduling (PFSP) in the literature
with many important applications in manufacturing and service systems [1–4]. The traditional PFSP is
concerned with scheduling n jobs through m machines in such a way that the same sequence is applied
to each machine. An important assumption is such that work-in-process inventory is allowed since
there are infinite buffer capacities amongst consecutive machines. Hence, allowing jobs to be waiting in
front of machines for their next operations words. On the other hand, if any storage capacity amongst
machines is not available, the traditional PFSP is said to be blocking flowshop scheduling problem
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(BFSF) [5]. In this case, a job cannot leave the machine unless the next machine is free. Its industrial
applications can be found in [5,6]. A comprehensive review on flowshop scheduling with blocking
and no-wait constraint can be found in Hall and Siriskandarajah [7].

The makespan criterion for the BFSP is commonly used in the literature. This problem is also
denoted as Fm/blocking/Cmax with the notation of Graham et al. [8] in the literature. Although
Gilmore–Gomory’s algorithm [9] can solve it optimally with two machine case (m = 2), it is proven to
be NP-Hard by Hall and Sriskandarajah [7] when m > 2. For this reason, efforts have been devoted on
developing heuristic and meta-heuristic approaches for scheduling a large number of jobs, which is
commonly needed for real-life problems.

Since the problem is NP-Hard, constructive heuristics and meta-heuristic algorithms have been
attracted attention to solve the BFSP with the makespan criterion. Regarding the constructive heuristics,
McCormick et al. [10] presented a profile fitting (PF) heuristic to solve BFSP with the performance
measure of minimization of cycle time. The PF heuristic greedily establishes a sequence with the next
job having minimum idle and blocking times on machines. Leisten [11] presented a similar heuristic
for flowshop scheduling problems with finite and unlimited buffers in order to maximize the buffer
usages and to minimize the machine blocking times. However, it was not able to obtain better results
than the NEH heuristic, which is initially proposed in [12] to solve the traditional PFSP. Depending on
the makespan properties defined by Ronconi and Armentano [13], Ronconi [6] presented a note on
constructive heuristics and proposed three constructive heuristics, called MM, MM combined with
NEH (MME), and PF combined with NEH (PFE), respectively for the BFSP with the makespan criterion.
It was shown that the MME and PFE heuristics generated better results than the NEH heuristics up
to 500 jobs and 20 machines. Abadi et al. [14] proposed an improvement heuristic to minimize cycle
time and Ronconi and Henriques [15] considered the minimization of total tardiness in a flowshop
with blocking and presented some constructive heuristics with promising results. Furthermore, Pan
and Wang [16] developed some effective heuristics based on PF approach. These PF-based heuristics
are inspired from LR heuristic proposed by Liu and Revees [17] for the PFSP with the total flowtime
criterion. In their work, the PF heuristic is combined with the partial NEH implementation and
they called the heuristics as PF_NEH(x), WPF_NEH(x) and PW_NEH(x), where x is the number of
sequences generated by considering the first x number of jobs in the initial order of jobs. In order not to
ruin good characteristics of the PF heuristic, the NEH heuristic is applied to only the last δ jobs. Their
PW_NEH(x) heuristic with x = 5 was substantially better than NEH, MME, PFE, WPFE and PWE
heuristics from the literature. Regarding the meta-heuristic algorithms for BFSP with the makespan
criterion, the literature can be found in [18–33].

The makespan criterion is a firm-oriented performance measure, which aims at minimizing
the idle times on the machines, thus resulting in a maximization of machine utilization. However,
total flowtime and total tardiness criteria are both customer-oriented performance measures, which aim
at minimizing the waiting times of jobs amongst machines in order to finish the jobs as early as possible,
thus resulting in a maximization of the customer satisfaction. Since the tardiness is measured by the
difference between due date and flowtime, both performance measures are equivalent.

For the total tardiness criterion, a few papers can be found in [34,35]. Regarding the total
flowtime criterion, a few papers can be found in the literature. A hybrid harmony search is presented
in [36]. A discrete artificial bee colony algorithm is presented in [37]. An iterated greedy algorithm
is developed in [38], and a branch and bound is presented in [39] for solving small size of instances.
Very recently, a GRASP and a discrete artificial bee colony (DABC_RCT) algorithm are developed
in [40,41], which outperformed the existing algorithms from the literature.

In this paper, we present a variable block insertion heuristic (VBIH) algorithm to solve the BFSP
with the total flowtime criterion. Through extensive computational analyses on Taillard’s well-known
benchmark suite, we demonstrate that the proposed VBIH algorithm outperforms the recent best
performing DABC_RCT algorithm from the literature. Ultimately, 52 out of 150 problem instances are
further improved with substantial margins.
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The rest of the paper is organized as follows. In Section 2, the blocking flowshop scheduling
problem with speed-up method is formulated. Section 3 presents the components of the
VBIH algorithm. Section 4 presents the design of experiment approach for parameter tuning.
The computational results and comparisons are provided in Section 5. Finally, Section 6 gives the
concluding remarks.

2. Blocking Flow Shop Scheduling Problem

In the blocking flowshop scheduling problem, n jobs from the set J = {1, 2, .., n} have to be
processed on m machines from the set M = {1, 2, .., m} with the same permutation on each machine
without any intermediate buffer. Each job j has a processing time on machine k, which is denoted
as pj,k. The setup time is assumed to be included in the processing time. Only a single job can be
processed on each machine. Since waiting times are not allowed in the flowshop due to no intermediate
buffers, jobs cannot leave machines after completing their operations until next machines are free.
In other words, if the next machine is busy, then the current job on the machine must be blocked since
there is no intermediate buffer amongst machines. The goal is to obtain a permutation, which will
be applied to each machine and the total flowtime (TFT) is to be minimized. Given a job sequence
π = {π1, π2, .., πn}, the departure time dπj ,k of job πj on machine k can be computed by following
Ronconi [6] as follows:

dπ1,0 = 0 (1)

dπ1,k = dπ1,k−1 + pπ1,k k = 1, .., m− 1 (2)

dπj ,0 = dπj−1,1 j = 2, .., n (3)

dπj ,k = max
{

dπj ,k−1 + pπj ,k, dπj−1,k+1

}
j = 2, .., n and k = 1, .., m− 1 (4)

dπj ,m = dπj ,m−1 + pπj ,m j = 1, .., n (5)

where dπj ,0, j = 1, .., n denotes the starting time of job j on the first machine. Since Cπj ,m = dπj ,m for all
j, then the total flowtime of the sequence π can be given as TFT (π) = ∑n

j=1 Cπj ,m. Briefly, the objective
is to determine a sequence π∗ in the set of all sequences Π such that TFT (π∗) ≤ TFT (π) ∀π ∈ Π.

