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Abstract: When developing a fully automatic system for evaluating motor activities performed
by a person, it is necessary to segment and recognize the different activities in order to focus
the analysis. This process must be carried out by a Human Activity Recognition (HAR) system.
This paper proposes a user adaptation technique for improving a HAR system based on Hidden
Markov Models (HMMs). This system segments and recognizes six different physical activities
(walking, walking upstairs, walking downstairs, sitting, standing and lying down) using inertial
signals from a smartphone. The system is composed of a feature extractor for obtaining the most
relevant characteristics from the inertial signals, a module for training the six HMMs (one per activity),
and the last module for segmenting new activity sequences using these models. The user adaptation
technique consists of a Maximum A Posteriori (MAP) approach that adapts the activity HMMs to the
user, using some activity examples from this specific user. The main results on a public dataset have
reported a significant relative error rate reduction of more than 30%. In conclusion, adapting a HAR
system to the user who is performing the physical activities provides significant improvement in the
system’s performance.
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1. Introduction

The research on multisensor networks has increased significantly in the last 10 years, defining the
Internet of Things (IoT) concept. These networks typically include cameras, indoor location systems
(ILS), microphones, wearable sensors, etc. Using the information from sensors, computer-based
systems can adapt their behaviors to the context conditions (increasing their intelligence) or they can
report important information to the user (difficult to obtain through other means). Thanks to the
increment of sensor neural networks, the number of possible research areas has also increased rapidly.
One of these areas is psycho-motor training where an automatic system senses a psychical activity
carried out by a person and provides feedback about the performance. When developing a fully
automatic system for evaluating motor activities, one important aspect is to segment and recognize the
different activities in order to focus the system analysis on some specific ones. This process must be
carried out by a Human Activity Recognition (HAR) system. The recognition of human activities has
received a lot of attention in the last five years due to the high number of promising applications and
the increasing interest shown by government and commercial organizations.

This paper proposes a user adaptation technique for improving a HAR system based on Hidden
Markov Models (HMMs). This system segments and recognizes six different physical activities
(walking, walking upstairs, walking downstairs, sitting, standing and lying down) using inertial
signals from a smartphone. This paper is organized as follows. Section 2 presents the state of the art.
Section 3 shows an overview of the HMMs-based HAR system, describing the main modules. Section 4
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describes the user Maximum A Posteriori (MAP) adaptation. Section 5 presents the experiments
carried out in this work, including a detailed description of the dataset used in the experiments. The
main discussions and conclusions are summarized in Section 6.

2. Background

HAR systems can be categorized according to the sensor type or the machine learning algorithm.
According to the sensor type, it is possible to consider various types of sensors: on-body, object-placed
or ambient sensors. On example of environment sensors is video cameras in monitoring areas [1,2].
Human activity can be also analyzed based on a rich variety of acoustic events. The determination
of both the identity of sounds and their position in time may help to detect and describe that human
activity [3]. Most environment sensors require an important infrastructure support: for example, the
installation of video cameras in the monitoring areas. Additionally, people not always spend all their
time in the same environment. In this respect, environmental sensors are limited by their infrastructure
and cannot provide monitoring outside the specific environment. This limitation can be overtaken
using on-body sensors [4,5]. Body-worn sensors add new possibilities to the human monitoring
system [6]: not only by being able to measure body signals (e.g., physiological, motion, location) but
also by providing portable and off-site user supervision at any location without the need of fixed
infrastructure. In the literature there are different approaches for locating motion sensors in different
body parts such as the waist, wrist, chest and thighs achieving good classification performance [7–9].
In [10], a chest-mounted accelerometer was used for classifying five Activities of Daily Living (ADL).
However, the use of body sensors has important limitations such as the user’s discomfort while
wearing them (these sensors are usually uncomfortable for the common user) and energy-limited
mobile devices (they do not provide a long-term solution for activity monitoring).

