
algorithms

Article

A Practical and Robust Execution Time-Frame
Procedure for the Multi-Mode Resource-Constrained
Project Scheduling Problem with Minimal and
Maximal Time Lags

Angela Hsiang-Ling Chen 1,*, Yun-Chia Liang 2,3 and Jose David Padilla 2

1 Department of Marketing and Distribution Management, Nanya Institute of Technology,
Taoyuan 32091, Taiwan

2 Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 32003, Taiwan;
ycliang@saturn.yzu.edu.tw (Y.-C.L.); s1028909@mail.yzu.edu.tw (J.D.P.)

3 Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 32003, Taiwan
* Correspondence: achen@tiit.edu.tw; Tel.: +886-920-776-682

Academic Editor: Henning Fernau
Received: 4 July 2016; Accepted: 16 September 2016; Published: 24 September 2016

Abstract: Modeling and optimizing organizational processes, such as the one represented by
the Resource-Constrained Project Scheduling Problem (RCPSP), improve outcomes. Based on
assumptions and simplification, this model tackles the allocation of resources so that organizations
can continue to generate profits and reinvest in future growth. Nonetheless, despite all of the research
dedicated to solving the RCPSP and its multi-mode variations, there is no standardized procedure
that can guide project management practitioners in their scheduling tasks. This is mainly because
many of the proposed approaches are either based on unrealistic/oversimplified scenarios or they
propose solution procedures not easily applicable or even feasible in real-life situations. In this study,
we solve a more true-to-life and complex model, Multimode RCPSP with minimal and maximal
time lags (MRCPSP/max). The complexity of the model solved is presented, and the practicality of
the proposed approach is justified depending on only information that is available for every project
regardless of its industrial context. The results confirm that it is possible to determine a robust
makespan and to calculate an execution time-frame with gaps lower than 11% between their lower
and upper bounds. In addition, in many instances, the solved lower bound obtained was equal to the
best-known optimum.

Keywords: MRCPSP/max; discrete Artificial Bee Colony (ABC); entropy; robust scheduling

1. Introduction

The main objective of researchers should be to develop methods that expand the industrial
state-of-the-art in order to increase productivity, reduce costs or overall improve the performance
measures. However, these methods must not only be theoretically possible based on models, but must
also be robust, practical and easy to implement for practitioners. In many cases, however, researchers’
models are oversimplified and do not reflect the actual conditions faced by practitioners. Other times,
the proposed solutions are too difficult to implement in real-life situations. This paper examines
one such example, the Resource-Constrained Project Scheduling Problem (RCPSP), which is found
in practically every industry and has long been a focus of interest among the operations research
community. However, despite the high level of interest, no standard framework has emerged to
guide practitioners in creating a project schedule that allocates limited resources in such a way as to:
(1) maximize outcomes; (2) minimize risks of delay or failure; (3) ensure adherence to budgets and

Algorithms 2016, 9, 63; doi:10.3390/a9040063 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2016, 9, 63 2 of 19

schedules; (4) ensure that quality meets expectations; and (5) eliminate the scheduler’s experience as
an impact factor.

Taking these factors into consideration, in a previous study, the authors proposed a methodology
to develop robust, upper-bounded schedules for the Multi-mode RCPSP (MRCPSP), a more realistic
variation of the RCPSP. In this paper, however, the methodology is extended to a considerably more
complicated and true-to-life model, the MRCPSP with minimal and maximal time lags (MRCPSP/max).
The most significant difference between these two models is that, due to its constraints, the
MRCPSP/max presents loops between activities. This means that an activity i can be both a predecessor
and a successor of an activity j. Not only does this condition make the problem more difficult to solve,
but it also resembles a real-life situation, which is not accounted for in the MRCPSP model. On the
other hand, the methodology used only requires inputs that should be included in every project, i.e.,
estimations of activity durations and the set of precedencies that need to be satisfied. The proposed
methodology results in execution time-frames, meaning a makespan range (minimum and maximum
makespan) in which a project can be executed. These schedule execution time-frames usually include
the benchmark’s best-known solution, as the lower bound and the upper bounds are on average no
larger than 11% of their own lower bound. The rest of this article is organized as follows: Section 2
presents a literature review for the characteristics of past models and the solutions proposed in other
studies; Section 3 details the proposed methodology; Section 4 summarizes the results, and conclusions
are presented in Section 5.

2. Literature Review

Project managers in every industry seek to devise schedules that allow the efficient allocation of
limited resources. These schedules are only predictive, and yet, to be applicable in practice, they should
be capable of withstanding variations. Thus, the challenge is to minimize a project’s makespan, while
fully satisfying all of its constraints, including enough buffer time to handle variations, but not so much
as to make it infeasible. Past efforts to address this issue have produced different models, proposed
different objective functions and created an array of solution procedures that help practitioners partially
achieve their scheduling goals. In this section, some of the RCPSP variations, the objective functions
solved and solution procedures proposed are introduced. Two fundamental concepts for the proposed
approach are also discussed.

2.1. The RCPSP and Its Variations

2.1.1. RCPSP

In an oversimplified manner, a project consists of completing a set of tasks, usually in the shortest
possible time, while following established precedence relationships. Techniques like the Critical Path
Method (CPM) and the Program Evaluation and Review Technique (PERT) are easily applicable when
the only constraint is to follow the precedence relations. However executing tasks usually require
resources that are available in limited amounts; some of them renew through periods of time, and some
are only available once throughout the duration of the project. When these two constraints are included
(precedence and resource availability) and each task can be executed in the only way, the scheduling
problem is known as the Resource-Constrained Project Scheduling Problem (RCPSP). The RCPSP
has been thoroughly studied, and it has been proven to be non-deterministic polynomial-time hard,
NP-hard in [1].

In reality, nevertheless, seldom can tasks be completed in only one way. A more realistic
situation is that in which there are different alternatives in which a task can be completed. Ideally,
every alternative leads to a different duration and requires different resources and/or amounts of
resources. This is a generalization of the RCPSP known as the Multi-mode Resource-Constrained
Project Scheduling Problem (MRCPSP), and Kolish proved the NP-hardness of the MRCPSP as a
generalization of the RCPSP in [2].

Algorithms 2016, 9, 63 3 of 19

2.1.2. MRCPSP

Though practical as an initial model, the RCPSP oversimplifies what practitioners face in reality.
Therefore, Elmaghraby introduced the concept of modes to represent the different alternatives in which
an activity can be executed [3]. These modes resemble real-life scenarios where an activity can be
executed faster (at greater resource expense) or slower (and hopefully more economically), depending
on the project manager’s preference and/or the overall project status.

A second characteristic of real-life projects is the inclusion of non-renewable resources. These are
fixed resources (e.g., capital budgets) that (should) extend throughout the project’s duration and
which cannot be replenished once consumed. These two characteristics, along with those already
considered in RCPSP (i.e., precedence constraints, no-preemption, renewable resources, etc.), define
the multi-mode resource-constrained project scheduling problem, a generalization of the RCPSP.

Some of the variations of the MRCPSP include a real-life situation that is commonly executed
when the project is running behind schedule to significantly shorten the activity duration at the expense
of additional cost. This was modeled by the use of special modes called “crashable modes”, introduced
in [4]. A situation in which some activities require personnel with certain skill levels was modeled and
solved in [5]. Additionally, among others, Zu et al. examined a variation of MRCPSP with generalized
resource constraints in [6], while Heilmann, Nonobe and Ibaraki examined precedence constraints
in [7–9], respectively.

2.1.3. MRCPSP/Max

One of the MRCPSP constraints states that the successor of an activity i can only be an activity j
whose index is greater than that of i. The effect of this constraint is that the project can only advance
linearly; thus, there is no way in which an activity j can return to a previously-done activity i. This
constraint limits the representation of situations in which an intermediate activity (e.g., a quality
inspection) must be completed before the current activity can be declared as completed.

Another MRCPSP limitation is that there is no way to specify the time lag (if any) between
activities. In real-life situations, practitioners sometimes will sometimes need to delay the beginning of
an activity depending on how the activity that is currently ongoing is executed. This is represented by
the use of weights on arcs connecting the modes between different activities. Translated to a real-life
scenario, these weights can be thought of as “penalties” for particular execution modes imposed by
the scheduler probably based on soft constraints.

These characteristics distinguish the MRCPSP with minimal and maximal time lags (MRCPSP/max)
from other variations of the MRCPSP. The MRCPSP/max has been studied, though not as extensively
as the single-mode problem with time lags (see [7,8]). Furthermore, one variation where time lags
depend on the mode chosen can be found in [10]. Section 3 will detail the mathematical formulation
and an example for the MRCPSP/max.

2.2. Objectives Solved and Solution Procedures

Though the most solved objective functions for the MRCPSP and its variations are concerned with
the minimization of makespan Kolisch and Padman [11], other performance indicators have also been
considered. Some researchers have examined time performance indicators, such as the components of
lateness, Lj, and the deviation of an activity’s completion time (Cj) from a given due date (dj). Tardiness
(Tj), the positive value of lateness (Cj ≥ dj) and earliness (Ej), the negative value of lateness (Cj ≤ dj),
have been researched within the last 15 years by [12].