There are two neighborhood structures in scheduling problems in general. These are based on
insertion and swap neighborhood structures. As known, the computational complexity of both
neighborhood structures is O

(
n3m

)
. For the traditional PFSP with the total flowtime criterion,

Lia et al. [42] proposed a speed-up method for the swap and insertion neighborhood structures.
They showed that the proposed speed-up method makes a reduction in the CPU times up to 40 to
50 percent. Based on their idea, we develop a fast fitness function calculation for insertion and swap
moves. Suppose that we have sequence π. We first calculate the departure times of each job on each
machine and store them in a matrix denoted as Dπj ,k. Given the current sequence as π = {1, 2, 3, 4, 5}.
Now, suppose that we would like to interchange job 3 at position 3 with job 4 at position 4. Due to the
fact that the departure times are stored in Dπj ,k in advance until job 3 at position 3, we do not need
to re-calculate departure times until job 3 at position 3, again. In other words, after interchanging
those two jobs, the departure times of the new sequence π = {1, 2, 4, 3, 5} can be calculated as follows.
First, we copy the departure times from Dπj ,k matrix with dπj ,k = Dπj ,k f or j = 1, .., 3 and k = 1, .., m.
Then, we calculate the departure times starting from position 3 to 5 with dπj ,k, j = 3, .., 5, k = 1, .., m.

In order to generalize it, we first determine two randomly chosen positons pos1 and pos2 such
that (pos1 < pos2) ∈ (1, n). Our swap function, π = Swap

(
π0, pos1, pos2

)
, interchanges jobs π0

j=pos1

and π0
j=pos2; then, store the new sequence on a temporary sequence π. Finally, our fast fitness

function, f f ast ( π, pos1), copies the departure times from Dπj ,k matrix until position j = pos1 and then,
re-calculates the departure times starting from position pos1 to the end of the remaining part of the
sequence. After swapping jobs and storing them in a sequence π, the fast fitness function is given in
Figure 1.
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The same fast fitness function can be used for insertion moves, too. Before we get into details,
we need to clarify that our insertion move function utilizes forward or backward insertion move
with an equal probability of 0.5. We again determine two random positions pos1 and pos2 such that
(pos1 < pos2) ∈ (1, n). Our insertion function, π = Insert

(
π0, pos1, pos2

)
, either removes job π1

j=pos1
at position pos1 and inserts it into pos2 in a temporary sequence π (indicating a forward insertion
move) or removes job π1

j=pos2 at position pos2 and inserts it into pos1 in π (indicating a backward
insertion move). In both cases, one does not need to re-calculate the departure times until position
pos1, which are copied from the Dπj ,k matrix. In other words, f f ast (π, pos1) function in Figure 1 can
also be used for insertion moves.
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3. Variable Block Insertion Heuristic

Traditional local search algorithms are based on swap and insertion neighborhood structures.
The swap operator exchanges two jobs in a sequence, whereas the insertion operator removes a job from
a sequence and inserts it into another position in the sequence. Recently, local search algorithms, which
are based on block moves, are presented for the single machine scheduling problem in the literature.
A block move of 2-edge exchange was presented in Kirlik and Oguz [43]. Then, Subramanian et al. [44]
developed five different neighborhoods: swap, insertion, edge-insertion, 3-block insertion and 3-block
reverse. The basic idea is to use larger neighborhood move operators rather than the swap and
insertion move operators. Relying on this idea, Xu et al. [45] presented a neighborhood structure
called a Block Move in which l consecutive jobs (called a block) are inserted into another position in the
sequence. They represent a block move by a triplet (i, k, l), where i represents the position of the first
job of the block, k denotes the target position of the block to be inserted and l represents the size of
the block. Note that one edge insertion, two edge-insertion and 3-block insertion corresponds to the
block move neighborhoods with l = 1, l = 2, and l = 3. Similarly, Gonzales and Vela [46] developed
a variable neighborhood descent algorithm by using three block move neighborhoods were developed
and used in a memetic algorithm.

Inspiring from the algorithms above, we propose a similar, but a different block insertion heuristic,
which we call it a variable block insertion heuristic (VBIH) algorithm. We denote two block sizes
as bSmin and bSmax, where bSmin is the minimum block size and bSmax is the maximum block size.
In addition, we define a block move insertion size with a maximum insertion move size denoted as
mSmax. The VBIH algorithm removes a block of jobs with size, bS, from the current sequence starting
from bSmin = 1, then it makes a number mSmax of block insertion moves randomly in the partial
sequence, which we denote it as the block insertion move procedure, (bIM()). It chooses the best one
amongst a number mSmax of block insertion moves. The sequence obtained after bIM() procedure goes
under a variable local search (VLS), which is based on traditional insertion and swap neighborhood
structures. If the new sequence obtained after the VLS local search is better than the current sequence,
it replaces the current sequence. As long as it improves, it keeps the same block size, i.e., bS = bS.
Otherwise, the block size is incremented by one, i.e., bS = bS + 1 and a simulated annealing type of
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acceptance criterion is used to accept the inferior solution in order to escape from local minima. This
process is repeated until the block size reaches at the maximum block size, i.e., bS ≤ bSmax. The outline
of the VBIH algorithm is given in Figure 2. Note that πR is the reference sequence; T is temperature
parameter for the acceptance criterion, and tPF_ NEH(x) is a constructive heuristic providing an initial
sequence to the VBIH algorithm. They will be explained in detail in the subsequent sections.
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3.1. Initial Solution

The initial solution for the VBIH algorithm is generated by the tPF_ NEH(x) heuristic, which is
proposed for the first time in this paper in the literature. It is a novel modification of the PF_ NEH(x)
heuristic presented in Pan and Wang [16]. In the PF_ NEH(x) heuristic, the cost function to determine
the next job to be scheduled is comprised of the total idle and blocking times. Note that the cost
function devised for any constructive heuristic has a significant impact on the results. For this reason,
Tasgetiren et al. [47] developed a PFT_ NEH(x) heuristic for the BFSP with the makespan criterion,
which was inspired from the PF_ NEH(x) heuristic in [16]. In [47], a new cost function was devised
by adding the departure time of the last job on the last machine to the total idle and blocking times.
In this paper, we extend the PFT_ NEH(x) heuristic to the total flowtime criterion and denote it as
the tPF_ NEH(x) heuristic. As in the PFT_ NEH(x) heuristic, we consider the total idle and blocking
times as a part of the cost function. In addition, we also consider the sum of the departure times on
all machines of the last job that could be inserted into the partial sequence, which is one of the main
contribution of this paper.