In recent years, smartphones and smartwatches have become widespread, increasing the number
of possibilities for human-centered applications. These devices include embedded built-in sensors
such as microphones, dual cameras, accelerometers, gyroscopes, etc. The inertial sensors are a
very interesting for monitoring ADL. These devices have important advantages [11,12]: easy device
portability, unobtrusive sensing provided by the embedded sensors and the processing power of new
smartphones that allow online computation. Because of this, some works focused on HAR using
smartphones have been developed [13–17].

HAR is a machine learning problem, where a system extracts features from sensor signals,
generates a model for each activity, and classifies the next activities based on these models. In the
literature, different machine learning solutions have been applied to the recognition of activities
including Naive Bayes [18], Decision Trees [19], and Support Vector Machines (SVMs) [20]. In many
works, several approaches are compared: for example, Yang [21] uses the WEKA learning toolkit
to compare the accuracy rates of several machine learning approaches: C4.5 Decision Trees, Naïve
Bayes, k-Nearest Neighbor, and Support Vector Machines. In [13], three learning algorithms were
evaluated: Logistic Regression, J48, and Multilayer Perceptron. Hidden Markov Models is a successful
modeling strategy for classifying temporal sequences. HMMs offer dynamic time warping, have
clear Bayesian semantics and well-understood training algorithms. HMMs are very robust against
degradation, giving the possibility to be trained on one person and to be tested on another. In the last
five years, there has been an increase in the number of HAR systems based on HMMs for modeling
inertial signals (Table 1).
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Table 1. Comparison of previous HAR works based on HMMs.

Ref. Sensor Target Classes Users Time User Adaptation Performance

Mannini and Sabatini [11]
Five bi-axial accelerometers,
located at the hip, wrist,
arm, ankle and thigh

Activity recognition
and segmentation 7 activities 13 29 min NO Error: 1.6%

Lee and Cho [22] Accelerometer in a
LG smartphone Activity recognition 7 activities 3 339 min NO Error: 15.0%

Reddy et al. [23] Accelerometer in a Nokia n95 Transportation mode
recognition 5 modes 16 1200 min NO Precision and Recall > 93%

Wang et al. [24] Tri-axial accelerometer
(MMA7260) Activity recognition 6 activities 13 ~100 min NO Error: 2.8%

Witowski et al. [25] Simulated data Detecting physical activity
2 sedentary
behavior vs.

physical activity
- 1000 days NO Error: 18.8%

Trabelsi et al. [26] Three MTx 3-DOF (Degree of
Freedom) inertial trackers

Activity recognition
and segmentation 12 activities 6 ~100 min NO Error: 9.6%

San-Segundo et al. [17] Accelerometer in a
Samsung Galaxy S2

Activity recognition
and segmentation 6 activities 30 220 min NO Error: 3.5% (without

sequence model)

This paper Accelerometer in a
Samsung Galaxy S2

Activity recognition and
segmentation 6 activities 30 220 min YES Error: 2.0%
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According to Table 1, this work is the first one (known by the authors) that proposes a user
adaptation technique for improving the performance of a HMMs-based HAR system. In the literature
there are some references proposing other user adaptation techniques: a semi-supervised method [27]
or a Multi-Classifier Adaptive-Training (MCAT) algorithm [28]. The MCAT algorithm consists of using
a meta-classifier for combining several pattern recognition methods. This meta-classifier is trained
with user-dependent adaptation data to improve the results for a specific user.

3. HAR System Overview

Figure 1 shows the general system architecture presented in [17], including an additional module
for user MAP adaptation. The system is made up of four main modules: feature extraction, HMMs
training, HMMs adaptation and activity recognition/segmentation. The main contributions of this
paper are focused on HMMs training and adaptation modules. In order to consider only the influence
of the HMMs in the results, the Activity Sequence Model (ASM) proposed in [17] has been deactivated
in this work.
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The feature extraction module obtains the accelerometer and gyroscope signals, samples them
with a sampling rate of 50 Hz and filters them for noise reduction (with a 20 Hz cut-off frequency).
This sampling rate is sufficient for capturing human body motion: more than 95% of its energy is
contained below 15 Hz [5]. Using a Butterworth low-pass filter (with a 0.3 Hz cut-off frequency),
the sensor acceleration signals are divided into body acceleration and gravity. The Euclidean magnitude
and time derivatives (jerk da/dt and angular acceleration dw/dt) are also obtained during the feature
extraction process.