Other researchers have focused on financial performance indicators, such as activity and total
project costs. For example, Möhring and Schulz [13,14] and Nonobe and Ibaraki [9] minimized the
costs of activities, while Achuthan and Hardjawidjaja [15] minimized the total project costs based
on earliness and tardiness costs, as well as Dodin and Elimam [16] aimed at minimizing costs for
activity crashing, material costs and inventory holding costs. Another financial indicator used as

Algorithms 2016, 9, 63 4 of 19

an objective function is the maximization of the Net Present Value (NPV), including [17,18]. In [19], they
investigated the negotiation process to find the timing of payments and the amount of each specific
payment between a client (who seeks to minimize its NPV) and a contractor (seeks to maximize NPV).
Furthermore, variations of NPV objective functions can be found in [20]. Dayanand and Padman [21]
treated a similar problem, but restricted themselves to the client’s point of view.

Thanks to significant improvements in computing power and as increased complexity highlights
the limitations of exact methods, many researchers have opted to use time-proven meta-heuristic
algorithms to solve the MRCPSP and its variations. Some meta-heuristic algorithms used with the last
two decades include two versions of the Simulated Annealing (SA) algorithm by [22], a version of the
Genetic Algorithm (GA) developed by [23]. Other approaches include Particle Swarm Optimization
(PSO) by [24] and a combinatorial version for PSO in [25]. Furthermore, many hybrid forms have
been implemented, such as a scatter search algorithm with a path re-linking methodology in [26],
a hybrid Ant Colony Optimization and Scatter Search (ACOSS) in [27], a Tabu Search (TS) with scatter
search implemented by [28], as well as a neuro-genetic approach, which is a hybrid of GA and a neural
network, proposed by [29], and more recently, ANGEL, a hybrid that combines ANt colony, GEnetic
algorithm and Local search can be found in [30]. Finally, the newest meta-heuristic implementations
can be found, including Differential Evolution (DE) [31], Artificial Immune System (AIS) [32] and,
most recently, Estimation of Distribution Algorithm (EDA) [33], the shuffled frog-leaping algorithm
(SFLA) [34], a hybrid EDA with a new local search based on a random walk and the delete-then-insert
operator proposed by [35] along with the use of a discrete version of the ABC algorithm in [36] and
an implementation of a discrete cuckoo search in [37].

2.3. Measuring Uncertainty

Given that project execution is always subject to some degree of uncertainty, much research has
been dedicated to the generation of buffer times to handle eventualities. All of these models present
different advantages, but nearly all present a major drawback in that they are subject to the extent
of the scheduler’s experience. One of the most widely-used approaches is fuzzy systems, which is
especially well-suited to handle vague information. Long and Osato [38] proposed a fuzzy critical
chain method, which developed a desirable deterministic schedule under resource constraints and
added a project buffer to the end of the schedule to deal with uncertainty. In an attempt to handle
uncertainty in activity duration, Chen et al. [39] used fuzzy set theory to represent the uncertainties of
activity duration. Meanwhile, Xu et al. [40] presented a bi-level model for project scheduling in a fuzzy
random environment.

Stochasticity presents a different approach to handle uncertainty. Rabbani et al. [41] developed
a technique for stochastic network resource allocation decisions with imprecise durations for each
activity; Larrañaga and Lozano [42] used the Estimation of Distribution Algorithm (EDA), a kind
of stochastic optimization algorithm based on statistical learning; and most recently, Hao et al. [43]
proposed a multi-objective Estimation Distribution Algorithm (moEDA) to minimize a schedule’s
robustness and expected makespan.

The approach presented here uses the concept of entropy, a key term in thermodynamics, which
does not depend on the scheduler’s experience. In [44], Bushuyev and Sochnev formulated a way to
measure activity entropy as shown in Equation (1), with complete project entropy calculated using
Equation (2). Ei, represents the set of unfavorable events for activity i. The value δt is a relevant time
interval and is dependent on the nature of the project in the sense that its value is negatively correlated
to the level of project risk. From a practitioner’s point of view, we can think of δt as checkpoints
or meetings in which the project manager receives updated project status information. The higher
the risk of a schedule disruption, the more control needs to be exerted, requiring more frequent
updates. For this study, we fixed the value of δt = 1 based on a sensitivity analysis performed in
our previous research. The slack, si, is determined by the standard forward (backward) recursion
procedure. The values diu, di and dil respectively stand for the longest, most probable and shortest

Algorithms 2016, 9, 63 5 of 19

possible durations, while EFT and LFT respectively represent the earliest and latest finish times with
the corresponding durations indexed. Ei results as the time difference between LFTdi

and EFTdiu
,

as shown in Equation (3).

SID = − Ei

(diu − dil) ln
(

δt
diu−dil

) (1)

S = −∑
ID

SID (2)

Ei = (diu − di)− si = EFTdiu − LFTdi (3)

From these equations, one can see that an activity’s entropy depends solely on the range of the
estimation for its duration, i.e., the larger the difference between diu, di and dil, the more uncertain
the scheduler considers the activity to be, and thus, the higher the value of its entropy. Figure 1 gives
a graphical representation of Ei and δt. Here, the solid grey bar represents an activity scheduled with
a most probable duration di, and slack, si, is the time interval between EFTdi

and LFTdi
. The white

bar shows the EFTdil
and EFTdiu

; Ei represents the unfavorable events; and the relevant time interval
parameter defined by the user is shown as δt.

Algorithms 2016, 9, 63 5 of 19

ூܵ஽ = − ௜(݀௜௨ܧ − ݀௜௟) ln ቀ ௜௨݀ݐߜ − ݀௜௟ቁ (1)

ܵ = −෍ ூܵ஽ூ஽ ௜ܧ (2) = (݀௜௨ − ݀௜) − ௜ݏ = ܨܧ ௗܶ௜௨ − ܨܮ ௗܶ௜ (3)

From these equations, one can see that an activity’s entropy depends solely on the range of the
estimation for its duration, i.e., the larger the difference between diu, di and dil, the more uncertain the
scheduler considers the activity to be, and thus, the higher the value of its entropy. Figure 1 gives a
graphical representation of Ei and δt. Here, the solid grey bar represents an activity scheduled with a
most probable duration di, and slack, si, is the time interval between ܨܧ ௗܶ೔	and ܨܮ ௗܶ೔. The white bar
shows the ܨܧ ௗܶ೔೗	 and ܨܧ ௗܶ೔ೠ; Ei represents the unfavorable events; and the relevant time interval
parameter defined by the user is shown as δt.

Figure 1. Graphical representation of Ei and δt.

2.4. Schedule Robustness

The term “schedule robustness” introduced by [45] is “the ability (of a schedule) to cope with
small increases in the time duration of some activities that may result from incontrollable factors”.
Based on this concept, Chtourou and Haouari [46] introduced a schedule robustness measure,
which, in the case of excessively large slack, allows the use of the minimum value between the slack
and a fraction of the activities’ duration (min(si, frac × di)). The user can define the value of frac;
however, based on a sensitivity analysis performed in the authors’ previous study [36], the value of
frac is fixed to 0.25 for the experiments performed in this study. Section 3 explains the use of this
robustness measure in the proposed method.

3. Model and Methodology

3.1. Mathematical Formulation of MRCPSP/Max

For this section, we follow the model presented in [47]. Consider a project with n + 2 activities
belonging to the set V = {0, 1, 2, …, n, n + 1} where activities 0 and n + 1 are dummies that represent
the beginning and end of the project, respectively. Every activity i has to be executed in only one
mode µi	∈ M out of the total available for every activity Mi = {1, …, |Mi|}. The duration of every
activity, ݀௜ఓ೔ , depends on the mode µ selected, and the beginning and end of every activity is
denoted by Si and Ci correspondingly. Therefore, if activity i begins at time Si, it will continue to be
executed in mode µi throughout time t = [Si, Si + ݀௜ஜ೔], so if S0 := 0, then the duration of the project is
given by Sn+1. Between the start times of activities i and j, a time lag p can be included. This time lag is
dependent on the mode µi of activity i and µj of activity j (i ≠ j) and can be maximal ݌௜ఓ೔௝ఓೕ௠௔௫ or
minimal ݌௜ఓ೔௝ఓೕ௠௜௡ .

The activities and time lags are represented by an activity-on-node network N with node set V,
arc set E and arc weight function δ; N = <V, E, δ>. Every element of V represents an activity, and every
element of E represents a time lag that must be observed. Arc weight function δ is a matrix defined
by user preferences that assigns to each arc <i, j> a time lag as follows: for a minimum time lag

Figure 1. Graphical representation of Ei and δt.

2.4. Schedule Robustness

The term “schedule robustness” introduced by [45] is “the ability (of a schedule) to cope with
small increases in the time duration of some activities that may result from incontrollable factors”.
Based on this concept, Chtourou and Haouari [46] introduced a schedule robustness measure, which,
in the case of excessively large slack, allows the use of the minimum value between the slack and
a fraction of the activities’ duration (min(si, frac × di)). The user can define the value of frac; however,
based on a sensitivity analysis performed in the authors’ previous study [36], the value of frac is fixed
to 0.25 for the experiments performed in this study. Section 3 explains the use of this robustness
measure in the proposed method.

