
algorithms

Article

Uniform Page Migration Problem in Euclidean Space

Amanj Khorramian * and Akira Matsubayashi

Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan;
mbayashi@t.kanazawa-u.ac.jp
* Correspondence: khorramian@gmail.com; Tel.: +98-918-974-3123

Academic Editor: Dimitris Fotakis
Received: 16 June 2016; Accepted: 18 August 2016; Published: 23 August 2016

Abstract: The page migration problem in Euclidean space is revisited. In this problem, online requests
occur at any location to access a single page located at a server. Every request must be served, and the
server has the choice to migrate from its current location to a new location in space. Each service
costs the Euclidean distance between the server and request. A migration costs the distance between
the former and the new server location, multiplied by the page size. We study the problem in the
uniform model, in which the page has size D = 1. All request locations are not known in advance;
however, they are sequentially presented in an online fashion. We design a 2.75-competitive online
algorithm that improves the current best upper bound for the problem with the unit page size.
We also provide a lower bound of 2.732 for our algorithm. It was already known that 2.5 is a lower
bound for this problem.

Keywords: page migration problem; competitive analysis; server problems; online algorithms;
adversary model; euclidean space; uniform model

1. Introduction

The page migration problem is a classical formulation of efficient memory management in a
shared memory multiprocessor system comprising a network of processors having their own local
memories. In this problem, we are given a sequence of requests issued by processors to access a
single shared data object, called a page. Each request must be served via communication between the
processor issuing the request and the processor holding the page at the time of the request. The service
for the request costs the distance of the communication. After each service, the page is allowed to
migrate from the current processor to a new processor before the next request is issued. The migration
of the page costs the distance of the migration multiplied by the page size. The objective of the page
migration problem is to minimize the total costs of services and migrations (see Section 2 for a formal
definition of this problem). This problem can also be viewed as a formulation of general situations for
managing shared information in a distributed network, such as the efficient allocation of each shared
data object to be accessed by a distributed program running on the network [1].

Black and Sleator [2] first studied online algorithms for the page migration problem via
competitive analysis. Some basic notions of competitive analysis are given in Section 2. Chrobak,
Larmore, Reingold, and Westbrook [3] studied this problem on continuous metric spaces as well as
networks. They proposed a (2 + 1/2D)-competitive randomized algorithm on trees against oblivious
adversaries, together with the same lower bound as this competitiveness even at two points, where
D is a positive integer representing the page size. They also proved that any randomized page
migration algorithm on Rn can be derandomized while preserving its competitiveness. As any
page migration algorithm on a space can be generalized on Cartesian products of the space [2],
a (2 + 1/2D)-competitive deterministic algorithm on Rn under L1 norm can be obtained through
generalizing the algorithm on trees in Rn [3]. For general metric spaces, Westbrook [4] proposed

Algorithms 2016, 9, 57; doi:10.3390/a9030057 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2016, 9, 57 2 of 7

a c (D)-competitive randomized algorithm against oblivious adversaries, where c (D) is a function
defined in [4] that tends toward 2.618 as D grows large. Derandomizing this algorithm on Rn, we have
a c (D)-competitive deterministic algorithm on Rn under any norm [3].

Moreover, 2 + 1/2D is a lower bound for any randomized or deterministic algorithm in the
interval [0, 1] [3]. This lower bound is also admitted on Rn under Lp norm. This is because, for the
interval I = [0, 1] on a dimension k in Rn, any online algorithm A locating its server in Rn r I for
requests only in I has a cost of at least that of a certain algorithm locating its server only in I, i.e.,
projection on the kth coordinate of A’s server location if the projection is in I, and the closer endpoint of
I otherwise. It is a longstanding open question whether we can close the gap of c (D) and 2 + 1/2D
under Lp norm even with any p ≥ 2.

In this paper, we partially answer this question by proposing a 2.75-competitive deterministic
algorithm on Rn under L2 norm for the case D = 1. We note that the competitiveness improves c (1),
which is equal to 2.8 as mentioned in [4]. We also provide a lower bound of 2.732 for our algorithm.
Our algorithm is extremely simple: it maintains the page at the center of two special points, both
initially located at the initial location of the server. Upon each request, the algorithm chooses one of the
points farther from the requested location and moves the point to the requested location; the other point
does not move. This algorithm can be viewed as a natural extension of the (2 + 1/2D)-competitive
algorithm under L1 norm of [3]. We note that if there exists a (2 + 1/2D)-competitive algorithm under
L2 norm, then it would have to behave on any line in the same way as the (2 + 1/2D)-competitive
algorithm of [3]. The setting of the unit page size, i.e., D = 1 is called the uniform model in the context
of data management problems including the page migration problem [1,5–7].