The sample sequences are grouped together in frames: fixed-width sliding windows of 2.56 s
and 50% overlap (128 samples per frame with an overlap of 64 samples). From each frame, the
system obtains a feature vector computing measures from the inertial signals. These features are
traditional measures such as the mean, correlation, signal magnitude area (SMA) and auto regression
coefficients [29]. This vector has been extended including more features from time and frequency
domains generating a vector with a total of 561 features. The dataset used in this work (available at the
UCI Machine Learning Repository) includes the already-computed feature vectors. For comparison,
this work uses the same features proposed in [30]. The set of features computed from the time domain
are mean, standard deviation, median absolute deviation, max, min, magnitude, energy, interquartile
range, entropy, autoregression coefficients with the Burg order equal to 4, and the correlation coefficient
between different axis. The set of features obtained from the frequency domain includes additional
ones such as the index of the frequency component with the largest magnitude, the weighted average
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of the frequency components, skewness, kurtosis and the energy in 64 bins covering the whole signal
frequency range.

For HMMs development, we used the HTK toolkit [31]. This toolkit allows us to train the HMMs,
adapt them to a new user, and recognize new activities using these HMMs. In the HAR used in
this work, six HMMs are considered, one for every activity. Every model represents the sequence
of observed feature vectors corresponding to each activity. Given a vector sequence, it is compared
to all the models, computing their likelihood. The model with the highest likelihood is the activity
recognized. A HMM can be seen as a finite state machine in which all the states can change every
time unit t. Every state j generates a feature vector Ot considering a probability density bj(Ot). There
is also a probability to control transitions between states. For example, the transition between state i
a state j can be governed by the discrete probability aij. Figure 2 represents a HMM with six states,
associated with a sequence of six observations O1 to O6. In HTK, the entry and exit states of a HMM
are non-emitting. This is to facilitate the construction of composite models (out of the scope of this
paper). The association between the observed vector and states is X = 1; 2; 3; 3; 4; 5; 5; 6.
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Figure 2. Example of a Hidden Markov Model.

The joint probability that O is generated by the model M moving through the state sequence X is
calculated simply as the product of the transition probabilities and the output probabilities:

P(O, X/M) = a12b2(O1)a23b3(O2)a33b3(O3)... (1)

In a real application, only the observation sequence O is known and the underlying state sequence
X is hidden. In this case, the required likelihood is computed by considering only the most likely state
sequence. The main parameters of every model are aij and bj(Ot). The output distribution bj(Ot) can be
modeled by using Gaussian mixtures, reducing the model parameters to the mean and variance of
every Gaussian distribution. The model parameters can be determined automatically through a robust
and efficient re-estimation procedure (estimation maximization, EM) considering a set of training
examples corresponding to a particular activity:

(1) Initialize all Gaussian distributions with the mean and variance computed throughout the
whole dataset.

(2) Calculate the forward and backward probabilities for all states j and times t.
(3) For each state j and time t, use the probability Lj(t) and the current observation vector Ot to

update the accumulators for that state.
(4) Use the final accumulator values to calculate new parameter values.
(5) If the value of P = P(O/M) for this iteration is not higher than the value at the previous iteration,

then stop; otherwise, repeat the aforementioned steps using the new re-estimated parameter
values (from step 2).