To implement the tPF_ NEH(x) heuristic, an initial order of jobs should be determined.
To construct the initial order, we use the front delay and total processing times of each job as in
Ribas et al. [41]. The following measure is employed to construct the initial order of jobs of jobs:

iO(j) =
2

m− 1

(
∑m

k=1(m− k)pπj ,k

)
+ ∑m

k=1 pπj ,k (6)

In order to establish the initial order of jobs, we sort the iO (j) values with an ascending order.
Now, the number x of new sequences can be generated from the initial order of jobs as follows. Since
the first job has an impact on the solution quality, the first job of the initial order is taken as the
first job of the new sequence and the tPF_ NEH(x) heuristic is applied to generate the new solution.
Then, the second job of the initial order is taken as the first job of the new sequence and tPF_ NEH(x)
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heuristic is applied to generate another new solution. This is repeated x times and the number x of
new sequences will be generated. Of course, the best one amongst them is chosen as the initial solution
for the VBIH algorithm.

The proposed constructive heuristic can be summarized as follows. Suppose that πi−1 jobs have
already been scheduled and a partial sequence, π = {π1, π2,.., πi−1}, is obtained. Clearly, job πi will
be the next job to be inserted into the partial sequence πi−1. It can be any job from all jobs in the set U
of the unscheduled jobs. To select the job πi, we need a cost measure (CM). For the BFSP with the
total flowtime criterion, we propose a new cost function consisting of the total idle and blocking times
as well as the sum of the departure times of job πi on all machines. We first calculate the total idle and
blocking time as follows:

ITi = ∑m
k=1

(
di,k − di−1,k − pπi ,k

)
(7)

Then, we calculate the indexed sum of the departure times of job πi on all machines as follows:

SDi = ∑m
k=1

mdi,k

k + i (m− k) / (n− 2)
(8)

Now, we define our cost function as follows:

CMi = (1− µ)× ITi + µ× SDi (9)

Note that we also employ an index function, m/ (k + i× (m− k) / (n− 2)), to give a weight to
departure time on each machine. Then, the job with the smallest sum of CMi amongst all jobs in U is
determined as the ith job to be inserted to the partial sequence πi−1. Figure 3 outlines the procedure of
the proposed heuristic. As seen in Figure 3, the tPF (π∗, h) procedure takes the initial sequence as π∗

and the job-index as y sent by the tPF_ NEH(x) heuristic. By using the job-index y, the x number of
sequences will be generated.
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Pan and Wang [16] showed that the PF heuristic is very effective, but applying the NEH heuristic
to the whole sequence can worsen the objective function, i.e., total flowtime. To avoid it, they applied
the NEH heuristic to only the last δ jobs. As can be seen above, the tPF_ NEH(x) heuristic has two
parameters, namely, δ and µ. Since the number x of sequences that will be generated are not so costly
until the number of jobs is less than 200, i.e., n ≤ 200, in terms of CPU times, we determined it as
i f (n ≤ 200) then x = n; else x = 20. Another distinction between PF_ NEH(x) and tPF_ NEH(x)
is about how to choose the best one amongst x number of sequences. Since even the partial NEH
implementation may result in an inferior solution when compared to tPF heuristic, we check both
solutions and keep the better one. Note that in all figures throughout the paper, f (π) and r corresponds
to the total flowtime (TFT) value of a sequence π and a uniform random number between 0 and 1,
respectively. The tPF_ NEH(x) heuristic is outlined in Figure 4.
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3.2. Block Insertion Move Procedure

bIM (π, bS, mSmax) procedure is a core function in the VBIH algorithm. It takes the sequence
π, the block size, bS and the maximum insertion move size, mSmax as parameters. The procedure
randomly removes a block of jobs with size, bS from the current sequence π, which is denoted as
πb. Then, the partial sequence after removal will be denoted as πp = J −

{
πb
}

. Then, the procedure
carries out a number mSmax of block insertion moves with the block size, bS. In other words, the block
πb is inserted in the partial sequence πp randomly in which the maximum size of the insertion
moves is mSmax. Finally, it chooses the best one amongst a number mSmax of block insertion moves.
The bIM (π, bS, mSmax) procedure is given in Figure 5.

In order to ease the understanding of the block insertion move procedure, we give the following
example. Suppose that we have a current sequence π = {7, 4, 1, 8, 2, 6, 5, 3}. In addition, suppose
that the block size is bS = 3 and maximum insertion move size is mSmax = 3. Suppose that we
randomly choose a block πb = {8, 2, 6}. Then, the partial sequence will be πp = {7, 4, 1, 5, 3}. Without
considering the total flowtime of the sequence π, we randomly choose three positions, for instance, 1,
2, 5, and insert the block in these positions. Hence we have three sequences as π1 = {8, 2, 6, 7, 4, 1, 5, 3},
π2 = {7, 8, 2, 6, 4, 1, 5, 3}, and π3 = {7, 4, 1, 5, 8, 2, 6, 3}. Amonst these three sequences we take the one
with the lowest total flowtime criterion. Note that the same speed up methods explained before can be
used to accelerate the insertion procedure. For example, after removing the block πb = {8, 2, 6}, Dj,k
matrix of partial sequence πp is once calculated, and then the fast fitness calculation procedure is used
to accelerate the insertion procedure.
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3.3. Variable Local Search

The traditional variable neighborhood search (VNS) algorithm was developed in [48] and
successfully applied to scheduling problems in [49–53]. Very recently, a variable local search (VLS)
algorithm is developed by Ribas et al. [32,40,41]. The VLS algorithm is a novel and different from the
traditional VNS algorithms in such a way that when a sequence is improved by any randomly chosen
neighborhood structure, it switches to another neighborhood structure. For example, if a sequence
is improved by the LS1 local search (i.e., swap neighborhood), it systematically switches to LS2
local search (i.e., insertion neighborhood), which is the difference between traditional VNS and VLS
algorithms. As seen in Figure 6, if a sequence is improved by the local search type “LS”, it switches
to LS = 1− LS. Suppose that the LS is randomly chosen as 1, then if the sequence is improved by
the insertion neighborhood, the variable local search type is switched to 0 by LS = 1− 1 = 0. This is
different from the traditional VNS algorithms, where if a neighborhood improves, that neighborhood
is kept for the search process and it switches to the second neighborhood if it fails, which is a common
sense to follow. Note that, at least one time, both neighborhoods are ensured to be applied by using
a Counter. The VLS local search is given in Figure 6.
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Note that the VLS algorithm employs two powerful local search algorithms in the VBIH algorithm,
namely, referenced insertion scheme (RIS) and referenced swap scheme (RSS). Briefly, in the VLS
algorithm, the RIS local search is used as LS1 whereas the RSS local search is employed as LS2. The RIS
and RSS local search algorithms are outlined in Figures 7 and 8, respectively.
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As seen in Figure 8, the RSS local search designates the job to be swapped by using the reference
sequence πR as in the RIS algorithm. Then, for each job πk, it exchanges job πk with each πi until the
last job in the sequence. As long as the sequence improves after a number n of swap moves, the counter
is fixed to 1 so that the search starts from the beginning again. Note that the fast fitness calculation is
used in RSS local search, too.