Other previous results for the page migration problem are as follows. Bartal, Charikar, and
Indyk [8] proposed a 4.086-competitive deterministic algorithm for general networks. For trees and
uniform networks, Black and Sleator [2] presented 3-competitive deterministic algorithms, together
with the lower bound of 3 even at two points. The first deterministic lower bound larger than 3 for
general networks was 3.148 [3], which was improved to 3.168 by Matsubayashi [5]. Although these
lower bounds, larger than 3, were proved only for D = 1, the first lower bound of 3 + Ω (1) was
recently proved [9], where Ω notation is with respect to D. For three points, 3-competitive deterministic
algorithms with D ∈ {1, 2} [3,10] and a (3 + 1/D)-competitive deterministic algorithm with D ≥ 3 [10]
were proposed. The latter algorithm asymptotically matches the lower bound of 3 + Ω (1/D) on three
points for every D ≥ 3 [10]. As for randomized algorithms against adaptive online adversaries, a
3-competitive algorithm for general metric spaces was proposed in [4] and the upper bound of 3 is
also a lower bound on two points [11]. As for a randomized algorithm against oblivious adversaries,
Lund, Reingold, Westbrook, and Yan [12] proved that the optimal competitiveness of 2 + 1/2D can be
achieved even on uniform networks.

The rest of this paper is organized as follows. Some preliminaries are given in Section 2. We define
our algorithm on Rn under L2 norm and prove its 2.75 competitiveness in Section 3. In Section 4,
we prove a lower bound of 2.732 for our algorithm. We conclude the paper with remarks and future
works in Section 5.

2. Preliminaries

Let M be a metric space with a distance function δ. For a given initial page location s0 ∈ M,
a sequence of requests r1, . . . , rn ∈ M, and a page size D ∈

Algorithms 2016, 9, 57 2 of 7

can be obtained through generalizing the algorithm on trees in ℝ௡ [3]. For general metric spaces,
Westbrook [4] proposed a ܿ(ܦ)-competitive randomized algorithm against oblivious adversaries,
where ܿ(ܦ) is a function defined in [4] that tends toward 2.618 as ܦ grows large. Derandomizing
this algorithm on ℝ௡ , we have a ܿ(ܦ) -competitive deterministic algorithm on ℝ௡ under any
norm [3].

Moreover, 2 + is a lower bound for any randomized or deterministic algorithm in the ܦ1/2
interval [0, 1] [3]. This lower bound is also admitted on ℝ௡ under ܮ௣ norm. This is because, for the
interval ܫ = [0, 1] on a dimension ݇ in ℝ௡, any online algorithm A locating its server in ℝ௡ ∖ for ܫ
requests only in ܫ has a cost of at least that of a certain algorithm locating its server only in ܫ, i.e.,
projection on the kth coordinate of A’s server location if the projection is in ܫ , and the closer
endpoint of ܫ otherwise. It is a longstanding open question whether we can close the gap of ܿ(ܦ)
and 2	 + ݌ ௣ norm even with anyܮ under ܦ1/2	 ≥ 2.

In this paper, we partially answer this question by proposing a 2.75-competitive deterministic
algorithm on ℝ௡ under ܮଶ norm for the case ܦ = 1. We note that the competitiveness improves ܿ(1),
which is equal to 2.8 as mentioned in [4]. We also provide a lower bound of 2.732 for our algorithm.
Our algorithm is extremely simple: it maintains the page at the center of two special points, both
initially located at the initial location of the server. Upon each request, the algorithm chooses one of
the points farther from the requested location and moves the point to the requested location; the
other point does not move. This algorithm can be viewed as a natural extension of the (2	 + -(ܦ1/2	
competitive algorithm under ܮଵ norm of [3]. We note that if there exists a (2	 + competitive-(ܦ1/2	
algorithm under ܮଶ norm, then it would have to behave on any line in the same way as the 	(2	 + ܦ ,.competitive algorithm of [3]. The setting of the unit page size, i.e-(ܦ1/2	 = 1 is called the
uniform model in the context of data management problems including the page migration
problem [1,5–7].

Other previous results for the page migration problem are as follows. Bartal, Charikar, and
Indyk [8] proposed a 4.086-competitive deterministic algorithm for general networks. For trees and
uniform networks, Black and Sleator [2] presented 3-competitive deterministic algorithms, together
with the lower bound of 3 even at two points. The first deterministic lower bound larger than 3 for
general networks was 3.148 [3], which was improved to 3.168 by Matsubayashi [5]. Although these
lower bounds, larger than 3, were proved only for ܦ = 1, the first lower bound of 3 + Ω(1) was
recently proved [9], where Ω notation is with respect to ܦ . For three points, 3 -competitive
deterministic algorithms with ܦ ∈ {1,2} [3,10] and a (3 + competitive deterministic algorithm-(ܦ/1
with ܦ ≥ 3 [10] were proposed. The latter algorithm asymptotically matches the lower bound of 	3 + Ω(1/ܦ) on three points for every ܦ ≥ 3 [10]. As for randomized algorithms against adaptive
online adversaries, a 3-competitive algorithm for general metric spaces was proposed in [4] and the
upper bound of 3 is also a lower bound on two points [11]. As for a randomized algorithm against
oblivious adversaries, Lund, Reingold, Westbrook, and Yan [12] proved that the optimal
competitiveness of 2 + .can be achieved even on uniform networks ܦ1/2

The rest of this paper is organized as follows. Some preliminaries are given in Section 2. We
define our algorithm on ℝ௡	under ܮଶ norm and prove its 2.75 competitiveness in Section 3. In
Section 4, we prove a lower bound of 2.732 for our algorithm. We conclude the paper with remarks
and future works in Section 5.