3. Model and Methodology

3.1. Mathematical Formulation of MRCPSP/Max

For this section, we follow the model presented in [47]. Consider a project with n + 2 activities
belonging to the set V = {0, 1, 2, . . . , n, n + 1} where activities 0 and n + 1 are dummies that represent
the beginning and end of the project, respectively. Every activity i has to be executed in only one mode
µi ∈M out of the total available for every activity Mi = {1, . . . , |Mi|}. The duration of every activity,
diµi , depends on the mode µ selected, and the beginning and end of every activity is denoted by Si
and Ci correspondingly. Therefore, if activity i begins at time Si, it will continue to be executed in
mode µi throughout time t = [Si, Si + diµi

], so if S0 := 0, then the duration of the project is given by Sn+1.
Between the start times of activities i and j, a time lag p can be included. This time lag is dependent on
the mode µi of activity i and µj of activity j (i 6= j) and can be maximal pmax

iµi jµj
or minimal pmin

iµi jµj
.

The activities and time lags are represented by an activity-on-node network N with node set V,
arc set E and arc weight function δ; N = <V, E, δ>. Every element of V represents an activity, and

Algorithms 2016, 9, 63 6 of 19

every element of E represents a time lag that must be observed. Arc weight function δ is a matrix
defined by user preferences that assigns to each arc <i, j> a time lag as follows: for a minimum time
lag δmin

iµi jµj
pmin

iµi jµj
and for a maximum time lag δmax

iµi jµj
pmax

iµi jµj
. As previously mentioned, the inclusion of

such time lags leads to cycles in N that make the MRCPSP/max problem much more complex than
other versions of MRCPSP.

Furthermore, every non-dummy activity i executed in mode µi consumes rρ
iµik

type k renewable

per period of time out of a total Rρ
k renewable resources available in the project and rv

iµik
nonrenewable

resource out of a total Rv
k . Dummy activities consume no resources and have duration = 0.

A schedule (M, S) consists of a mode vector M and a start time vector S. A mode vector M = (µi)
assigns only one mode µ to every activity i for it to be executed. Each mode vector M has an associated
project, N(M), obtained by choosing the durations, resources and time lags corresponding to the modes
of M. A start time vector S = (Si) assigns to each activity i exactly one point in time t ≥ 0 as start time Si
with S0 := 0.

With A(M, S, t) := {i ∈ V|Si ≤ t < Si + diµ} denoting the set of activities being executed at a time t
for a schedule (M, S), the MRCPSP/max can be stated as follows:

Min Sn+1 (4)

subject to:
Sj − Si ≥ δiµi jµj (< i, j > ∈ E) (5)

∑
i∈A(M,S,t)

rρ
iµk ≤ Rρ

k (k ∈ Rρ; t ≥ 0) (6)

∑
i∈V

rv
iµik ≤ Rv

k (k ∈ Rv) (7)

µi ∈ M (i ∈ V)

Si ≥ 0 (i ∈ V)

S0 = 0

The objective function stated in Equation (4) results in the makespan of an optimal schedule
(M, S) that minimizes the project duration ensuring that the time lags in Equation (5) are observed
while meeting the renewable and nonrenewable resource consumption requirements established in
Equations (6) and (7), respectively. Please refer to Figure 2 and Table 1 for an example of MRCPSP/max.

Algorithms 2016, 9, 63 6 of 19 ߜ௜ఓ೔௝ఓೕ௠௜௡ ≔ ௜ఓ೔௝ఓೕ௠௜௡݌	 and for a maximum time lag ߜ௜ఓ೔௝ఓೕ௠௔௫ ≔ ௜ఓ೔௝ఓೕ௠௔௫݌	 . As previously mentioned, the
inclusion of such time lags leads to cycles in N that make the MRCPSP/max problem much more
complex than other versions of MRCPSP.

Furthermore, every non-dummy activity i executed in mode µi consumes	ݎ௜ஜ೔௞ఘ type k renewable
per period of time out of a total ܴ௞ఘ renewable resources available in the project and ݎ௜ஜ೔௞௩ 	nonrenewable resource out of a total ܴ௞௩ . Dummy activities consume no resources and have
duration = 0.

A schedule (M, S) consists of a mode vector M and a start time vector S. A mode vector M = (µi)
assigns only one mode µ to every activity i for it to be executed. Each mode vector M has an
associated project, N(M), obtained by choosing the durations, resources and time lags corresponding
to the modes of M. A start time vector S = (Si) assigns to each activity i exactly one point in time t ≥ 0
as start time Si with S0 := 0.

With A(M, S, t) := {i ∈ V|Si ≤ t < Si + diµ} denoting the set of activities being executed at a time t
for a schedule (M, S), the MRCPSP/max can be stated as follows: ݊݅ܯ ܵ௡ାଵ (4)

subject to:

௝ܵ − ௜ܵ ൒ ௜ఓ೔௝ఓೕߜ (൏ ݅, ݆ ൐∈ ෍ (5) (ܧ ௜ఓ௞ఘݎ ൑௜∈஺(ெ,ௌ,௧) ܴ௞ఘ (݇ ∈ ܴఘ; ݐ ൒ 0) (6)

෍ݎ௜ఓ೔௞௩ ൑௜∈௏ ܴ௞௩ (݇ ∈ ܴ௩) (7) ߤ௜ ∈ ܯ (݅ ∈ ܸ)

௜ܵ ൒ 0 (݅ ∈ ܸ) ܵ଴ = 0

The objective function stated in Equation (4) results in the makespan of an optimal schedule
(M, S) that minimizes the project duration ensuring that the time lags in Equation (5) are observed
while meeting the renewable and nonrenewable resource consumption requirements established in
Equations (6) and (7), respectively. Please refer to Figure 2 and Table 1 for an example of
MRCPSP/max.

Figure 2. Graphical example of MRCPSP/max.

Table 1 shows an example of an MRCPSP/max instance. Here, all of the activities (except for the
dummies, 1 and 6) can be executed in one out of three modes available. The column "duration”
shows the scheduler’s estimation for the shortest, most probable and longest possible duration, dil, di
and diµ, respectively. Column 	ܴ௞௩ shows the amount of renewable resources consumed by the
activities in each of their modes. Finally, the column “arc weight” shows the time lags when going
from mode ߤi of activity i to mode ߤj of activity j. If the activity i is succeeded by the final dummy

Figure 2. Graphical example of MRCPSP/max.

Table 1 shows an example of an MRCPSP/max instance. Here, all of the activities (except for the
dummies, 1 and 6) can be executed in one out of three modes available. The column "duration” shows
the scheduler’s estimation for the shortest, most probable and longest possible duration, dil, di and diµ,
respectively. Column Rv

k . shows the amount of renewable resources consumed by the activities in each
of their modes. Finally, the column “arc weight” shows the time lags when going from mode µi of
activity i to mode µj of activity j. If the activity i is succeeded by the final dummy activity, only one

Algorithms 2016, 9, 63 7 of 19

arc weight is needed, i.e., Activities 3, 4 and 5. Finally, notice that Activity 4 is also a precedent for
Activity 2, which, as mentioned previously, could not occur in the case of the MRCPSP. This indicates
that Activity 4 is a successor and predecessor of Activity 2 and exemplifies the loops that make the
MRCPSP/max both more realistic and complicated to solve.

Table 1. Illustrative data of MRCPSP/max.

Activity (i) Modes (µi) Duration (dil;di;diu) Rv
k Arc Weights (δ)

1 1 - - (5,3,1); (4,5,5)

2
1 3;3;4 2 (4,1,4); (1,1,7)
2 2;3;4 3 (2,1,4); (1,6,3)
3 1;1;2 4 (−1,2,0); (2,3,7)

3
1 2;3;5 1 (5)
2 2;2;2 3 (1)
3 1;3;5 5 (4)

4
1 3;3;4 3 (1,4,9); (3)
2 2;3;4 3 (7,3,2); (1)
3 1;2;3 4 (1,2,4); (2)

5
1 2;3;3 4 (1)
2 3;3;4 5 (2)
3 1;2;2 7 (3)

6 1 - - -

3.2. Solution Procedure

In [36], the authors introduced a methodology that determined a schedule’s makespan upper
and lower bounds for the MRCPSP. In this study, this methodology is extended to the more complex
MRCPSP/max. The flowchart in Figure 3 depicts a summary of the 3-stage procedure, where MS1,
MS2 and MSR respectively represent the makespan for Stage 1, Stage 2 and Stage 3. The rest of Section 3
presents the details for each of the stages. First, three tools used in two of the stages are presented:
a discrete version created from a powerful optimization algorithm, followed by rules that help select
execution modes (mode selection rules) and rules that help prioritize the activities (activity priority
rules). Finally, how these tools are integrated into the 3-stage procedure is introduced.

Algorithms 2016, 9, 63 7 of 19

activity, only one arc weight is needed, i.e., Activities 3, 4 and 5. Finally, notice that Activity 4 is also
a precedent for Activity 2, which, as mentioned previously, could not occur in the case of the
MRCPSP. This indicates that Activity 4 is a successor and predecessor of Activity 2 and exemplifies
the loops that make the MRCPSP/max both more realistic and complicated to solve.

Table 1. Illustrative data of MRCPSP/max.