After the local search phase, it should be decided if the new sequence is accepted as the incumbent
sequence for the next iteration. A simple simulated annealing type of acceptance criterion is used with
a constant temperature, which is suggested by Osman and Potts [60], as follows:

T =
∑n

j=1 ∑m
k=1 pj,k

10× n×m
× τP (10)

where τP is a parameter to be adjusted.

4. Parameter Tuning

In this section, we first determine the parameters of the PFT_NEH(x) heuristic through a design
of experiment (DOE) approach [61]. Then, we again make a design of experiment for the proposed
VBIH algorithm in order to determine its parameters.

4.1. Parameter Tuning of PFT_NEX(x) Heuristic

As mentioned before, since the number x of sequences generated are not so costly until n ≤ 200
in terms of CPU times, we determined it as i f (n ≤ 200) then x = n else x = 20. Then, PFT_NEX(x)
heuristic has two important parameters. Namely, µ and δ. To determine µ and δ parameters, we
carry out a design of experiments (DOE) [61]. To do it, we generate random instances with the
method proposed in [20]. In other words, random instances are generated for each combination of
n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}. Five instances are generated for each job and machine
combination, respectively. Ultimately, we obtained 75 instances for each pair of job and machine size.
We consider two parameters, namely, the weight of the cost function µ and the size of the partial
NEH heuristic δ. We have taken µ with 21 levels as µ = 0.00, 0.05, .., 1.00 and δ with 10 levels
as δ = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. We conducted a full factorial design of experiments
resulting in 21× 10 = 210 treatments. For each job and machine combination, each instance is run
for 210 treatments (210 PFT_ NEX(x) heuristics with µ and δ values). The relative percent deviation is
calculated as follows:

RPD = ∑210
i=1

(
Ci − Cmin

Cmin

)
∗ 100. (11)

where Ci is the total flowtime generated by each treatment and Cmin is the minimum total flowtime
found amongst 210 treatments. This is repeated for five instances and RPD values are averaged for
each treatment. Then the response variable is obtained by averaging the RPD values of 15 different job
and machine combinations for each treatment. The DOE is coded in Visual C++13 and carried out on
an Intel(R) Core(TM) i7-2600 CPU with 3.40 GHz PC with 8.00 GB memory.

Once the response variable was determined for each treatment, we analyze the main effects plot
of parameters, which is given in Figure 9. Figure 9 suggests that µ (parW) and δ (parNEH) should be
taken as 0.35 and 15, respectively.

However, Figure 9 suggests that µ values with 0.25, 0.30, 0.35, 0.40, 0.55 and 0.60 with δ = 15
generate very good and diversified results on random benchmark instances. Table 1 summarizes
the computational results of those µ values as well as the CPU times in seconds. It can be seen
in Table 1 that µ = 0.30 and µ = 0.35 provided the best results as Figure 9 suggested. However,
µ = 0.25, 0.40, 0.55 and 0.60 provide some diversified solutions, too. Note that the PFT_ NEH(x)
heuristics are substantially better than the HPF2 heuristic presented in [41] since it generated the
ARPDs of 1.473 and 1.468, respectively when compared to the ARPD of 3.287. In addition, the same
authors proposed GRASP-based algorithms as well as NHPF1 and NHPF2 heuristics for the initial
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solution procedures in [40]. PFT_ NEH(x) heuristics are also substantially better than NHPF1 and
NHPF2 heuristics since the ARPDs of 1.473 percent and 1.468 percent are much better than those
ARPDs of 3.018 percent and 2.797 percent. In addition to above, PFT_ NEH(x) heuristics were able to
further improve some larger instances in about 0.760 s on overall average.
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4.2. Parameter Tuning of VBIH Algorithm

In this section, we again present a DOE approach for parameter setting of the VBIH algorithms.
In order to carry out experiments, we generate random instances with the method proposed in [20].
In other words, random instances are generated for each combination of n ∈ {20, 50, 100, 200, 500} and
m ∈ {5, 10, 20}. Five instances are generated for each job and machine combination, respectively.
Ultimately, we obtained 75 instances for each pair of job and machine size. We consider three
parameters in the DOE approach. These are maximum block size (bSmax), maximum block insertion
move size (mSmax); and temperature adjustment parameter (τP). We have taken the maximum
block size with four levels as bSmax ∈ (4, 8, 12, 16); the maximum block insertion move size with
three levels as mSmax ∈ (0.1 ∗ (n− bSmax) , 0.2 ∗ (n− bSmax) , 0.3 ∗ (n− bSmax)) ; and the temperature
adjustment parameter with five levels as τP ∈ (0.1, 0.2, 0.3, 0.4, 0.5). We conducted a full factorial
design of experiments resulting in 4× 3× 5 = 60 treatments. For each job and machine combination,
each instance is run for 60 treatments with a maximum CPU time equal to Tmax = 10 × n × m
milliseconds. The relative percent deviation is calculated as follows:

RPD = ∑60
i=1

(
Ci − Cmin

Cmin

)
∗ 100. (12)

where Ci is the total flowtime generated by each treatment and Cmin is the minimum total flowtime
found amongst 60 treatments. This is repeated for five instances and RPD values are averaged for
each treatment. Then the response variable is obtained by averaging the RPD values of 15 different job
and machine combinations for each treatment. The DOE is coded in Visual C++13 and carried out on
an Intel (R) Core (TM) i7-2600 CPU with 3.40 GHz PC with 8.00 GB memory.



Algorithms 2016, 9, 71 12 of 24

Table 1. Average relative percentage deviations for PFT_NEH(x) heuristics.

µ Values and CPU (s)

n ×m HPF2 [41] NHPF1 [40] NHPF2 [40] 0.25 CPU (s) 0.30 CPU (s) 0.35 CPU (s) 0.40 CPU (s) 0.55 CPU (s) 0.60 CPU (s)

20 × 5 4.038 2.928 3.059 1.368 0.002 1.190 0.000 1.158 0.003 1.014 0.003 1.264 0.000 1.190 0.002
20 × 10 3.156 2.719 2.340 1.069 0.000 1.228 0.003 1.005 0.002 1.154 0.000 1.175 0.000 1.005 0.003
20 × 20 3.989 2.857 2.766 1.011 0.002 0.942 0.003 1.016 0.003 1.063 0.003 1.009 0.002 1.047 0.003
50 × 5 3.929 3.903 3.528 3.029 0.022 2.775 0.023 2.774 0.024 3.204 0.025 2.881 0.022 2.915 0.025