2. Preliminaries

Let ܯ be a metric space with a distance function ߜ. For a given initial page location ݏ଴ ∈ a ,ܯ
sequence of requests ݎଵ, … , ௡ݎ ∈ ܯ , and a page size ܦ ∈ 	ℤ		ା , the page migration problem is to
compute page locations ݏଵ, … , ௡ݏ ∈ ∑ such that the cost function ܯ ൫ݏ)ߜ௜ିଵ, (௜ݎ + ܦ ∙ ,௜ିଵݏ)ߜ ௜)൯௡௜ୀଵݏ is
minimized. We call ݏ௜ a server.

An online algorithm must compute ݏ௜ without any information regarding ݎ௜ାଵ, … , ௡, whereasݎ
an offline algorithm may compute ݏ௜ using the entire sequence of requests ݎଵ, … , ௡. An adversaryݎ
against an online algorithm A generates a sequence of requests given to A and computes an output
sequence for the generated requests. If A is deterministic, then the adversary generates requests

+
, the page migration problem is to

compute page locations s1, . . . , sn ∈ M such that the cost function ∑n
i=1 (δ (si−1, ri) + Dδ (si−1, si)) is

minimized. We call si a server.
An online algorithm must compute si without any information regarding ri+1, . . . , rn, whereas

an offline algorithm may compute si using the entire sequence of requests r1, . . . , rn. An adversary
against an online algorithm A generates a sequence of requests given to A and computes an output
sequence for the generated requests. If A is deterministic, then the adversary generates requests using
the definition of A, or equivalently, the information of the actual behavior of A, and computes its own

Algorithms 2016, 9, 57 3 of 7

output according to an optimal offline algorithm OPT. The deterministic algorithm A is c-competitive
if costA (s0, σ) ≤ c·costOPT (s0, σ) + α for the initial server s0 and any sequence σ of requests, where
costA and costOPT are costs of A and OPT, respectively, and α is a constant. For randomized online
algorithms, there are two types of adversaries. An adversary is said to be oblivious if it generates
requests in advance only using the definition of A, i.e., without any information about the random
behavior of A and computes its own output according to OPT. In contrast, an adaptive online adversary
generates requests using information of the random behavior of A and computes its own output in an
online fashion. The competitiveness of a randomized online algorithm against oblivious or adaptive
online adversaries is defined in a similar way to that of a deterministic online algorithm, except that
expected values are used for randomized costs.

One commonly used technique for proving the competitiveness of an online algorithm A is to
utilize a potential function Φ, which typically maps the situation at a point of time, such as the page
locations of A and OPT, to a real value. More specifically, we suitably divide the sequence of the
online processes of A and OPT into certain events. Our goal is to define the value of Φ in such a
way that the initial value of Φ is at most some constant β, Φ is always at least some constant −γ and
that ∆costA + ∆Φ ≤ c·∆costOPT for any event, where ∆ denotes the change of values by the event.
Summing the inequality over all events for an initial server s0 and a request sequence σ, we have
costA (s0, σ) ≤ c·costOPT (s0, σ) + β + γ, which means that A is c-competitive.

3. Algorithm and Its Upper Bound Analysis

We focus on the page size D = 1 and the metric space Rn under L2 norm δ for n ≥ 1. We state our
deterministic algorithm, called PQ, in the following paragraph. Intuitively, the algorithm determines
the location of the page using two locations from previous requests. We prove the competitiveness
of 2.75, claimed in Theorem 1, using a potential function Φ. As mentioned in Section 2, defining
suitable events and showing that ∆costPQ + ∆Φ ≤ 2.75∆costOPT for any defined event is sufficient.
For the proof of the theorem, we need to show an inequality different from a triangle inequality.
We separately provide a technical part for that inequality as Lemma 1. The lemma is about points
computed by the algorithm.

Algorithm PQ. This algorithm maintains the server at the center of two points p and q, both of which are
initially located at the initial server location. Upon each request at location r, if δ (p, r) ≥ δ (q, r), then p moves
to r; otherwise, q moves to r. The algorithm migrates its server to s = p+q

2 after p or q moves.

Lemma 1. For any ρ > 2 and p, q, r, s ∈ R2 such that p 6= q, δ (p, r) ≥ δ (q, r) > 0, and s is the center of
p and q, g = δ (s, r)−

(
ρ
2 − 1

2

)
· δ (p, r)−

(ρ
2 − 1

)
· (δ (q, r)− δ (p, q)) is maximized if δ (p, r) = δ (q, r),

or δ (p, q) = δ (p, r) + δ (q, r), or δ (p, r) = δ (p, q) + δ (q, r).