In the estimation maximization (EM) algorithm, the main target is to maximize the likelihood
of an activity respect to its HMM: Maximum Likelihood Estimation (MLE). In some applications, it
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is possible to consider a discriminative training procedure. In this procedure, the main target is to
maximize the differences between models. The HTK toolkit includes a tool for training HMMs in a
discriminative way. In this work, the Maximum Mutual Information Estimation (MMIE) discriminative
procedure has also been evaluated [32]. In this procedure, the main difference compared to MLE is the
objective function to be optimized. In the case of the MMIE, the function to maximize is:

FMMIE = ∑
i=activities

log
P(Oi, Xi/Mi)

∑
n=activities sequences

P(Oi, Xn/Mi)
(2)

The first term in the numerator is identical to the objective function for the MLE. In order to
maximize Equation (2), the numerator must be increased while the denominator is decreased. Similar to
the MLE, the MMIE has the target to maximize the likelihood of each observation given by the training
sequences. In addition, the MMIE has a denominator term that can be reduced by decreasing the
probabilities of other possible activity sequences. In conclusion, the MMIE attempts make the correct
hypothesis more probable, and at the same time, it tries to make incorrect hypotheses less probable.

Continuous activity recognition and segmentation involves connecting several HMMs in sequence.
In the HTK toolkit, the Viterbi algorithm is expanded to allow several models to be connected in the
search space: the last state of every model is connected with the first state of all models (Figure 3).
Each model in the sequence corresponds directly to its activity.
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4. User Maximum A Posteriori Adaptation

In order to generate activity HMMs adapted to every user, the system trains general activity
HMMs including information from all users. After training these general models, user-adapted
activity HMMs are generated by adapting the general models to every user via a Maximum A
Posteriori approach (sometimes referred to as Bayesian adaptation). MAP adaptation needs prior
knowledge about the model parameter distribution (original HMMs). For MAP adaptation purposes,
the informative priors that are generally used are the user-independent model parameters. The updated
formula for the µ parameter of mixture component m is:

µm =
Nm

Nm + MU
µgeneral·m +

MU
Nm + MU

µUSER·m (3)
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The estimated µm is a linear combination of the µ parameter of mixture component m in the
original model (µgeneral·m) and the µ parameter of mixture component m obtained considering only
observation vectors from the user (µUSER·m). MU is the adaptation coefficient that defines the weighting
of user-dependent information compared to general HMMs. Nm is the occupation likelihood of the
adaptation data (from the user) along the T frames, defined as:

Nm =
t=T

∑
t=1

N(Ot;µgeneral·m, ∑
general·m

) (4)

After training the adapted activity HMMs for every user, the activity recognition and segmentation
process is the same as the method used with user-independent HMMs: the process consists of
computing the likelihood of the best model sequence when generating several activities.

5. Experiments Carried out in This Work

This section describes the dataset used in the experiments, the baseline results considering the
training algorithms (MLE and MMIE), the user adaptation experiments, and at the end, the final results
with a discussion.

5.1. Dataset Used in the Experiments

This work has been carried out using a public dataset available at the UCI Machine Learning
Repository: the Human Activity Recognition Using Smartphones Data Set [30]. This dataset contains
inertial information (from smartphone sensors: accelerometer and gyroscope) recorded from a group
of 30 people (from 19 to 48 years old), performing six different physical activities several times.
These activities are walking, walking upstairs, walking downstairs, sitting, standing and lying down.
While performing these activities, every user carried a smartphone (Samsung Galaxy S II) for recording
the inertial signals. These signals consisted of the three-axial linear acceleration and the three-axial
angular velocity being sampled at a constant rate of 50 Hz. The dataset contains 13,182 s of recording
including 400 activity instances from 30 users. An example of the recording process can be seen in a
video [33].