50 × 10 3.664 4.191 3.665 2.718 0.039 2.651 0.039 2.608 0.041 2.671 0.039 2.655 0.041 2.871 0.041
50 × 20 5.318 4.398 4.237 2.453 0.078 2.409 0.077 2.274 0.073 2.310 0.075 2.210 0.080 2.258 0.078
100 × 5 3.816 3.757 3.668 2.989 0.116 2.743 0.114 2.702 0.125 2.692 0.116 2.822 0.116 2.913 0.120
100 × 10 4.087 4.450 3.964 2.611 0.211 2.783 0.216 2.598 0.213 2.569 0.213 2.755 0.223 2.863 0.217
100 × 20 5.554 4.428 4.539 2.223 0.431 2.030 0.434 2.125 0.433 2.064 0.433 2.353 0.434 2.207 0.436
200 × 10 2.362 2.505 1.915 1.057 1.730 0.944 1.740 1.053 1.737 1.070 1.736 1.160 1.731 1.336 1.736
200 × 20 2.811 2.676 2.478 0.777 3.553 0.669 3.580 0.889 3.594 0.780 3.552 1.000 3.552 1.122 3.555
500 × 20 1.595 1.464 1.533 −0.177 2.352 −0.158 2.402 −0.111 2.358 −0.082 2.349 0.066 2.350 0.048 2.352
200 × 5 2.394 2.260 1.936 1.400 0.917 1.292 0.920 1.264 0.917 1.314 0.919 1.727 0.917 1.833 0.920
500 × 5 1.191 1.330 1.027 0.545 0.755 0.356 0.758 0.317 0.750 0.475 0.775 0.825 0.761 0.916 0.758
500 × 10 1.398 1.399 1.307 0.272 1.194 0.247 1.195 0.353 1.189 0.248 1.188 0.477 1.191 0.564 1.191

Average 3.287 3.018 2.797 1.556 0.760 1.473 0.767 1.468 0.764 1.503 0.762 1.625 0.761 1.673 0.762

Bold: better results.
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Once the response variable was determined for each treatment, we analyze the main effects plots
of the parameters, which are given in Figure 10. Figure 10 suggests that the bSmax should be taken as
bSmax = 16; mSmax should be taken as mSmax = 0.1 ∗ (n− bSmax); and τP should be taken as τP = 0.2.
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The main effects plot might not be meaningful when there are significant interactions between
the parameters. For this reason, the ANOVA table should be analyzed to see whether interactions
are significant or not. The ANOVA results are given in Table 2. From Table 2, it can be seen that
bSmax ∗mSmax interaction is found to be significant because of the very high magnitude of F ratio and
the p-value being less than α = 0.05 level. For these reasons, we look at the bSmax ∗mSmax interaction
plot, which is given in Figure 11.

As seen in Figure 11, bSmax = 16 with mSmax = 0.3 ∗ (n− bSmax) generated the lowest ARPD.
For this reason, we decided to take the parameters as follows: bSmax = 16; mSmax = 0.3 ∗ (n− bSmax);
and τP = 0.2.

Table 2. ANOVA table.

Source DF Seq SS Adj SS Adj MS F p

bSmax 3 0.095370 0.095370 0.031790 98.55 0.00
mSmax 2 0.019873 0.019873 0.009937 30.80 0.00

tP 4 0.000676 0.000676 0.000169 0.52 0.72
bSmax ∗mSmax 6 0.039930 0.039930 0.006655 20.63 0.00

bSmax ∗ tP 12 0.002395 0.002395 0.000200 0.62 0.81
mSmax ∗ tP 8 0.001585 0.001585 0.000198 0.61 0.76

Error 24 0.007742 0.007742 0.000323 - -
Total 59 0.167569 - - - -
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5. Computational Results

To test the performance of the VBIH algorithms proposed, extensive experimental evaluations
and comparisons with other powerful methods are provided based on the well-known flowshop
benchmark suite of Taillard [20]. The benchmark set is composed of 15 groups of the given problems
with the size ranging from 20 jobs and 5 machines to 500 jobs and 20 machines, and each group
consists of ten instances. However, in [62], these benchmark problems are extended to 200 × 5, 500 × 5
and 500 × 10 sizes with each containing 10 instances. Ultimately, we employ 150 instances as in the
DABC_RCT algorithm in [41]. We treat them as blocking flow shop scheduling problems with the total
flowtime criterion. In the experimental tests, all algorithms are coded in Visual C++13 and carried out
on an Intel(R) Core(TM) i7-2600 CPU with 3.40 GHz PC with 8.00GB memory. Note that the maximum
CPU time is fixed at Tmax = 100× n×m milliseconds for all algorithms compared. We compare to the
following best performing algorithms from the literature:

1. DABC_RCT in [41]. The DABC_RCT algorithm is a very efficient algorithm and has three phases.
In the employed bee phase, the TNO procedure is employed with the VLS local search. In the
onlooker bee phase, the path-relinking approach is employed to generate the onlooker bees.
In the scout bee phase, HPF2 is used to generate the scout bees. We refer to [41] for the details.
We have coded the DABC_RCT algorithm in Visual C+13 to have a fair comparison. Note that the
DABC_RCT algorithm uses HPF2 heuristic as an initial solution. Since our PFT_NEH(x) heuristic
is substantially better than HPF2 heuristic, we employ the PFT_NEH(x) heuristic with µ = 0.35
and δ = 15 as one of the solution in the population. The rest of the population individuals
are constructed randomly as suggested in the DABC_RCT algorithm and we denote it as the
DABC*_RCT algorithm to have a fair comparison. The same parameters are also used which are
suggested in the DABC_RCT algorithm [41]. Note that fast fitness calculation is employed to
accelerate the insertion and swap neighborhood structures in the VLS local search they employed
in the TNO procedure.
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2. IG_RIS algorithm in [47,54–59]. To be fair again, we employ PFT_NEH(x) heuristic with µ = 0.35
and δ = 15 as an initial solution in the IG_RIS algorithm. IG_RIS algorithm relies on the
destruction and construction procedure, where dS number of jobs is removed from a solution and
they are reinserted to the partial solution sequentially. Then RIS local search is applied to the
solution obtained after destruction and construction procedure. Note that fast fitness calculation
is employed to accelerate the RIS insertion local search as in this paper. It is also employed in the
destruction and construction procedure, too.

3. VBIH algorithms in this paper. Since the PFT_NEH(x) heuristics provide very diversified initial
solutions, we run the VBIH algorithm with µ values with 0.25, 0.30, 0.35, 0.40, 0.55 and 0.60 with
δ = 15. Then we denote them as VBIH1, VBIH2, VBIH3, VBIH4, VBIH5 and VBIH6. In addition,
when the maximum block size is equal to 1, the VBIH algorithm becomes an iterated local search.
In other words, the current solution is perturbed with several insertion moves and then the VLS
local search is applied to the solution after perturbation. Then, the acceptance criterion is imposed
to the solution obtained. We denote this variant of the VBIH algorithm as IVLS algorithm.

Each instance is run for five (R) independent replications and the relative percentage deviation.
RPD is computed as follows:

ARPD = ∑R
i=1

(
H − BKS

BKS

)
∗ 100/R (13)

where H, BKS, and R are the total flowtime value generated by the algorithms in each run, the most
recent best-known solution value reported in [41], and the number of runs, respectively. In addition,
the ARPD for each instance, totally 150, is recorded to make statistical analyses.