Proof. We may assume without loss of generality that p = (−1, 0) , s = (0, 0) , q = (1, 0) , and
r = (` cosθ, ` sinθ) with 0 ≤ θ ≤ π/2. Moreover, we fix δ (s, r) = ` and regard g as a function of θ.
The aim is to prove that g is maximized at θ = 0 or θ = π/2.

It follows that:

δ (p, r) =
√
(` cos θ + 1)2 + `2sin2θ =

√
`2 + 2` cos θ + 1

δ (q, r) =
√
(` cos θ − 1)2 + `2sin2θ =

√
`2 − 2` cos θ + 1

dδ (p, r)
dθ

=
−` sin θ√

`2 + 2` cos θ + 1
= − ` sin θ

δ (p, r)

Algorithms 2016, 9, 57 4 of 7

and
dδ (q, r)

dθ
=

` sin θ√
`2 − 2` cos θ + 1

=
` sin θ

δ (q, r)

Therefore, we have

dg
dθ

= ` sin θ

{
ρ− 1

2
· 1
δ (p, r)

−
(ρ

2
− 1
)
· 1
δ (q, r)

}
=

(ρ− 1) ·`·sinθ

2δ (q, r)

{
δ (q, r)
δ (p, r)

− ρ− 2
ρ− 1

}

δ(q,r)
δ(p,r) =

√
`2−2` cos θ+1
`2+2` cos θ+1

monotonically increases from |`−1|
`+1 to 1 as θ changes from 0 to π/2.

If |`−1|
`+1 ≥

ρ−2
ρ−1 , then dg

dθ ≥ 0 for any θ. Therefore, g is maximized at θ = π/2. Otherwise, since

0 < ρ−2
ρ−1 < 1, there exists 0 < t < π/2 such that

√
`2−2` cos t+1
`2+2` cos t+1

= ρ−2
ρ−1 . Since dg

dθ ≥ 0 for θ ≥ t and

dg
dθ ≤ 0 for θ < t, g is maximized at θ = 0 or θ = π/2.

Mathematics 2016, 4, 51 8 of 9

and u ∈ C(I,R) we denote by Bλ(u, r) = {v ∈ C(I,R) : wλ(u, v) ≤ r} the closed ball concerned at u
and of radius r.

Theorem 17. Let r > 0 be a fixed real number and the following conditions are satisfied:

(i) K : I × I ×R→ R and g : I → R are continuous;
(ii) there exists u0 ∈ C(I,R) such that βA

(
u0(t)

)
+ γB

(
u0(t)

)
+ g(t) ∈ B(u0, r);

(iii) if v ∈ Bλ(u, r), λ > 0, then

|Ki
(
t, s, u(s)

)
− Ki

(
t, s, v(s)

)
| ≤ Li(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 , i = 1, 2

for all t, s ∈ I, u, v ∈ R and for some continuous functions L1, L2 : I × I ×R×R→ R+.

such that Li
(
t, s, u(s), v(s)

)
(β + γ)T ≤ 1, i = 1, 2 for all s, t ∈ I, then the integral Equation (4.1) admit

a solution.

Proof. Note that
(
C(I,R), wλ

)
is a complete modular metric space. Define T : C(I,R)→ C(I,R) by

T
(
u(t)

)
= βA

(
u(t)

)
+ γB

(
u(t)

)
+ g(t), t ∈ I

Since v ∈ Bλ(u, r), then by the definition of T and (iii) we have

wλ(Tu, Tv) =
1
λ

sup
t∈I
|βA

(
u(t)

)
+ γB

(
u(t)

)
− βA

(
v(t)

)
− γB

(
v(t)

)
|

=
1
λ

sup
t∈I

∣∣∣∣β
∫ t

0
[K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
]ds

+ γ
∫ t

0
[K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
]ds
∣∣∣∣

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
|ds

+ γ
∫ t

0
|K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
|ds
}

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|L1(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds

+ γ
∫ t

0
|L2(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds
}

≤ |u(s)− v(s)|
λ

1
(

1 + τ

√
|u(s)−v(s)|

λ

)2 sup
t∈I

{
β
∫ t

0

1
(β + γ)T

ds + γ
∫ t

0

1
(β + γ)T

ds
}

≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2 sup
t∈I

{
t
T

}

This implies

wλ(Tu, Tv) ≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2

Theorem 1. PQ is ρ-competitive for ρ = 11
4 and the page size D = 1.

Proof. We use the following potential function for OPT’s server location t, PQ’s server s, and point
locations p and q:

Φ =
ρ

2
· (δ (p, t) + δ (q, t))− ρ− 2

2
·δ (p, q)

We separate the online events into two parts. The first is to consider only the migration costs
incurred by OPT’s server, and the second is to consider the service costs incurred by OPT together
with the migration and service costs incurred by PQ. It is sufficient to show that the inequality
∆costPQ + ∆Φ ≤ ρ·∆costOPT follows in both parts, upon each request located at r.