In this work, the main aim is to recognize the activity sequence carried by every user. For this
evaluation, all activities carried out from the same user have been stored in the same file, defining
a recording session. There are 30 sessions with an average number of 13.3 activities per session.
The problem to solve in this paper consists of recognizing and segmenting all physical activities
recorded in the same session (Figure 4). In the initial configuration of the dataset, it was divided in
two sets, and 70% of the users were selected for training and 30% for testing the system. In this work,
the 30 sessions have been randomly divided into six subsets. Every session includes all activities
carried out by the same user, so all activities from the same user are included in the same subset. This
characteristic avoids the person-dependent characteristic being influenced by the activity recognition or
segmentation. In order to improve the significance of the results, a six-fold cross-validation procedure
has been carried out. The cross-validation procedure uses four subsets for training the activity Hidden
Markov Models (HMMs), one for validation (tuning the system parameters) and one for testing. This
configuration has been repeated six times in a round-robin strategy. The results presented in this paper
are average values obtained throughout the six-fold cross-validation procedure. In every experiment,
the system is evaluated with all sessions (13,182 s) (defining a 95% confidence interval of ±0.4%).
In Sections 5.2 and 5.3, only the validation results were considered for tuning the adaptation coefficient
and selecting the training procedure. The final results are presented in Section 5.4 with the testing
subsets, using the best system configuration.
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Regarding the evaluation metrics, in this work we considered the Activity Recognition Error Rate
(ARER): the percentage of time that has been wrongly assigned to an activity (Equation (5)).

ARER(%) = 100
Time (sec)wrongly classi f ied

Session duration (sec)
(5)

In addition to this measure, other possible metrics are precision and recall. The precision is
the time correctly assigned to this activity (true positive) divided by the activity time detected by
the system (including true and false positive times). Recall is defined as the time correctly assigned
(true positive) divided by the actual duration of the activity. As it was shown in [17], there is an
important correlation between these three measures. Because of this, ARER will be considered for
system development, and in the final experiments, all metrics will be provided for comparison with
further works.

5.2. Baseline Experiments Considering Different Training Algorithms

Figure 5 represents the ARER depending on the training procedure. As it is shown, the
discriminative training strategy (MMIE) obtains slightly better results, although the differences are not
statistically significant. For the next experiments, the MMIE strategy has been considered. In this task,
the system is able to distinguish between static and dynamic activities, but the confusion between
static activities (standing, sitting and lying down) is very high. A similar behavior occurs for the
dynamic activities of walking, walking upstairs and walking downstairs. Figure 5 also includes the
error points for all the subjects using the representation method proposed in [34]. Regarding the ARER
distributions, both training procedures show very similar behaviors.
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5.3. User Adaptation Experiments

For the user adaptation experiments, all user sessions used for testing the system are randomly
divided into two sub-sessions including 50% of the activities each. The average duration of an activity
is 440 s. The first sub-session is used for adapting the HMMs to the user and the second sub-session is
used for testing the system. There is not any overlap between these two sub-sessions. It is important
to remark that the sub-session used for testing is the same along all the experiments to allow a
fair comparison.

Figure 6 represents the evolution of the ARER depending on the adaptation coefficient.
This representation also includes the confidence intervals at 95% along the curve. When MU = 0
no adaptation is done and the system obtains the same results as when using general HMMs. When
MU increases, the ARER decreases until reaching a minimum for MU = 15. After this value, the ARER
increases because the available user-dependent data is limited and it is not productive to increase its
weight for HMMs training.
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The next figure (Figure 7) shows the ARER depending on the amount of data to adapt. Instead of
using the whole sub-session (50% of the user session) for adapting the HMMs, different amounts have
been considered: 10%, 20%, 30%, 40% and 50% of the user session.
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As it is shown in Figure 7, the ARER decreases when we increase the amount of data
(this representation also includes the confidence intervals at 95% along the curve). Regarding the
differences between users, the absolute ARER reduction varies from 0.5% (the lowest reduction) to
1.5% (the highest reduction). The curve presented in Figure 7 does not show any saturation tendency,
so it means that if we increase the adaptation data, the ARER can continue decreasing. For further
works, a bigger dataset will be considered in order to analyze this effect.