The computational results are given in Table 3. The first observation from Table 3 that the IG_RIS
and DABC_RCT algorithms are not competitive to the DABC*_RCT and VBIH variants. Especially,
even though the fast fitness calculation is employed in the IG_RIS algorithm, which is known as one of
the best algorithms in the scheduling literature, it could not be able to generate competitive results.
In fact, its local search is based on only the insertion neighborhood, which is very effective for the
makespan criterion. However, the results in Table 3 indicate that the swap neighborhood should be
used in algorithms designed for the total flowtime criterion. The second observation is the performance
of the DABC*_RCT algorithm, which is quite competitive to the VBIH variants. The overall ARPD is
decreased from 0.593 percent to 0.376 percent due to the use of the PFT_NEH(x) heuristic as a solution
in the initial population. It indicates that the proposed PFT_NEH(x) heuristic was so effective on the
results of the DABC*_RCT algorithm. Amongst the VBIH variants, the first four variants were able to
generate results ranging from 0.303 percent to 0.285 percent. As can be seen from Table 3, especially,
the larger instances with sizes 500 × 20, 500 × 5 and 500 × 10 were further improved by the first four
variants of the VBIH algorithms.
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Table 3. Average relative percentage deviations for algorithms compared.

n ×m IG_RIS DABC_RCT IVLS DABC*_RCT VBIH1 VBIH2 VBIH3 VBIH4 VBIH5 VBIH6

20 × 5 0.049 0.004 0.068 0.006 0.001 0.000 0.000 0.000 0.000 0.000
20 × 10 0.016 0.021 0.151 0.031 0.000 0.000 0.000 0.000 0.000 0.000
20 × 20 0.010 0.015 0.032 0.002 0.000 0.000 0.000 0.000 0.000 0.000
50 × 5 0.901 0.788 0.713 0.490 0.418 0.354 0.346 0.376 0.296 0.325

50 × 10 0.819 0.752 0.916 0.752 0.562 0.455 0.457 0.424 0.463 0.502
50 × 20 0.521 0.561 0.652 0.490 0.318 0.378 0.316 0.355 0.330 0.321
100 × 5 1.555 1.135 1.133 0.937 0.650 0.764 0.709 0.650 0.696 0.714

100 × 10 1.639 1.301 1.358 1.285 1.070 1.179 1.126 1.098 1.112 1.118
100 × 20 1.147 1.279 0.927 0.983 0.759 0.833 0.799 0.903 0.796 0.750
200 × 10 0.633 0.559 0.236 0.312 0.427 0.243 0.377 0.293 0.297 0.308
200 × 20 0.337 0.581 0.193 0.201 0.146 0.227 0.211 0.255 0.430 0.421
500 × 20 −0.229 0.426 −0.381 −0.274 −0.353 −0.374 −0.395 −0.303 −0.192 −0.185
200 × 5 0.854 0.470 0.373 0.358 0.392 0.325 0.341 0.372 0.388 0.401
500 × 5 0.259 0.397 −0.014 −0.022 0.150 −0.012 −0.053 −0.042 0.299 0.369

500 × 10 0.234 0.607 −0.033 0.092 0.000 −0.031 0.035 −0.046 0.174 0.282

Average 0.583 0.593 0.422 0.376 0.303 0.289 0.285 0.289 0.339 0.355

Bold: better results.
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In order to see the statistical difference between algorithms, we provide the interval plot of the
algorithms compared in Figure 12. Since the 95% confidence intervals of DABC*_RCT and VBIH
variants do not overlap, we can conclude that the DABC*_RCT and the VBIH variants generated
results, which are statistically significant to those results generated by the IG_RIS and DABC_RCT
algorithms. When we look at the confidence intervals of the DABC*_RCT and VBIH variants, there are
overlaps between the algorithms. However, an overlap does not mean that there is no difference.
There may be statistically significant difference even if there is an overlap [63]. To determine the
difference, the paired t-tests should be used [63].
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The results of the paired t-tests are given in Table 4. If the 95% confidence interval for the
mean difference between the two compared algorithms does not include zero values, it indicates that
there is a difference between the two algorithms compared. In addition, p-values, which are smaller
than α = 0.05 level, further suggest that the compare algorithms perform differently. As can be seen
from Table 4, the IVLS, VBIH1, VBIH2, VBIH3 and VBIH4 algorithms are statistically better than the
DABC*_RCT algorithm. However, the VBIH5 and VBIH 6 algorithms are statistically equivalent.

Table 4. Paired t-test for variable block insertion heuristic (VBIH) variants versus discrete artificial bee
colony (DABC)*_RCT algorithm.

Algorithm vs. algorithm 95% CI for Mean Difference p-Value

IVLS − DABC*_RCT (0.0041, 0.0875) 0.032
VBIH1 − DABC*_RCT (−0.1162, −0.0298) 0.001
VBIH2 − DABC*_RCT (−0.1242, −0.0486) 0.000
VBIH3 − DABC*_RCT (−0.1193, −0.0639) 0.000
VBIH4 − DABC*_RCT (−0.1258, −0.0474) 0.000
VBIH5 − DABC*_RCT (−0.0843, 0.0117) 0.137
VBIH6 − DABC*_RCT (−0.0671, 0.0252) 0.371
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Finally, in Table 5, we provide the best solutions found by each algorithm. 52 out of 150 problems
instances are further improved together with 15 solutions being equal during in this study. All the
results and permutations are available based on request.

Table 5. Best-known solutions.

BKS [41] IVLS VBIH1 VBIH2 VBIH3 VBIH4 VBIH5 VBIH6 DABC_RCT DABC*_RCT

Problem Set 20 × 5

14953 14953 14953 14953 14953 14953 14953 14953 14953 14953
16343 16349 16343 16343 16343 16343 16343 16343 16343 16343
14297 14297 14297 14297 14297 14297 14297 14297 14297 14297
16483 16483 16483 16483 16483 16483 16483 16483 16483 16483
14212 14212 14212 14212 14212 14212 14212 14212 14212 14212
14624 14624 14624 14624 14624 14624 14624 14624 14624 14624
14936 14938 14936 14936 14936 14936 14936 14936 14938 14938
15193 15240 15193 15193 15193 15193 15193 15193 15193 15193
15544 15544 15544 15544 15544 15544 15544 15544 15544 15544
14392 14392 14392 14392 14392 14392 14392 14392 14392 14392