Part 1. The migration of OPT’s server from t to t′ induces a change of δ (t, t′) to the total cost of
the optimal algorithm OPT but no change to the cost incurred by PQ. The total change of Φ is then
ρ
2 · (δ (p, t′)− δ (p, t) + δ (q, t′)− δ (q, t)). Therefore, it is sufficient to show the following inequality:

ρ

2
δ
(

p, t′
)
− ρ

2
δ (p, t) +

ρ

2
δ
(
q, t′
)
− ρ

2
δ (q, t) ≤ ρ

2
δ
(
t, t′
)
+

ρ

2
δ
(
t, t′
)

This follows by the symmetry of the distance function (δ (a, b) = δ (b, a)) and the triangle
inequalities δ (p, t′) ≤ δ (t, t′) + δ (p, t) and δ (q, t′) ≤ δ (t, t′) + δ (q, t).

Part 2. We may assume, without loss of generality, that δ (p, r) ≥ δ (q, r). By this assumption, PQ moves
p to r. Since PQ maintains its server at the center of p and q, the migration cost incurred by PQ is then
1
2 δ (p, r). For this part, we have the following equalities:

∆costPQ = δ (s, r) +
1
2

δ (p, r)

∆Φ =
ρ

2
· (δ (r, t)− δ (p, t)) +

(ρ

2
− 1
)
· (δ (p, q)− δ (q, r))

∆costOPT = δ (t, r)

Therefore, we shall show the following inequality:

δ (s, r) +
1
2

δ (p, r) +
ρ

2
· (δ (r, t)− δ (p, t)) +

(ρ

2
− 1
)
· (δ (p, q)− δ (q, r))− ρδ (t, r) ≤ 0

Since δ (r, t) + δ (p, t) ≥ δ (p, r), it is sufficient to show:

δ (s, r)−
(

ρ

2
− 1

2

)
· δ (p, r)−

(ρ

2
− 1
)
· (δ (q, r)− δ (p, q)) ≤ 0. (1)

Algorithms 2016, 9, 57 5 of 7

This follows for the cases p = q and q = r, because s = p = q and δ (s, r) = 1
2 δ (p, r), respectively.

We assume p 6= q and q 6= r. It is sufficient to show that the maximum value of the left-hand side of
Equation (1) is less than or equal to zero. If we regard p, q, r, and s as vectors in Rn, then at most three
vectors of them, say p, q, and r, are independent. Therefore, the points p, q, r, and s are on a plane
in Rn. Applying Lemma 1 on this plane, the left-hand side of Equation (1) is maximized in one of
three situations. Situation 1: δ (p, r) = δ (q, r), Situation 2: δ (p, q) = δ (p, r) + δ (r, q), or Situation 3:
δ (p, r) = δ (p, q) + δ (q, r). We proceed to show inequality (1) for each of these three situations.
Situation 1: Substitution of δ (p, q) by 2·δ (s, q) in Equation (1) reveals the following inequality.

δ (s, r) + (ρ− 2) · δ (s, q) ≤
(

ρ− 3
2

)
· δ (q, r)

By applying ρ = 11
4 and dividing both sides by 5

4 , it is sufficient to show

4
5

δ (s, r) +
3
5

δ (s, q) ≤ δ (q, r) (2)

Since (δ (q, r))2 = (δ (s, r))2 + (δ (s, q))2, Equation (2) can be written as:

4
5

δ (s, r) +
3
5

√
(δ (q, r))2 − (δ (s, r))2 ≤ δ (q, r) .

By taking the derivative with respect to δ (s, r) on the plane containing q, r, and s, the left-hand
side of Equation (2) is maximized at δ (s, r) = 4

5 δ (q, r) and δ (s, q) = 3
5 δ (q, r). Therefore,

Equation (2) follows.
Situation 2: The inequality in Equation (1) can be rewritten as:

δ (s, r)−
(ρ

2
− 1
)
(δ (p, r) + δ (q, r)− δ (p, q)) ≤ 1

2
δ (p, r) (3)

In this situation, we recall that p, s, r, and q are all located on the same line segment. Since δ (p, q) ≥
δ (p, r), and s is located at the center of p and q, it follows that 1

2 δ (p, r) = δ (p, s) = δ (s, q) =

δ (s, r) + δ (r, q) ≥ δ (s, r). Since δ (p, r) + δ (q, r)− δ (p, q) = 0, the inequality in Equation (3) follows.
Situation 3: Since ρ = 11

4 , we rewrite Equation (1) as:

δ (s, r)− 7
8

δ (p, r)− 3
8

δ (q, r) +
3
8

δ (p, q) ≤ 0

The points p, s, r, and q are also located on the same line segment in this situation. By δ (p, r) =
δ (p, q) + δ (q, r), we have δ (s, r) − 1

2 δ (p, q) − 5
4 δ (q, r) ≤ 0. By δ (p, q) = 2 δ (s, q) we have

δ (s, r)− δ (s, q)− 5
4 δ (q, r) ≤ 0. In addition, by δ (s, r) = δ (s, q) + δ (q, r) we have δ (q, r)− 5

4 δ (q, r) ≤ 0.
Therefore, the proof completes.

Mathematics 2016, 4, 51 8 of 9

and u ∈ C(I,R) we denote by Bλ(u, r) = {v ∈ C(I,R) : wλ(u, v) ≤ r} the closed ball concerned at u
and of radius r.