Activity (i) Modes (ࣆi) Duration (dil;di;diu) ࢜࢑ࡾ Arc Weights (δ)
1 1 - - (5,3,1); (4,5,5)

2
1 3;3;4 2 (4,1,4); (1,1,7)
2 2;3;4 3 (2,1,4); (1,6,3)
3 1;1;2 4 (−1,2,0); (2,3,7)

3
1 2;3;5 1 (5)
2 2;2;2 3 (1)
3 1;3;5 5 (4)

4
1 3;3;4 3 (1,4,9); (3)
2 2;3;4 3 (7,3,2); (1)
3 1;2;3 4 (1,2,4); (2)

5
1 2;3;3 4 (1)
2 3;3;4 5 (2)
3 1;2;2 7 (3)

6 1 - - -

3.2. Solution Procedure

In [36], the authors introduced a methodology that determined a schedule’s makespan upper
and lower bounds for the MRCPSP. In this study, this methodology is extended to the more complex
MRCPSP/max. The flowchart in Figure 3 depicts a summary of the 3-stage procedure, where MS1,
MS2 and MSR respectively represent the makespan for Stage 1, Stage 2 and Stage 3. The rest of
Section 3 presents the details for each of the stages. First, three tools used in two of the stages are
presented: a discrete version created from a powerful optimization algorithm, followed by rules that
help select execution modes (mode selection rules) and rules that help prioritize the activities
(activity priority rules). Finally, how these tools are integrated into the 3-stage procedure is
introduced.

Figure 3. Flowchart of the 3-stage procedure.

3.2.1. Discrete Artificial Bee Colony

Based on the behavior of honey bee swarms, the artificial bee colony is a population-based
optimization algorithm with several distinct features that make it a good optimization tool [48]. The
main idea behind it is that the search space shared by all of the bees is based on the opinion of
individual bees, which are part of a society. Out of all of the groups in a colony, this algorithm
considers three groups of bees: employed, onlookers and scout bees. Furthermore, in this algorithm,
every solution corresponds to a food source, and the quality of each solution is associated with the

Figure 3. Flowchart of the 3-stage procedure.

3.2.1. Discrete Artificial Bee Colony

Based on the behavior of honey bee swarms, the artificial bee colony is a population-based
optimization algorithm with several distinct features that make it a good optimization tool [48].
The main idea behind it is that the search space shared by all of the bees is based on the opinion
of individual bees, which are part of a society. Out of all of the groups in a colony, this algorithm
considers three groups of bees: employed, onlookers and scout bees. Furthermore, in this algorithm,
every solution corresponds to a food source, and the quality of each solution is associated with the
amount of nectar; the higher the quality of the solution, the more nectar in that food source. The ABC
algorithm incorporates the following phases:

Algorithms 2016, 9, 63 8 of 19

• Initialization: n-dimensional solutions are generated randomly throughout the search space.
After the initialization phase, the algorithm is repeated a Maximum Number of Cycles (MNC),
executing three improvement phases in each cycle:

• Employed bees phase: Each solution (food source) is assigned a bee, which thus becomes an
employed bee. This bee seeks to improve the solution by applying modifications (local search
operators), and the quality (nectar) of the obtained solution is later compared to that of the original
solution. If the modified solution is better, the old solution is forgotten, and the new solution is
memorized. The employed bee will keep modifying the assigned food source until either a better
solution is found or the abandonment limit is reached.

• Onlooker bees phase: After all employed bees have finished their local search cycle, they share
the nectar information of their food sources with the onlookers, each of which then selects a food
source for further exploration based on the following probability:

pi =
fi

∑SN
i=1 fi

(8)

The onlookers tend to choose a food source i with higher probability pi among SN total food
sources, each with a fitness fi.

• Scout bees phase: If the employed and onlooker bees cannot improve a solution after a number
of trials (i.e., they reach the abandonment limit), a scout bee searches for a new food source (i.e.,
a new solution is generated randomly), and the previous food source is abandoned.

Figure 4 shows a flowchart of the ABC algorithm. However, ABC was developed to solve
continuous functions, not the current combinatorial problem. Therefore, a discrete version of the ABC
algorithm is developed by representing every food source in matrix form and using the swap and
insert operators for the local search. Furthermore, to increase the solution search space, the local search
operators are designed to affect either only the mode of execution or the order of the activities along
with their execution modes. This means that an activity list can remain unaltered, in the case that
just the execution mode is selected; or it can be modified if the activity is selected; the factor affected
is selected randomly. If activities are selected (i.e., activity + execution mode), a solution feasibility
procedure is performed by checking the precedence constraints previous to the actual swap and/or
insert. If only execution modes are selected, the activity stays in its current activity list order; the
modes are swapped/inserted; and the resource constraints are checked.

Algorithms 2016, 9, 63 8 of 19

amount of nectar; the higher the quality of the solution, the more nectar in that food source. The ABC
algorithm incorporates the following phases:

• Initialization: n-dimensional solutions are generated randomly throughout the search space.
After the initialization phase, the algorithm is repeated a Maximum Number of Cycles (MNC),
executing three improvement phases in each cycle:

• Employed bees phase: Each solution (food source) is assigned a bee, which thus becomes an
employed bee. This bee seeks to improve the solution by applying modifications (local search
operators), and the quality (nectar) of the obtained solution is later compared to that of the
original solution. If the modified solution is better, the old solution is forgotten, and the new
solution is memorized. The employed bee will keep modifying the assigned food source until
either a better solution is found or the abandonment limit is reached.

• Onlooker bees phase: After all employed bees have finished their local search cycle, they share
the nectar information of their food sources with the onlookers, each of which then selects a
food source for further exploration based on the following probability: ݌௜ = ௜݂∑ ௜݂ௌே௜ୀଵ (7)

The onlookers tend to choose a food source i with higher probability pi among SN total food
sources, each with a fitness fi.

• Scout bees phase: If the employed and onlooker bees cannot improve a solution after a number
of trials (i.e., they reach the abandonment limit), a scout bee searches for a new food source (i.e.,
a new solution is generated randomly), and the previous food source is abandoned.

Figure 4 shows a flowchart of the ABC algorithm. However, ABC was developed to solve
continuous functions, not the current combinatorial problem. Therefore, a discrete version of the
ABC algorithm is developed by representing every food source in matrix form and using the swap
and insert operators for the local search. Furthermore, to increase the solution search space, the local
search operators are designed to affect either only the mode of execution or the order of the activities
along with their execution modes. This means that an activity list can remain unaltered, in the case
that just the execution mode is selected; or it can be modified if the activity is selected; the factor
affected is selected randomly. If activities are selected (i.e., activity + execution mode), a solution
feasibility procedure is performed by checking the precedence constraints previous to the actual
swap and/or insert. If only execution modes are selected, the activity stays in its current activity list
order; the modes are swapped/inserted; and the resource constraints are checked.

Figure 4. Artificial bee colony flowchart. Figure 4. Artificial bee colony flowchart.

Algorithms 2016, 9, 63 9 of 19

Refer to Figure 5 for the following example showing how these operators work: Suppose a swap
between Activities 3 and 7 results in a feasible solution; Figure 5a shows the result of this operation.
If the same two activities are chosen, but only to swap their execution modes, Figure 5b shows the
result. Figure 5c shows a graphical representation of inserting Activity 7 before Activity 4, and finally,
Figure 5d shows the result of inserting the execution mode of Activity 7 before that of Activity 4.

Algorithms 2016, 9, 63 9 of 19

Refer to Figure 5 for the following example showing how these operators work: Suppose a
swap between Activities 3 and 7 results in a feasible solution; Figure 5a shows the result of this
operation. If the same two activities are chosen, but only to swap their execution modes, Figure 5b
shows the result. Figure 5c shows a graphical representation of inserting Activity 7 before Activity 4,
and finally, Figure 5d shows the result of inserting the execution mode of Activity 7 before that of
Activity 4.

(a) Swap operator between Activities 3 and 7.

(b) Swap operator between execution modes of Activities 3 and 7.

(c) Insert operator between Activities 4 and 7.

(d) Insert operator between execution modes of Activities 4 and 7.

Figure 5. Graphical representation of swap and insert operators.

3.2.2. Mode Selection Rules

One of the complexities of the MRCPSP and its variations is the multiple modes available to
execute every activity. Practitioners seldom have sufficient time to simulate or even consider all of
the possible outcomes of selecting different execution modes for every single activity. Instead, they
focus on critical activities and deal with non-critical activities based on either intuition, experience or
simple rules of thumb. In this study, five different Mode Selection Rules (MSR) are employed to
determine the best execution mode for every activity based on different metrics, e.g., duration,
resource consumption and combinations of these two parameters. Table 2 presents the mode
selection rules used in the proposed solution procedure. The Shortest Feasible Mode (SFM) and least
resources proportion were taken from [49]; the remaining three rules were taken from [50]. The
mode selection rule to be used is chosen randomly, and based on this selection, the information of
the mode is used to determine the activity list, resource consumption and, ultimately, the makespan
of the schedule.

One critical factor to take into account when selecting modes is that given that cycles are
allowed in the MRCPSP/max, the fact that the modes selected create cycles of positive length needs
to be considered. A cycle of positive length is that in which the sum of the arc weights of the
activities in the cycle is >0. Cycles of positive length violate the constraint in Equation (5); so, to deal
with this issue, the above-mentioned MSR are used when solving the Best Mode Assignment
Problem (BMAP) introduced in [47], and the approach of using a lower bound determined by
the critical path is followed. Here, the authors view the MRCPSP/max as a mode assignment
problem and propose to look for the best mode for each activity. The key decision variables in this
model are the modes of the activities, and feasible solutions are the mode vectors that are resource
and time feasible.