Problem Set 20 × 10

22358 22537 22358 22358 22358 22358 22358 22358 22358 22358
23881 23881 23881 23881 23881 23881 23881 23881 23881 23881
20873 20873 20873 20873 20873 20873 20873 20873 20873 20873
19916 20020 19916 19916 19916 19916 19916 19916 19916 19916
20196 20196 20196 20196 20196 20196 20196 20196 20196 20196
20126 20126 20126 20126 20126 20126 20126 20126 20126 20126
19471 19471 19471 19471 19471 19471 19471 19471 19471 19471
21330 21369 21330 21330 21330 21330 21330 21330 21330 21330
21585 21585 21585 21585 21585 21585 21585 21585 21585 21585
22582 22582 22582 22582 22582 22582 22582 22582 22582 22582

Problem Set 20 × 20

34683 34683 34683 34683 34683 34683 34683 34683 34683 34683
32855 32855 32855 32855 32855 32855 32855 32855 32855 32855
34825 34825 34825 34825 34825 34825 34825 34825 34825 34825
33006 33006 33006 33006 33006 33006 33006 33006 33006 33006
35328 35328 35328 35328 35328 35328 35328 35328 35328 35328
33720 33720 33720 33720 33720 33720 33720 33720 33720 33720
33992 33992 33992 33992 33992 33992 33992 33992 33992 33992
33388 33388 33388 33388 33388 33388 33388 33388 33388 33388
34798 34798 34798 34798 34798 34798 34798 34798 34798 34798
33174 33174 33174 33174 33174 33174 33174 33174 33174 33174

Problem Set 50 × 5

72672 72758 72672 72696 72672 72696 72758 72827 73135 72768
78140 78707 78254 78332 78181 78181 78181 78284 78327 78295
72913 73211 73096 73224 73101 73224 72913 72994 72913 73224
77399 77711 77513 77571 77547 77586 77547 77547 77582 77607
78353 78705 78627 78579 78544 78363 78511 78511 78767 78620
75402 75402 75661 75606 75475 75593 75402 75514 76122 75615
73842 74322 73952 74202 73952 73890 73952 73891 73954 73890
73442 73964 73945 73442 73834 73442 73549 73549 73858 73442
70871 71360 70905 70871 70871 70883 70883 70883 71096 71105
78729 79271 78773 78729 78729 78807 78729 78729 78773 79093

Problem Set 50 × 10

99674 100508 100373 99674 100299 100059 99721 100410 99900 100325
95608 95669 95907 96157 95669 96047 95876 95876 96565 96367
91791 92760 91956 92090 91791 92090 92090 92276 92588 92524
98454 98767 98475 98689 98454 98454 98507 98507 98692 98576
98164 98286 98243 98164 98230 98164 98228 98228 98610 98228
97246 97826 97637 97779 97431 97530 97558 97333 98029 97625
99953 100142 100030 99965 99965 99953 99971 100116 100440 100584
98027 98231 98149 98271 98476 98436 98543 98270 98723 98521
96708 97248 96708 96996 96996 96708 97142 96708 96978 97634
98019 99012 98316 98316 98316 98316 98053 98053 98316 98362
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Table 5. Cont.

BKS [41] IVLS VBIH1 VBIH2 VBIH3 VBIH4 VBIH5 VBIH6 DABC_RCT DABC*_RCT

Problem Set 50 × 20

136865 137240 136881 137075 137075 136968 137005 137005 136958 137161
129958 130333 130115 129975 130292 130244 130248 129975 130176 130303
127617 128784 127617 127957 127617 128073 127617 127617 128033 128393
131889 132452 132270 132169 132270 132103 131943 131943 132283 132169
130967 131159 130979 131217 131233 130967 131196 130979 131351 131064
131760 132121 131985 131760 131760 131929 131926 131921 131593 132007
134217 134857 134222 134534 134572 134534 134726 134451 134715 134636
132990 133502 132990 133210 133210 133210 133309 133309 133526 133210
132599 132819 132757 132715 132901 132757 132599 132599 132599 133120
135710 136166 135985 136162 136224 136363 136248 136146 136483 136473

Problem Set 100 × 5

288332 289888 288446 289216 288765 288854 290346 288904 289463 288807
280491 282897 281066 280743 280853 280073 280873 280929 282857 282563
276228 277904 275863 276229 276322 277751 276589 276695 278117 277968
259596 262968 261462 261867 261601 261985 261715 261231 263990 261478
273086 275571 274651 274335 274451 274690 274005 274817 274804 275092
267381 271534 269418 267899 270406 269506 270408 269194 268899 269356
274744 277150 275884 277009 277342 276656 275491 276609 277163 277535
269689 272776 271187 270939 270945 270774 270668 271001 271916 271719
284816 286683 285308 285238 284901 284652 284952 284755 287494 284856
282005 282659 282969 283292 282814 282366 282367 282719 283596 283939

Problem Set 100 × 10

354083 357361 354586 355794 356308 354892 353321 354624 354570 356911
333379 335775 335738 336636 335905 335268 336469 336601 337164 336403
343957 346543 344337 345157 345524 345069 344824 345654 344863 345889
359259 362441 361621 363410 360537 361230 360709 359680 361328 364095
338537 339455 339573 339976 338941 341468 341261 340741 340771 341207
327254 331594 329327 328482 330769 328075 328693 329377 330296 329454
335366 339300 338219 337094 339001 338948 338091 338091 337997 338643
343174 346305 345286 344609 344905 346013 345217 343843 344417 344886
344563 357006 354676 357664 356781 356050 355165 354659 356177 356628
347845 349966 349546 348910 350290 349351 350879 350580 350674 350693

Problem Set 100 × 20

425224 427753 427810 426032 427688 426582 427549 426845 427899 426093
435289 438146 436000 436495 437478 436409 437908 436205 439020 437380
430634 431419 432953 433663 431713 434502 431905 432067 435222 434241
432314 436203 435708 435999 435001 437256 435401 435880 437725 438501
426405 429524 428737 429044 428845 430388 428200 429321 429886 429472
430308 434216 432099 431680 432345 433041 432139 434523 434105 431202
436642 440171 440174 441664 438725 441037 437488 439062 440081 442024
440930 445900 443867 445170 445219 443812 443648 444357 444299 445169
432876 435264 434452 435075 434655 433631 434701 434806 437318 435536
437286 440819 440918 438439 440992 438621 440484 438530 443779 439693

Problem Set 200 × 10

1281633 1281292 1286077 1283314 1281947 1281401 1280745 1282445 1285819 1281919
1283164 1279913 1285268 1279947 1280799 1280548 1280432 1281886 1279240 1280107
1277933 1280412 1281905 1279882 1282228 1282447 1281843 1284700 1282812 1276690
1271502 1275865 1280417 1280027 1274711 1273979 1274071 1277414 1278833 1280871
1275901 1282570 1276110 1286907 1279126 1280511 1275710 1279823 1277954 1285519
1251213 1252110 1258463 1248655 1252536 1254724 1252145 1248058 1258054 1244667
1304158 1307602 1303545 1311626 1305541 1305201 1306954 1302585 1309672 1309810
1298900 1296591 1301184 1303103 1297501 1295844 1302459 1299302 1296469 1302829
1277801 1270883 1278023 1273946 1270118 1277145 1278259 1277646 1278808 1272519
1273794 1281472 1279452 1284374 1281680 1278887 1282278 1282763 1280799 1283774
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Table 5. Cont.