Theorem 17. Let r > 0 be a fixed real number and the following conditions are satisfied:

(i) K : I × I ×R→ R and g : I → R are continuous;
(ii) there exists u0 ∈ C(I,R) such that βA

(
u0(t)

)
+ γB

(
u0(t)

)
+ g(t) ∈ B(u0, r);

(iii) if v ∈ Bλ(u, r), λ > 0, then

|Ki
(
t, s, u(s)

)
− Ki

(
t, s, v(s)

)
| ≤ Li(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 , i = 1, 2

for all t, s ∈ I, u, v ∈ R and for some continuous functions L1, L2 : I × I ×R×R→ R+.

such that Li
(
t, s, u(s), v(s)

)
(β + γ)T ≤ 1, i = 1, 2 for all s, t ∈ I, then the integral Equation (4.1) admit

a solution.

Proof. Note that
(
C(I,R), wλ

)
is a complete modular metric space. Define T : C(I,R)→ C(I,R) by

T
(
u(t)

)
= βA

(
u(t)

)
+ γB

(
u(t)

)
+ g(t), t ∈ I

Since v ∈ Bλ(u, r), then by the definition of T and (iii) we have

wλ(Tu, Tv) =
1
λ

sup
t∈I
|βA

(
u(t)

)
+ γB

(
u(t)

)
− βA

(
v(t)

)
− γB

(
v(t)

)
|

=
1
λ

sup
t∈I

∣∣∣∣β
∫ t

0
[K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
]ds

+ γ
∫ t

0
[K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
]ds
∣∣∣∣

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
|ds

+ γ
∫ t

0
|K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
|ds
}

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|L1(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds

+ γ
∫ t

0
|L2(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds
}

≤ |u(s)− v(s)|
λ

1
(

1 + τ

√
|u(s)−v(s)|

λ

)2 sup
t∈I

{
β
∫ t

0

1
(β + γ)T

ds + γ
∫ t

0

1
(β + γ)T

ds
}

≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2 sup
t∈I

{
t
T

}

This implies

wλ(Tu, Tv) ≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2

4. A Lower Bound for PQ

In this section, we show that the exact competitiveness of the algorithm is greater than 2.732.
We introduce an adversary through Theorem 2 and prove the existence of such a lower bound.
The adversary makes a special sequence of requests on R2 against the proposed algorithm. The requests
are given at vertices of a triangle that tends to be equilateral. After the second request, the server
repeatedly migrates between the center points of two sides of the triangle.

Theorem 2. For a sufficiently large integer n, there exist a request sequence σ = r1, . . . , r2n+1, three request
locations a, b, and s on a plane, and the initial server location s, such that costPQ (s, σ) ≥ ρ·costOPT (s, σ) for
ρ = 1 +

√
3 ≈ 2.732.

Algorithms 2016, 9, 57 6 of 7

Proof. We describe our approach before more technical discussion in the subsequent paragraphs.
In Figure 1, we illustrate the behavior of PQ against requests by our adversary. We assume that
δ (s, b) is slightly larger than δ (s, a) = δ (b, a). Points u and v are the centers of a and s, and a and b,
respectively. For requests a, b, s, b, s, b, s, . . ., PQ migrates its server along the dashed line, because p
does not move from a. A request occurs at b when the server is at u, and a request occurs at s when the
server is at v. Note that a, b, and s tend to be the vertices of an equilateral triangle as δ (s, b) approaches
δ (s, a) = δ (b, a).

Algorithms 2016, 9, 57 6 of 7

the server is at ݒ. Note that ܽ, ܾ, and ݏ tend to be the vertices of an equilateral triangle as ݏ)ߜ, ܾ)
approaches ݏ)ߜ, ܽ) = ,ܾ)ߜ ܽ).

Figure 1. The request sequence ܽ, ܾ, ,ݏ ܾ, ,ݏ ܾ, ,ݏ … to access the page at the server; ݇ ≥ 1.

For ݎଵ = ܽ ଶ୩ݎ , = ܾ , and ݎଶ୩ାଵ = ݏ , where 1 ≤ ݇ ≤ ݊ and ܽ , ܾ , and ݏ are the vertices of an
equilateral triangle with a unit side length, the cost of the optimal algorithm ܿݐݏ݋ை௉்(ݏ, ݊ is at most (ߪ + 1 by keeping the server at the initial location ݏ.