In order to complete the analysis, a new experiment has been carried by training the HAR system
with the data of a single user. In this case, the first user sub-session has been used for training the
system (instead of adapting the system) and the second sub-session for testing. In this case, the ARER
increases to 9.4%. This significant degradation is due to the important reduction in the amount of data
for training the system. This result supports the utility of the adaptation algorithm proposed in this
paper as the best solution for developing a user-dependent HAR system when there is a small amount
of data per user.

5.4. Final Experiments and Discussion

This subsection presents the final results on test datasets. These experiments have been carried
out considering the best system configuration obtained from the analyses done on the validation sets
(see previous subsection): MMIE HMMs training and user MAP adaptation using 50% of the user
session for adaptation (first sub-session) and 50% for testing (second sub-session). The sub-session
used for testing is the same in all the experiments. It is important to remark that there is not any
overlap between testing and adaptation data. Table 2 shows the final results obtained on validation
and test subsets. This table includes the activity segmentation error rates (%), recall (%), precision (%)
and confidence intervals at 95%. The results on validation subsets have already been presented in
previous subsections.

Table 2. Final segmentation results including activity recognition error rate (ARER), recall and
precision metrics.

User Adaptation Validation Test

ARER (%) ARER (%) Recall (%) Precision (%)

Baseline 3.5% ± 0.4% 3.5% ± 0.4% 92.9% ± 0.4% 92.6% ± 0.4%
MMIE training 3.3% ± 0.4% 3.3% ± 0.4% 93.2% ± 0.4% 93.1% ± 0.4%

MMIE training + User MAP adaptation 2.0% ± 0.3% 2.1% ± 0.3% 95.2% ± 0.3% 95.1% ± 0.3%

As shown, the final results on test subsets are slightly worse because the system was optimized
on the validation subset. Similar to the conclusion obtained in previous subsections, the ARER error
decreases significantly when adapting the HMMs to the user considering a MAP approach.

Table 3 includes the same experiments considering the original dataset partition (70% for HMMs
training and 30% for testing) for comparing to previous works. These results show that using a
user MAP adaptation, it is possible to significantly improve the segmentation results obtained in
previous works on this dataset. When adapting the HMMs to the user, the HAR has better modeling
for recognizing the physical activities carried out by this specific user. This adaptation is the main
contribution of this paper.
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Table 3. Final results considering the original dataset partition including activity recognition error rate
(ARER), recall and precision metrics.

System Test

ARER (%) Recall (%) Precision (%)

Anguita et al. 2013 [30] 4.0% ± 0.4% - -
San-Segundo et al. 2016 [17] 3.2% ± 0.3% 93.3% ± 0.4% 93.1% ± 0.4%

MMIE training 3.1% ± 0.3% 93.8% ± 0.3% 93.9% ± 0.3%
MMIE training + user MAP adaptation 2.0% ± 0.3% 95.3% ± 0.3% 95.2% ± 0.3%

6. Conclusions

This work has proposed a user adaptation technique for improving a HAR system based on
HMMs. This system segments and recognizes six different physical activities (walking, walking
upstairs, walking downstairs, sitting, standing and lying down) using inertial signals from a
smartphone. The system is composed of a feature extractor for obtaining the most relevant
characteristics from the inertial signals, a module for training the six HMMs (one per activity), and
the last module for segmenting new activity sequences using these models. This paper has evaluated
two different HMMs training strategies: the first one, a generative approach (Maximum Likelihood
Estimation), and the second, a discriminative one (Maximum Mutual Information Estimation).
The discriminative training strategy (MMIE) obtains slightly better results, although the differences
are not statistically significant.

The main contribution of this paper is the analysis of a user adaptation technique for adapting
the HMMs to the user who performs the different activities. The user adaptation technique consists
of a Maximum A Posteriori (MAP) approach. The final results on a public dataset [30] have reported
significant error rate reduction: from 3.2% to 2.0% ARER (more than 30% relative error rate reduction).
In conclusion, adapting a HAR system to the user who is performing the physical activities reports
significant improvement in the activity segmentation process.
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