BKS [41] IVLS VBIH1 VBIH2 VBIH3 VBIH4 VBIH5 VBIH6 DABC_RCT DABC*_RCT

Problem Set 200 × 20

1499623 1505301 1509409 1506809 1503861 1508265 1516354 1511393 1512033 1508941
1541253 1538208 1540131 1531179 1538989 1538626 1538036 1536971 1538890 1534481
1546279 1546915 1553963 1557771 1550237 1553555 1558080 1558445 1559908 1558470
1540822 1542961 1537852 1545112 1544472 1544429 1548607 1547062 1541447 1544097
1514600 1515692 1514609 1520799 1515470 1517899 1520051 1521375 1518989 1520058
1528885 1535006 1533907 1532007 1535114 1534306 1533721 1533357 1543380 1528532
1532090 1535822 1534243 1532903 1536909 1534423 1540592 1540200 1539144 1529204
1543229 1537885 1540539 1542855 1540221 1538906 1541537 1542151 1543159 1543637
1524293 1522771 1517701 1516868 1522958 1525068 1524214 1519558 1524550 1514130
1535329 1533492 1528995 1534456 1534830 1535504 1538711 1536245 1540038 1534682

Problem Set 500 × 20

8719682 8706102 8701976 8693435 8705502 8691397 8704588 8720565 8730777 8702888
8849228 8823698 8804700 8813687 8825577 8816790 8820512 8825084 8908220 8814543
8789777 8745145 8746129 8742781 8728918 8750421 8759822 8746826 8811943 8739388
8828454 8791325 8807711 8793936 8793088 8795242 8807649 8803254 8862426 8795162
8796337 8735014 8722394 8741122 8736988 8755137 8781374 8756332 8791516 8774397
8837577 8804938 8821880 8793126 8803399 8820331 8809748 8824192 8870293 8791898
8729909 8718042 8734168 8734722 8719324 8737033 8750115 8748411 8802463 8733839
8800506 8766044 8756165 8773136 8772308 8774052 8761218 8787988 8796375 8772084
8782791 8739864 8751027 8727721 8743741 8743940 8761953 8747533 8799104 8773353
8849551 8791671 8802420 8780952 8788594 8796622 8810047 8818606 8878995 8805877

Problem Set 200 × 5

1071652 1073055 1072760 1076925 1071889 1073065 1073348 1071170 1071705 1070790
1026640 1026510 1021433 1025826 1025310 1023515 1028051 1024432 1019431 1025138
1059120 1064728 1062714 1064025 1064244 1060982 1065879 1064569 1062759 1061449
1044074 1048420 1051225 1042391 1048350 1049298 1042292 1047066 1048212 1044776
1064274 1064019 1064175 1060847 1064649 1061081 1060213 1062069 1060420 1062216
1021482 1024893 1027578 1029903 1025409 1027670 1029104 1030626 1026561 1029891
1082018 1081107 1079945 1082921 1081033 1081780 1083320 1084464 1083668 1081968
1043921 1047490 1048609 1050141 1045691 1048150 1051041 1048321 1050936 1049380
1057482 1057673 1058438 1056355 1058281 1058369 1056063 1055705 1058199 1059175
1037496 1043719 1043777 1039727 1042310 1045628 1039183 1043266 1036938 1039695

Problem Set 500 × 5

6389122 6375325 6381517 6371100 6371117 6366762 6397170 6387506 6403589 6369864
6415066 6413469 6433713 6392620 6400361 6396807 6432279 6436552 6421048 6392856
6460745 6426771 6426591 6435399 6434882 6434628 6440953 6454047 6478507 6430821
6334201 6303859 6323236 6305175 6306089 6318146 6337465 6334555 6364065 6318682
6373873 6383164 6392640 6369007 6383774 6355801 6408507 6413732 6397351 6369219
6282522 6275452 6281428 6283594 6277932 6274362 6292695 6301826 6302507 6283635
6244926 6262136 6262957 6262423 6260089 6261444 6285376 6273743 6261620 6258574
6352627 6367281 6395544 6370417 6370566 6377367 6376438 6392365 6350755 6366156
6328390 6335967 6342425 6336154 6335220 6343154 6342796 6359365 6354617 6330549
6309180 6309639 6314591 6297997 6307224 6300714 6320912 6323148 6346828 6307074

Problem Set 500 × 10

7552404 7514159 7534854 7522904 7519846 7523259 7533739 7549934 7577869 7541901
7665025 7632382 7633377 7649655 7635561 7622243 7642501 7652010 7658541 7643615
7626599 7590037 7599850 7580415 7588202 7590780 7622675 7622445 7652497 7603273
7626405 7618385 7600996 7633161 7619058 7615308 7645654 7623706 7635679 7635154
7479900 7484025 7468087 7472600 7468703 7478446 7464923 7496738 7504574 7476013
7537299 7548071 7546071 7563456 7551273 7551039 7572887 7566574 7586150 7562912
7510712 7505921 7502693 7490848 7504096 7482595 7478959 7514666 7534649 7491561
7562013 7577902 7599263 7598437 7588036 7598947 7599345 7635525 7607737 7599718
7550242 7538219 7537118 7533874 7539127 7547730 7577922 7574227 7581486 7536618
7549596 7577156 7596351 7588889 7580750 7562898 7611269 7589683 7662823 7594287

Bold: better results, Bold Italic: equal results.
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6. Conclusions

This paper presents a VBIH algorithm to solve the blocking flowshop scheduling problem with
the total flowtime criterion. To the best of our knowledge, this is the first reported application of
the VHIH algorithm to the blocking flowshop scheduling problem with the total flowtime criterion.
Once an initial solution is constructed, the VBIH algorithm begins with a minimum block size of one.
It removes the block from the current sequence and inserts the block into the partial sequence with
a predetermined move size. Then, a variable local search (VLS) is applied to solution obtained after
several block insertions. As long as the solution improves, it keeps the same block size. However, if the
solution does not improve, the block size is increased by one. This process is repeated until the block
size reaches at the maximum block size. In addition, we present a novel constructive heuristic based
on profile fitting heuristic from the literature with results improving especially some larger instances
in a few seconds. Parameters of the constructive heuristic and the VBIH algorithm are determined
through a design of experiment approach. Extensive computational results on Taillard’s well-known
benchmark suite show that the proposed VBIH algorithm outperforms the discrete artificial bee colony
algorithm, which has recently been proposed with the new best known solutions. Ultimately, 52 out of
the 150 best known solutions are further improved with substantial margins.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1999-
4893/9/4/71/s1.
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