The adversary infinitesimally perturbs the distances by slightly increasing the distance
between ݏ and ܾ . Upon the first request at ܽ , PQ serves the request by the cost of ݏ)ߜ, ܽ) and
migrates the server to ݑ, which is the center of ݏ and ܽ, by the cost of ݏ)ߜ, ݌ This is because point .(ݑ
at ݏ moves to ܽ. The 2݇th request at ܾ is served with the cost of ݑ)ߜ, ܾ), causing point ݍ at ݏ to move
to ܾ, and the server migrates to ݒ, which is at the center of ܽ and ܾ, with the cost of ݑ)ߜ, The (2݇ .(ݒ + 1)st request at ݏ is served with the cost of ݒ)ߜ, hence, the ;ݏ at ܾ moves to ݍ The point .(ݏ
server migrates to ݑ with the cost of ݑ)ߜ, .(ݒ

We compute the total cost of PQ by using the distances of the unperturbed triangle, since the
actual distances (and hence the actual costs of PQ and OPT) may differ by an infinitesimally small
amount from these computations. Therefore, we have ܿݐݏ݋௉ொ(ݏ, (ߪ = ,ݏ)ߜ ܽ) + ,ݏ)ߜ (ݑ + ݊ ∙ ൫ݑ)ߜ, ܾ) + ,ݑ)ߜ (ݒ + ,ݒ)ߜ (ݏ + ,ݒ)ߜ ൯(ݑ ≈ 1.5 + ൫√3 + 1൯݊

Since lim௡→∞

1.5 + ൫√3 + 1൯݊݊ + 1 = √3 + 1

then ௖௢௦௧ುೂ(௦,ఙ)௖௢௦௧ೀು೅(௦,ఙ) is at least 2.732. This completes the proof. �

5. Concluding Remarks

In this paper, we proposed a deterministic algorithm for the page migration problem in
Euclidean space with a page size ܦ = 1 . The 	2.75 -competitiveness of the algorithm is an
improvement on the former 2.8 ratio. An adversary was found to express a lower bound of 2.732
for the algorithm. If possible, one could seek to find an algorithm to cover a larger ܦ with better
competitiveness than 2.618 . Another area of improvement is to narrow the upper and lower
bounds of the algorithm. Moreover, the generalization of the algorithm under norms other than the
Euclidean and Manhattan ones remains an open problem in this research area.

Acknowledgments: The authors are thankful to the anonymous reviewers who provided valuable and helpful
comments. This work was supported by JSPS KAKENHI Grant Number 26330008.

Author Contributions: The design of the algorithm and the proofs were all done together by the authors, step
by step.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 1. The request sequence a, b, s, b, s, b, s, . . . to access the page at the server; k ≥ 1.

For r1 = a, r2k = b, and r2k+1 = s, where 1 ≤ k ≤ n and a, b, and s are the vertices of an equilateral
triangle with a unit side length, the cost of the optimal algorithm costOPT (s, σ) is at most n + 1 by
keeping the server at the initial location s.

The adversary infinitesimally perturbs the distances by slightly increasing the distance between s
and b. Upon the first request at a, PQ serves the request by the cost of δ (s, a) and migrates the server to
u, which is the center of s and a, by the cost of δ (s, u). This is because point p at s moves to a. The 2kth
request at b is served with the cost of δ (u, b), causing point q at s to move to b, and the server migrates
to v, which is at the center of a and b, with the cost of δ (u, v). The (2k + 1)st request at s is served with
the cost of δ (v, s). The point q at b moves to s; hence, the server migrates to u with the cost of δ (u, v).

We compute the total cost of PQ by using the distances of the unperturbed triangle, since the
actual distances (and hence the actual costs of PQ and OPT) may differ by an infinitesimally small
amount from these computations. Therefore, we have

costPQ (s, σ) = δ (s, a) + δ (s, u) + n· (δ (u, b) + δ (u, v) + δ (v, s) + δ (v, u)) ≈ 1.5 +
(√

3 + 1
)

n

Since

lim
n→∞

1.5 +
(√

3 + 1
)

n

n + 1
=
√

3 + 1

then costPQ(s,σ)
costOPT(s,σ) is at least 2.732. This completes the proof.

Mathematics 2016, 4, 51 8 of 9

and u ∈ C(I,R) we denote by Bλ(u, r) = {v ∈ C(I,R) : wλ(u, v) ≤ r} the closed ball concerned at u
and of radius r.

Theorem 17. Let r > 0 be a fixed real number and the following conditions are satisfied:

(i) K : I × I ×R→ R and g : I → R are continuous;
(ii) there exists u0 ∈ C(I,R) such that βA

(
u0(t)

)
+ γB

(
u0(t)

)
+ g(t) ∈ B(u0, r);

(iii) if v ∈ Bλ(u, r), λ > 0, then

|Ki
(
t, s, u(s)

)
− Ki

(
t, s, v(s)

)
| ≤ Li(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 , i = 1, 2

for all t, s ∈ I, u, v ∈ R and for some continuous functions L1, L2 : I × I ×R×R→ R+.

such that Li
(
t, s, u(s), v(s)

)
(β + γ)T ≤ 1, i = 1, 2 for all s, t ∈ I, then the integral Equation (4.1) admit

a solution.