Figure 5. Graphical representation of swap and insert operators.

3.2.2. Mode Selection Rules

One of the complexities of the MRCPSP and its variations is the multiple modes available to
execute every activity. Practitioners seldom have sufficient time to simulate or even consider all of the
possible outcomes of selecting different execution modes for every single activity. Instead, they focus
on critical activities and deal with non-critical activities based on either intuition, experience or simple
rules of thumb. In this study, five different Mode Selection Rules (MSR) are employed to determine the
best execution mode for every activity based on different metrics, e.g., duration, resource consumption
and combinations of these two parameters. Table 2 presents the mode selection rules used in the
proposed solution procedure. The Shortest Feasible Mode (SFM) and least resources proportion were
taken from [49]; the remaining three rules were taken from [50]. The mode selection rule to be used is
chosen randomly, and based on this selection, the information of the mode is used to determine the
activity list, resource consumption and, ultimately, the makespan of the schedule.

One critical factor to take into account when selecting modes is that given that cycles are allowed
in the MRCPSP/max, the fact that the modes selected create cycles of positive length needs to be
considered. A cycle of positive length is that in which the sum of the arc weights of the activities
in the cycle is >0. Cycles of positive length violate the constraint in Equation (5); so, to deal with
this issue, the above-mentioned MSR are used when solving the Best Mode Assignment Problem
(BMAP) introduced in [47], and the approach of using a lower bound determined by the critical path is
followed. Here, the authors view the MRCPSP/max as a mode assignment problem and propose to
look for the best mode for each activity. The key decision variables in this model are the modes of the
activities, and feasible solutions are the mode vectors that are resource and time feasible.

Algorithms 2016, 9, 63 10 of 19

Table 2. Mode selection rules.

Priority Rule Description

SFM (Shortest Feasible Mode) Find the feasible mode combination for which the makespan
is minimal

LRP (Least Resource Proportion)
Choose the mode that leads to the smallest value of the criterion,

max(
rρ
iµk
Kρ

) ∀ µ

LPSRD (Least Product Sum of Resource and Duration)
For each activity, choose the execution mode that has the
minimum product sum of non-renewable resource usage and its

corresponding mode duration, min ∑Kv

k=1

(
rv

iµk ∗ diµ

)
∀ µ

LTRU (Least Total Resource Usage)
Choose the execution mode that requires the least total
non-renewable usage, min ∑Kv

k=1 rv
iµk ∀ µ

LRS (Least sum of Non-renewable Resource)

Choose the execution mode that requires the least sum of the
ratio of the non-renewable consumption to its corresponding

resource limitation, min ∑Kv

k=1
rv
iµk
Rv

k
∀ µ

3.2.3. Activity Priority Rules

Once the mode for each activity is selected, the order in which the activities will be executed
such that the precedence constraints are not violated needs to be determined. Similar to the way the
MSR are employed to determine the modes, eleven Activity Priority Rules (APR) are used to evaluate
different parameters and to determine how to prioritize the activity list. Table 3 presents the APR
considered in this study:

Table 3. Activity priority rules.

Priority Rule References Description

max ACTIM [51] CPM − LSTi

max GCUMRD [52] The sum of the renewable resource demand of the activity considered and the
renewable resource demands of all its immediate successors

max MTS [53]
∣∣Si
∣∣ the total number of successors for activity i

max MIS [53] |Si | the number of immediate successors for activity i

max ROT [54]
∑Kρ

k=1
rρ
ik

Rρ
k

di
sum of the ratio of the renewable resource requirement over the resource

availability divided by the activity duration for activity i

max WRUP [55] 0.7 ∗ |Si | + 0.3 ∗
∑Kρ

k=1
rρ
ik

Rρ
k

di
, a weighted sum of the number of immediate

successors and an average resource use over all renewable resource types

min EFT [56] EFTi

min LFT [56] LFTi

min SLK [56] LFTi − EFTi

min LNRJ [52]
∣∣NSi

∣∣ the total number of activities that are not precedence related with activity i

min RSM [57] dij = max[0, (EFTi − LSTj)]

3.2.4. Three-Stage Procedure Execution Time-Frame

To determine a project’s execution time-frame, the pseudo-code Algorithm 1 is shown below, and
the details is discussed in the following subsections.

Algorithms 2016, 9, 63 11 of 19

Algorithm 1: Repeat until all instances are solved

Stage 1: Minimize Makespan (Upper Bound Makespan, MS1)
Initialization Phase
While i < population
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)

End
Repeat until MNC
Employed Bees Phase
Onlooker Bees Phase
Scout Bees Phase

End
Stage 2: Compute schedule’s entropy (Upper Bound Makespan)
Stage 3: Maximize Robustness

Initialization Phase
While i < population
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)

End
Repeat until MNC

Employed Bees Phase
Onlooker Bees Phase
Scout Bees Phase

End
End

Stage 1: Lower Bound Makespan

After selecting the execution modes and determining the activity list, the third step is to generate
an actual schedule. Recall that schedules must be time feasible (no cycles of positive length), as well as
resource feasible. A Serial Generation Scheme (SGS), which means that at every time period, only one
activity is considered for scheduling, is employed. If the activity cannot be scheduled in the available
time period, the time advances until the activity can be scheduled. These three steps generate one
initial solution, and this procedure is repeated until the complete population (n initial solutions) has
been generated; this is the initialization phase of the ABC algorithm.

In the employed bees phase, all of the solutions are selected for improvement. If a solution is
not improved with the local search, a counter for solution non-improvement attempts will increase.
If a solution is improved, its counter will be restarted regardless of the number of non-improvement
attempts it had previously. If a solution reaches the abandonment limit for not being improved, this
solution will be marked for replacement, and a new solution will be generated when the scout bees
phase is reached.

The onlooker bees phase makes improvements to solutions based on the probability function
described in Equation (6). With higher solution fitness, the probability for it being selected for
improvement is increased. Similar to the employed bees phase, if the solution selected is not improved
with the local search operators, a counter for solution non-improvement attempts will increase, but it
is restarted if the solution is improved at any point. If a solution reaches the abandonment limit the
solution is marked for replacement by a new solution.

The scout bees phase is the final stage in the combinatorial ABC algorithm developed. In this
stage, all of the solutions that reached the abandonment limit are replaced by new solutions. These
new solutions can be generated either by using the MSR detailed previously or randomly; the way in

Algorithms 2016, 9, 63 12 of 19

which they are determined is selected randomly. These three improvement phases are performed a
maximum number of cycles times, and when this criterion is reached, the schedule with the shortest
makespan is reported as the lower bound for the three-stage procedure (MS1 in Figure 3) and used as
the input for Stage 2.

Stage 2: Upper Bound Makespan

Stage 2 of the proposed methodology calculates the input schedule’s entropy based solely on
the precedence constraints and the three durations (shortest, most probable and longest possible
duration, dil, di, and diu, respectively) estimated for every activity. Here, Equation (3) determines the
set of unfavorable events, and finally, Equation (2) is used for the schedule’s total entropy. As a short
example, assume there is an activity whose selected execution mode requires 7 time units. Furthermore,
the scheduler determined that the activity’s most probable duration (di) was 9 time units and that
the longest possible duration (diu) was 10 time units. This activity happens to be part of the critical
path and, therefore, has slack s = 0. Furthermore, suppose the relevant time interval δt is set to 1.
Therefore, after using Equation (2), the entropy for this activity is 1 time unit. To determine the
complete schedule’s entropy, this same procedure is applied to all project activities. Nonetheless, the
total time added to the current makespan is not necessarily equal to the sum of the entropy for all
activities. If activities have slack greater than their entropy values, these activities will simply be
shifted without affecting the overall makespan. The new entropy-containing makespan will serve
as the upper bound for the execution time-frame and will also serve as an input for Stage 3 (MS2 in
Figure 3).

Stage 3: Robust Makespan

The third and final stage produces a robust makespan using the result of Stages 1 and 2 as input.
Even though Stages 1 and 3 both implement the discrete ABC algorithm, there are two significant
differences: First, all of the initial solutions generated for Stage 3 must be within the minimized
makespan of Stage 1 and the entropy-containing makespan of Stage 2 (MS1 ≤MSR ≤MS2 for all of
the initial solutions i). Second, the objective function in Stage 3 is not to minimize the makespan, but
rather to maximize the makespan’s robustness. Equation (9) shows the objective function solved in
Stage 3:

Max Z =
MI

∑
m=1

I

∑
i=1

(
min

(
siµ,

(
f rac ∗ diµ

))
∗ Nsucci ∗

Rρ

∑
k=1

rρ
iµk

)
(9)

where frac is a threshold (%) of activity duration (0 < frac < 1) set to 0.25 based on the authors’ previous
study [36], Nsucci denotes the number of immediate successors of activity i and sim represents the
slack of activity i if executed in mode µ. Equation (9) establishes that the objective is to maximize the
robustness measure, which is based on the slack of each activity in each available mode.

It is worth noting that the final makespan resulting from Stage 3 cannot be larger than the
makespan resulting from Stage 2, but it could be smaller than that from Stage 1. However, since the
main objective is to produce a robust and practical makespan, the value of the robustness measure (RM),
and not the makespan, determines if this reduced makespan will be used or not. For example, suppose
a Stage 3 schedule has a makespan = 60 and RM = 140 and a Stage 1 schedule has a makespan = 62,
but RM = 154. For this case, even though there is a schedule with lower makespan, 60, the selected
schedule will be the one with makespan 62 because it has a higher RM. At the end of Stage 3, the
schedule reported will be one with maximized robustness and with a makespan at least as low as the
lower bound generated in Stage 1 and at most as high as the entropy-containing schedule generated in
Stage 2.