Proof. Note that
(
C(I,R), wλ

)
is a complete modular metric space. Define T : C(I,R)→ C(I,R) by

T
(
u(t)

)
= βA

(
u(t)

)
+ γB

(
u(t)

)
+ g(t), t ∈ I

Since v ∈ Bλ(u, r), then by the definition of T and (iii) we have

wλ(Tu, Tv) =
1
λ

sup
t∈I
|βA

(
u(t)

)
+ γB

(
u(t)

)
− βA

(
v(t)

)
− γB

(
v(t)

)
|

=
1
λ

sup
t∈I

∣∣∣∣β
∫ t

0
[K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
]ds

+ γ
∫ t

0
[K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
]ds
∣∣∣∣

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|K1
(
t, s, u(s)

)
− K1

(
t, s, v(s)

)
|ds

+ γ
∫ t

0
|K2
(
t, s, u(s)

)
− K2

(
t, s, v(s)

)
|ds
}

≤ 1
λ

sup
t∈I

{
β
∫ t

0
|L1(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds

+ γ
∫ t

0
|L2(t, s, u(s), v(s))

|u(s)− v(s)|
(

1 + τ

√
|u(s)−v(s)|

λ

)2 ds
}

≤ |u(s)− v(s)|
λ

1
(

1 + τ

√
|u(s)−v(s)|

λ

)2 sup
t∈I

{
β
∫ t

0

1
(β + γ)T

ds + γ
∫ t

0

1
(β + γ)T

ds
}

≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2 sup
t∈I

{
t
T

}

This implies

wλ(Tu, Tv) ≤ wλ(u, v)
(
1 + τ

√
wλ(u, v)

)2

5. Concluding Remarks

In this paper, we proposed a deterministic algorithm for the page migration problem in Euclidean
space with a page size D = 1. The 2.75-competitiveness of the algorithm is an improvement on
the former 2.8 ratio. An adversary was found to express a lower bound of 2.732 for the algorithm.
If possible, one could seek to find an algorithm to cover a larger D with better competitiveness
than 2.618. Another area of improvement is to narrow the upper and lower bounds of the algorithm.
Moreover, the generalization of the algorithm under norms other than the Euclidean and Manhattan
ones remains an open problem in this research area.

Acknowledgments: The authors are thankful to the anonymous reviewers who provided valuable and helpful
comments. This work was supported by JSPS KAKENHI Grant Number 26330008.

Algorithms 2016, 9, 57 7 of 7

Author Contributions: The design of the algorithm and the proofs were all done together by the authors,
step by step.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bienkowski, M. Migrating and replicating data in networks. Comput. Sci.-Res. Dev. 2012, 27, 169–179.
[CrossRef]

2. Black, D.L.; Sleator, D.D. Competitive Algorithms for Replication and Migration Problems; Technical Report
CMU-CS-89-201; Carnegie Mellon University: Pittsburgh, PA, USA, 1989.

3. Chrobak, M.; Larmore, L.L.; Reingold, N.; Westbrook, J. Page migration algorithms using work functions.
J. Algorithms. 1997, 24, 124–157. [CrossRef]

4. Westbrook, J. Randomized algorithms for multiprocessor page migration. SIAM J. Comput. 1994, 23, 951–965.
[CrossRef]

5. Matsubayashi, A. Uniform page migration on general networks. Int. J. Pure Appl. Math. 2008, 42, 161–168.
6. Meyer auf der Heide, F.; Vöcking, B.; Westermann, M. Provably Good and Practical Strategies for

Non-Uniform Data Management in Networks. In Proceedings of the 7th Annual European Symposium
on Algorithms (LNCS 1643), Prague, Czech Republic, 16–18 July 1999; Springer: New York, NY, USA;
pp. 89–100.

7. Maggs, B.M.; Meyer auf der Heide, F.; Vöcking, B.; Westermann, M. Exploiting Locality for Data Management
in Systems of Limited Bandwidth. In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, Miami Beach, FL, USA, 19–22 October 1997; pp. 284–293.

8. Bartal, Y.; Charikar, M.; Indyk, P. On page migration and other relaxed task systems. Theor. Comput. Sci.
2001, 268, 43–66. [CrossRef]

9. Matsubayashi, A. A 3+Omega (1) Lower Bound for Page Migration. In Proceedings of the 2015 Third
International Symposium on Computing and Networking, Sapporo, Japan, 8–11 December 2015; pp. 314–320.

10. Matsubayashi, A. Asymptotically optimal online page migration on three points. Algorithmica 2015, 71,
1035–1064. [CrossRef]

11. Bartal, Y.; Fiat, A.; Rabani, Y. Competitive algorithms for distributed data management. J. Comput. Syst. Sci.
1995, 51, 341–358. [CrossRef]

12. Lund, C.; Reingold, N.; Westbrook, J.; Yan, D. Competitive on-line algorithms for distributed data
management. SIAM J. Comput. 1999, 28, 1086–1111. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00450-011-0150-8
http://dx.doi.org/10.1006/jagm.1996.0853
http://dx.doi.org/10.1137/S0097539791199796
http://dx.doi.org/10.1016/S0304-3975(00)00259-0
http://dx.doi.org/10.1007/s00453-013-9841-9
http://dx.doi.org/10.1006/jcss.1995.1073
http://dx.doi.org/10.1137/S0097539795287824
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Algorithm and Its Upper Bound Analysis
	A Lower Bound for PQ
	Concluding Remarks