Algorithms 2016, 9, 63 13 of 19

4. Computational Results

The benchmark sets found in [58] are selected to evaluate the proposed methodology. At the
moment of writing, there were three benchmark sets divided by the number of activities (30, 50
and 100 activities); each set contains 270 instances, and every instance uses three renewable, three
non-renewable and three doubly-constrained resources. Furthermore, every activity can be executed
in anywhere from three to five different modes, except for the dummy (initial and final) activities,
which have only one mode with no duration and no resource consumption.

The experiments conducted were very straight-forward, following the procedures described in
Section 3, and the only additional information used was the parameters used to evaluate the formulas,
which are detailed below. The results from the methodology proposed in this study are not compared
to the results of other approaches because the main objective is not to minimize makespan. The main
objective for this study is introduce a procedure that generates a robust baseline schedule that lie
within a lower and upper bound and which is capable of absorbing variations caused by uncertainty;
to the best of the authors’ knowledge, there are no other papers that present such results. The sole
point of comparison is against the best-known optima, and the results are reported based on the
deviation against these Best-Known Optima (BKO). Additionally, even though the main objective was
not to minimize the makespan, in most of the instances, the best-known solution was reached as the
lower bound. Furthermore, the results presented are based on the schedules’ makespan, but for every
makespan, there was an actual schedule (M, S) generated.

4.1. Parameters

In [36], the authors conducted a sensitivity analysis to determine the values of the parameters to
be used for the ABC algorithm, as well as the entropy and robustness functions. In that study, the best
results were obtained when using higher levels on parameters that increase the search space and using
the lowest levels for those parameters that are linked directly to the solution’s quality. Additionally,
given that this is an extension of that methodology from the MRCPSP to the MRCPSP/max, the same
parameter settings developed and tested in that previous study are adopted here. It is worth noting
that even though the MRCPSP and the MRCPSP/max are initially different models, the parameter
setting for the solution procedure introduced is not affected because for both cases, the use of the
algorithm is only after a mode vector is selected and the activity list is defined, and by this point, the
same objective functions are optimized. Table 4 shows the parameter values used in this study.

Table 4. Parameters used for the ABC algorithm. MNC, Maximum Number of Cycles.

Parameter Value

Population size 30
Abandonment limit 5

MNC 20
δt (relevant time interval) 1

frac 0.25

With these parameters, the method is implemented as described in Section 3: in Stage 1, the
discrete ABC algorithm is used to minimize the instances’ makespan (MS1); this will serve as the lower
bound of the execution time-frame. In Stage 2, the entropy Equation (1) determines the upper bound
(MS2). Finally, in Stage 3, the third makespan is computed also using the discrete ABC algorithm, but
in this stage, seeking to maximize robustness (Equation (9)), while keeping the makespan lower than
the upper bound, though not necessarily higher than the lower bound.

Algorithms 2016, 9, 63 14 of 19

4.2. Results

All of the experiments were run in an Intel (Intel Corporation, Santa Clara, CA, USA) i7 personal
computer with 8 GB of RAM, and the problem was coded using MATLAB R2012a. Table 5 presents
summary statistics from evaluating all 270 instances of every benchmark set. Here, the Average
Deviation (Avg. Dev.) is computed as the average of all of the deviations when evaluating (Ms −M*)
M*, where M* represents the reference makespan when comparing the results of Stage 1 and Stage 3
(M* can be either a confirmed optimal or the Best-Known Makespan), and Ms denotes the makespan
of the current stage. Furthermore, S1, S2 and BKO represent the makespan of Stage 1, Stage 2 and the
Best-Known Optima (BKO), respectively.

From Table 5, it is noticed that the number of optima found decreases as the number of activities
increases. This is because of the increasing complexity of the problem; however, it is worth noting that
these optima can be found in two different stages (Stages 1 and 3), which explains why there can be a
negative average deviation when Stage 3 is compared against Stage 1 (e.g., Column MM100) or Stage 2
(MM30 through MM100). Looking at the last column, the overall average deviation of the schedules
resulting from Stage 1 is 3.06%, which confirms the power of the discrete version of the ABC algorithm
implemented. Furthermore, the average deviation of the schedules resulting from Stage 2 is 9.44%
when compared to the BKO, but only 5.38% when compared against the input received from Stage 1.
Finally, the average deviation of the schedules resulting from Stage 3 is 4.93% when compared to the
BKO, only 0.59% when compared against Stage 1 and −5.16% when compared against Stage 2.

Table 5. Results summary for benchmark instances. Avg. Dev., Average Deviation.

Benchmark Set MM30 MM50 MM100
Overall Average

Optima Found 260 123 84

Stage 1 Avg. Dev. vs. BKO 0.18% 4.57% 4.42% 3.06%

Stage 2 Avg. Dev. vs. BKO 9.69% 10.13% 8.50% 9.44%
Avg. Dev. vs. S1 6.02% 5.84% 4.27% 5.38%

Stage 3
Avg. Dev. vs. BKO 5.04% 5.39% 4.37% 4.93%

Avg. Dev. vs. S1 1.10% 0.79% −0.12% 0.59%
Avg. Dev. vs. S2 −5.36% −5.48% −4.62% −5.16%

In Table 5, the column “overall average” indicates that there is a difference between the instances’
makespan when compare against the BKO. Therefore, to test if this difference is statistically significant,
Table 6 presents the hypotheses to be tested for each benchmark set, and Table 7 summaries the results.

Table 6. Hypotheses tests for each stage against Best-Known Optima (BKO).

H0: µBKO = µS1
H1: µBKO < µS1

H0: µBKO = µS2
H1: µBKO < µS2

H0: µBKO = µS3
H1: µBKO < µS3

Table 7. p-Values for the hypotheses’ tests.

Benchmark Set
p-Value

Stage 1 Stage 2 Stage 3

MM30 0.067 0.000 0.024
MM50 0.057 0.000 0.029
MM100 0.049 0.000 0.047

Algorithms 2016, 9, 63 15 of 19

Based on the p-values obtained for the hypotheses tested, it is concluded that there is not enough
statistical evidence to reject the null hypotheses for Stage1 vs. BKO. This means that the algorithm
implemented is powerful enough to reach the BKO in most of the instances tested. However, when
comparing Stages 2 and 3 against the BKO, the null hypotheses are rejected, and it is concluded that
the makespans for these stages are statistically larger than the BKO. This does make sense because the
input for these two stages is Stage 1, and for the cases in which the BKO was not reached, it is intuitive
to assume that the makespan would be larger than the BKO.

In the proposed approach, however, the focus is not on minimizing the makespan, but rather
on maximizing its robustness. The minimized makespan from Stage 1 is only used as input for the
entropy-containing schedule in Stage 2 and the maximized robustness schedule in Stage 3. Hence, a
further analysis tests if the results for Stages 2 and 3 are statistically different from the result in Stage 1.
Table 8 presents the hypotheses tested, and Table 9 shows the results.

Table 8. Hypotheses tests for each stage against Stage 1.

H0: µS1 = µS2
H1: µS1 < µS2

H0: µS1 = µS3
H1: µS1 < µS3

Table 9. p-Values for hypotheses tests against Stage 1.

Benchmark Set
p-Value

Stage 2 Stage 3

MM30 0.008 0.318
MM50 0.015 0.379

MM100 0.047 0.488

The p-value results in Table 9 show that although the makespans obtained in Stage 3 are statistically
different from the BKO, they are equal to those obtained in Stage 1 because all of the p-values obtained
are greater than the significance level of 0.05. However, it is also noticed that the results obtained for
Stage 2 are statistically different from the results in Stage 1, and so, a further and final analysis tests
if this difference is similar to what is done among project managers in a real scenario. It is common
among practitioners to add somewhat between eight and 15 percent of the budget to their final estimate
in order to have a buffer time in case an uncertainty becomes a real threat. The average deviation
obtained from Stage 2 against that resulting from Stage 1 is tested to see if it is lower than the lowest
used by practitioners. Table 10 presents the final hypothesis tested, and Table 11 shows the results:

Table 10. Hypotheses tests for Stage 2 against Stage 1.

H0: Avg. Dev.S2 − Avg. Dev.S1 = 5%
H1: Avg. Dev.S2 − Avg. Dev.S1 > 5%

Table 11. p-Values for hypotheses tests Stage 2 against Stage 1.

Benchmark Set p-Value

MM30 1
MM50 1
MM100 1

Algorithms 2016, 9, 63 16 of 19

The results in Table 11 confirm that the proposed approach is capable of producing robust baseline
schedule upper bounds that are lower than the lowest common practice followed by practitioners and
which are in practically every case closer to the best know optima instead.

5. Conclusions

Taking the authors’ previous study as a reference, this research extended the methodology to
a more complex and true-to-life MRCPSP/max. Unlike other studies in which the main objective
is simply to minimize a project’s makespan, the objective of this study is to present a practical
methodology to develop robust project execution time-frames. The main motivation for this approach
emerges from the uncertainty that practitioners face in their day-to-day jobs. Regardless of the industry
and the amount of planning spent on them, projects are and will always be subject to a degree of
uncertainty which (foreseen or not) can not only result in delays, but also render projects infeasible.

The main factor that contributes to the proposed methodology’s practicality is the fact that it
only requires inputs that are present for every project: precedence constraints and activity durations.
With this input, the proposed three-stage procedure is able to determine not only a robust baseline
makespan based solely on the project’s inherent entropy, but also determine a range for this makespan,
or as it has been called, a project execution time-frame, because of the lower and upper boundaries
generated. The main limitation of this study, however, is the lack of reference for further comparison
in regards to the robustness of the makespan. Furthermore, although not included in this study, this
procedure can in theory also use other optimization algorithms. As future research, the proposed
procedure will be coded using other proven effective optimization algorithms and compared against
the combinatorial ABC algorithm used here.

Acknowledgments: This work was partially supported by Ministry of Science and Technology in Taiwan
(MOST 103-2221-E-253-005, MOST 104-2221-E-253-002) and the Innovation Center for Big Data and Digital
Convergence at Yuan Ze University.

Author Contributions: All three authors contributed equally to the conception and design of the work.
Angela Hsiang-Ling Chen particularly contributed her knowledge on MRCPSP/max. Yun-Chia Liang’s main
contribution is the development direction of the ABC algorithm. Jose David Padilla performed the experiments
and interpretation of the data, as well as drafted the article. All authors have done critical revision of the
manuscript and final approval of the version together.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ABC Artificial Bee Colony
ACOSS Ant Colony Optimization and Scatter Search
ACTIM Activity Time
ANGEL Ant Colony and Genetic Algorithm with Local Search
APR Activity Priority Rules
BKO Best-Known Optima
BMAP Best Mode Assignment Problem
CPM Differential Evolution
DE Differential Evolution
EDA Estimation of Distribution Algorithm
EFTi Earliest Finish Time of activity i
GCUMRD Greatest Cumulative Resource Demand
LFTi Latest Finish Time of activity i
LNRJ Least Non-Related Jobs
LPSRD Least Product Sum of Resource and Duration
LRP Least Resource Proportion
LRS Least sum of Non-renewable Resource
LTRU Least Total Resource Usage
MIS Most Immediate Successors
MNC Maximum Number of Cycles
moEDA Multi-Objective Estimation Distribution Algorithm
MRCPSP Multi-mode Resource Constrained Project Scheduling Problem

Algorithms 2016, 9, 63 17 of 19

MRCPSP/max Multimode RCPSP with minimal and maximal time lags
MSi Makespan of Stage i
MSR Mode Selection Rules
MTS Most Total Successors
NP-Hard Non-deterministic polynomial time hard
NPV Net Present Value
PERT Program Evaluation and Review Technique
PSO Particle Swarm Optimization
RCPCP Resource Constrained Project Scheduling Problem
ROT Resource Over Time
RSM Resource Scheduling Method
SA Simulated Annealing
SFLA Shuffled Frog-Leaping Algorithm
SFM Shortest Feasible Mode
SGS Serial Generation Scheme
SLK Minimum Slack First
TS Tabu Search
WRUP Weighted Resource Utilization Ratio and Precedence

References

1. Blazewicz, J.; Lenstra, J.K.; Kan, A.H.G. Scheduling subject to resource constraints: Classification and
complexity. Discret. Appl. Math. 1983, 5, 11–24. [CrossRef]

2. Kolisch, R. Project Scheduling under Resource Constraints—Efficient Heuristics for Several Problem Cases;
Physica-Verlag: Heidelberg, Germany, 1995.

3. Elmaghraby, S.E. Activity Networks: Project Planning and Control by Network Models; Wiley: New York, NY,
USA, 1977.

4. Erenguc, S.S.; Ahn, T.; Conway, D.G. The resource constrained project scheduling problem with multiple
crashable modes: An exact solution method. Nav. Res. Logist. 2001, 48, 107–127. [CrossRef]

5. Bellenguez, O.; Néron, E. Lower bounds for the multi-skill project scheduling problem with hierarchical
levels of skills. Lect. Notes Comput. Sci. 2005, 3616, 229–243.

6. Zhu, G.; Bard, J.F.; Yu, G. A branch-and-cut procedure for the multimode resource-constrained
project-scheduling problem. INFORMS J. Comput. 2006, 18, 377–390. [CrossRef]

7. Heilmann, R. Resource-constrained project scheduling: A heuristic for the multi-mode case. OR Spektrum
2001, 23, 335–357. [CrossRef]

8. Heilmann, R. A branch-and-bound procedure for the multi-mode resource-constrained project scheduling
problem with minimum and maximum time lags. Eur. J. Oper. Res. 2003, 144, 348–365. [CrossRef]

9. Nonobe, K.; Ibaraki, T. A metaheuristic approach to the resource constrained project scheduling with variable
activity durations and convex cost functions. In Perspectives in Modern Project Scheduling; Springer: New York,
NY, USA, 2006; pp. 225–248.

10. Sabzehparvar, M.; Seyed-Hosseini, S.M. A mathematical model for the multimode resource-constrained
project scheduling problem with mode dependent time lags. J. Supercomput. 2008, 44, 257–273. [CrossRef]

11. Kolisch, R.; Padman, R. An integrated survey of deterministic project scheduling. Omega 2001, 29, 249–272.
[CrossRef]

12. Kolisch, R. Integrated scheduling, assembly area- and part-assignment for large-scale, make-to-order
assemblies. Int. J. Prod. Econ. 2000, 64, 127–141. [CrossRef]

13. Möhring, R.H.; Schulz, A.S.; Stork, F.; Uetz, M. On project scheduling with irregular starting time costs.
Oper. Res. Lett. 2001, 28, 149–154. [CrossRef]

14. Möhring, R.H.; Schulz, S.A.; Stork, F.; Uetz, M. Solving project scheduling problems by minimum cut
computations. Manag. Sci. 2003, 49, 330–350.

15. Achuthan, N.; Hardjawidjaja, A. Project scheduling under time dependent costs—A branch and bound
algorithm. Ann. Oper. Res. 2001, 108, 55–74. [CrossRef]

16. Dodin, B.; Elimam, A.A. Integrated project scheduling and material planning with variable activity duration
and rewards. IIE Trans. 2001, 33, 1005–1018. [CrossRef]

17. Kimms, A. Maximizing the net present value of a project under resource constraints using a Lagrangian
relaxation based heuristic with tight upper bounds. Ann. Oper. Res. 2001, 102, 221–236. [CrossRef]

http://dx.doi.org/10.1016/0166-218X(83)90012-4
http://dx.doi.org/10.1002/1520-6750(200103)48:2<107::AID-NAV1>3.0.CO;2-9
http://dx.doi.org/10.1287/ijoc.1040.0121
http://dx.doi.org/10.1007/PL00013354
http://dx.doi.org/10.1016/S0377-2217(02)00136-4
http://dx.doi.org/10.1007/s11227-007-0158-9
http://dx.doi.org/10.1016/S0305-0483(00)00046-3
http://dx.doi.org/10.1016/S0925-5273(99)00052-3
http://dx.doi.org/10.1016/S0167-6377(01)00064-5
http://dx.doi.org/10.1023/A:1016046625583
http://dx.doi.org/10.1080/07408170108936891
http://dx.doi.org/10.1023/A:1010962300979

Algorithms 2016, 9, 63 18 of 19

18. Padman, R.; Zhu, D. Knowledge integration using problem spaces: A study in resource-constrained project
scheduling. J. Sched. 2006, 9, 133–152. [CrossRef]

19. Ulusoy, G.; Cebelli, S. An equitable approach to the payment scheduling problem in project management.
Eur. J. Oper. Res. 2000, 127, 262–278. [CrossRef]

20. Vanhoucke, M.; Demeulemeester, E.L.; Herroelen, W.S. Maximizing the net present value of a project with
linear time-dependent cash flows. Int. J. Prod. Res. 2001, 39, 3159–3181. [CrossRef]

21. Dayanand, N.; Padman, R. Project contracts and payment schedules: The client’s problem. Manag. Sci. 2001,
47, 1654–1667. [CrossRef]

22. Józefowska, J.; Mika, M.; Różycki, R.; Waligóra, G.; Węglarz, J. Simulated annealing for multi-mode
resource-constrained project scheduling. Ann. Oper. Res. 2001, 102, 117–155. [CrossRef]

23. Hartmann, S. A self-adapting genetic algorithm for project scheduling under resource constraints. Nav. Res.
Logist. 2002, 49, 433–448. [CrossRef]

24. Zhang, H.; Tam, C.M.; Li, H. Multimode project scheduling based on particle swarm optimization.
Comput.-Aided Civ. Infrastruct. 2006, 21, 90–103. [CrossRef]

25. Jarboui, B.; Damak, N.; Siarry, P.; Rebaic, A. A combinatorial particle swarm optimization for solving
multi-mode resource-constrained project scheduling problems. Appl. Math. Comput. 2008, 95, 299–308.
[CrossRef]

26. Ranjbar, M.; de Reyck, B.; Kianfar, F. A hybrid scatter search for the discrete time/resource trade-off problem
in project scheduling. Eur. J. Oper. Res. 2009, 193, 35–48. [CrossRef]

27. Shi, Y.J.; Chen, W.; Teng, H.; Lan, X.; Hu, L. An efficient hybrid algorithm for resource-constrained project
scheduling. Inf. Sci. 2010, 180, 1031–1039.

28. Carazo, A.F.; Gómez, T.; Molina, J.; Hernández-Díaz, A.G.; Guerrero, F.M.; Caballero, R. Solving a
comprehensive model for multi-objective project portfolio selection. Comput. Oper. Res. 2010, 37, 630–639.
[CrossRef]

29. Agarwal, A.; Colak, S.; Erenguc, S. A neurogenetic approach for the resource-constrained project scheduling
problem. Comput. Oper. Res. 2011, 38, 44–50. [CrossRef]

30. Chen, S. Application of the Metaheuristic ANGEL in Solving Multiple Projects Resource-Contraines Project
Scheduling Problem with Total Tardy Cost. In Proceedings of the 2014 7th International Conference on
Ubi-Media Computing and Workshops, Ulaanbaatar, Mongolia, 12–14 July 2014; pp. 43–46.

31. Damak, N.; Jarboui, P.; Siarry, T. Loukila Differential evolution for solving multimode resource-constrained
project scheduling problems. Comput. Oper. Res. 2009, 205, 2653–2659. [CrossRef]

32. Van Petegehm, V.; Vanhoucke, M. An artificial immune system for the multimode resource-constrained
project scheduling problem. Lect. Notes Comput. Sci. 2009, 5482, 85–96.

33. Wang, L.; Fang, C. An effective estimation of distribution algorithm for the multimode resource constrained
project scheduling problem. Comput. Oper. Res. 2012, 39, 449–460. [CrossRef]

34. Fang, C.; Wang, L. An effective shuffled frog-leaping algorithm for resource-constrained project scheduling
problem. Comput. Oper. Res. 2012, 39, 890–901. [CrossRef]

35. Soliman, O.S.; Elgendi, E. A hybrid estimation of distribution algorithm with random walk local search for
multi-mode resource-constrained project scheduling problems. Int. J. Comput. Trends Technol. 2014, 8, 57–64.
[CrossRef]

36. Chen, A.H.L.; Liang, Y.C.; Padilla, J.D. An Entropy-Based Upper Bound Methodology for Robust Predictive
Multi-Mode RCPSP Schedules. Entropy 2014, 16, 5032–5067. [CrossRef]

37. Bibiks, K.; Hu, F.; Li, J.; Smith, A. Discrete Cuckoo Search for Resource Constrained Project Scheduling
Problem. In Proceedings of the 2015 IEEE 18th International Conference on Computational Science and
Engineering, Porto, Portugal, 21–23 October 2015; pp. 240–245.

38. Long, L.D.; Ohsato, A. Fuzzy critical chain method for project scheduling under resource constraints and
uncertainty. Int. J. Proj. Manag. 2008, 26, 688–698. [CrossRef]

39. Chen, W.M.; Xiao, R.; Lu, H. A chaotic PSO approach to multi-mode resource-constraint project scheduling
with uncertainty. Int. J. Comput. Sci. Eng. 2011, 6, 5–15. [CrossRef]

40. Xu, J.; Ma, Y.; Zehui, X. A Bilevel Model for Project Scheduling in a Fuzzy Random Environment. IEEE Trans.
Syst. Man Cybern. 2015, 45, 1322–1335. [CrossRef]

41. Rabbani, M.; Ghomi, S.M.T.F.; Jolai, F.; Lahiji, N.S. A new heuristic for resource-constrained project scheduling
in stochastic networks using critical chain concept. Eur. J. Oper. Res. 2006, 176, 794–808. [CrossRef]

http://dx.doi.org/10.1007/s10951-006-6776-x
http://dx.doi.org/10.1016/S0377-2217(99)00499-3
http://dx.doi.org/10.1080/00207540110056919
http://dx.doi.org/10.1287/mnsc.47.12.1654.10242
http://dx.doi.org/10.1023/A:1010954031930
http://dx.doi.org/10.1002/nav.10029
http://dx.doi.org/10.1111/j.1467-8667.2005.00420.x
http://dx.doi.org/10.1016/j.amc.2007.04.096
http://dx.doi.org/10.1016/j.ejor.2007.10.042
http://dx.doi.org/10.1016/j.cor.2009.06.012
http://dx.doi.org/10.1016/j.cor.2010.01.007
http://dx.doi.org/10.1016/j.cor.2008.11.010
http://dx.doi.org/10.1016/j.cor.2011.05.008
http://dx.doi.org/10.1016/j.cor.2011.07.010
http://dx.doi.org/10.14445/22312803/IJCTT-V8P111
http://dx.doi.org/10.3390/e16095032
http://dx.doi.org/10.1016/j.ijproman.2007.09.012
http://dx.doi.org/10.1504/IJCSE.2011.041207
http://dx.doi.org/10.1109/TSMC.2015.2406863
http://dx.doi.org/10.1016/j.ejor.2005.09.018

Algorithms 2016, 9, 63 19 of 19

42. Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation;
Genetic Algorithms and Evolutionary Computation Series; Kluwer Academic Publishers: Boston, MA,
USA, 2002.

43. Hao, X.; Lin, L.; Gen, M. An effective multi-objective EDA for robust resource constrained project scheduling
with uncertain durations. Procedia Comput. Sci. 2014, 36, 571–578. [CrossRef]

44. Bushuyev, S.; Sochnev, S. Entropy measurement as a project control tool. Int. J. Proj. Manag. 1999, 17, 343–350.
[CrossRef]

45. Al-Fawzan, M.A.; Haouari, M. A bi-objective model for robust resource-constrained project scheduling.
Int. J. Prod. Econ. 2005, 96, 175–187. [CrossRef]

46. Chtourou, H.; Haouari, M. A two stage priority rule based algorithm for robust resource constrained project
scheduling. Comput. Ind. Eng. 2008, 55, 183–194. [CrossRef]

47. Barrios, A.; Ballestin, F.; Valls, V. A double genetic algorithm for the MRCPSP/max. Comput. Oper. Res. 2011,
38, 33–43. [CrossRef]

48. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Erciyes University: Erciyes,
Turkey, 2005.

49. Boctor, F.F. Heuristics for Scheduling Projects with Resource Restrictions and Several Resource-Duration
Modes. Int. J. Prod. Res. 1993, 31, 2547–2558. [CrossRef]

50. Chen, A.H.L.; Chyu, C.C. A Memetic Algorithm for Maximizing Net Present Value in Resource-Constrained
Project Scheduling Problem. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation,
Hong Kong, China, 1–6 June 2008.

51. Brooks, G.H.; White, C.R. An algorithm for finding optimal or near-optimal solutions to the production
scheduling problem. J. Ind. Eng. 1965, 16, 34–40.

52. Demeulemeester, E.L.; Herroelen, W.S. Project Scheduling: A Research Handbook; Springer: New York, NY,
USA, 2006; Volume 49.

53. Alvarez-Valdés, R.; Tamarit, J.M. Heuristic Algorithms for Resource-Constrained Project Scheduling:
A Review and Empirical Analysis. In Advances in Project Scheduling; Slowinski, R.A.J.W., Ed.; Elsevier:
Amsterdam, The Netherlands, 1989; pp. 113–134.

54. Elsayed, E.A. Algorithms for Project Scheduling with Resource Constraints. Int. J. Prod. Res. 1982, 20, 95–103.
[CrossRef]

55. Ulusoy, G.; Özdamar, L. Heuristic performance and network/resource characteristics in resource constrained
projects scheduling. J. Oper. Res. Soc. 1989, 40, 1145–1152. [CrossRef]

56. Davis, E.W.; Patterson, J.H. A comparison of heuristic and optimum solutions in resource constrained project
scheduling. Manag. Sci. 1975, 21, 944–955. [CrossRef]

57. Brand, J.D.; Meyer, W.L.; Shaffer, L.R. The Resource Scheduling Problem in Construction; University of Illinois:
Urbana, IL, USA, 1964.

58. IfW: Multi Mode Project Duration Problem MRCPSP/Max. Available online: http://www.wiwi.tu-
clausthal.de/en/chairs/produktion/research/research-areas/project-generator/mrcpsp5max/ (accessed on
21 September 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2014.09.056
http://dx.doi.org/10.1016/S0263-7863(98)00049-0
http://dx.doi.org/10.1016/j.ijpe.2004.04.002
http://dx.doi.org/10.1016/j.cie.2007.11.017
http://dx.doi.org/10.1016/j.cor.2009.09.019
http://dx.doi.org/10.1080/00207549308956882
http://dx.doi.org/10.1080/00207548208947751
http://dx.doi.org/10.1057/jors.1989.196
http://dx.doi.org/10.1287/mnsc.21.8.944
http://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/project-generator/mrcpsp5max/
http://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/project-generator/mrcpsp5max/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	The RCPSP and Its Variations
	RCPSP
	MRCPSP
	MRCPSP/Max

	Objectives Solved and Solution Procedures
	Measuring Uncertainty
	Schedule Robustness

	Model and Methodology
	Mathematical Formulation of MRCPSP/Max
	Solution Procedure
	Discrete Artificial Bee Colony
	Mode Selection Rules
	Activity Priority Rules
	Three-Stage Procedure Execution Time-Frame

	Computational Results
	Parameters
	Results

	Conclusions

