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Abstract: This paper presents a multiple artificial neural networks (MANN) method with interaction
noise for estimating the occurrence probabilities of different classes at any site in space. The MANN
consists of several independent artificial neural networks, the number of which is determined by the
neighbors around the target location. In the proposed algorithm, the conditional or pre-posterior
(multi-point) probabilities are viewed as output nodes, which can be estimated by weighted
combinations of input nodes: two-point transition probabilities. The occurrence probability of
a certain class at a certain location can be easily computed by the product of output probabilities
using Bayes’ theorem. Spatial interaction or redundancy information can be measured in the form
of interaction noises. Prediction results show that the method of MANN with interaction noise has
a higher classification accuracy than the traditional Markov chain random fields (MCRF) model and
can successfully preserve small-scale features.
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1. Introduction

Categorical spatial data, such as area-class maps and remote sensing images, are very common
and important information sources in geographic information science [1]. Many approaches have been
developed to model the uncertainty in categorical random fields, including but not limited to Markov
chain random fields (MCRF) [2,3], the multinomial logistic mixed model [4], the spatial hidden Markov
chain [5] and the Bayesian updating model [6]. Artificial neural networks (ANNs) [7] have also been
extensively used as non-linear and semi-parametric pattern classifiers and function estimators (e.g.,
classification and regression tools) in geographical information systems and regional science since
the 1990s [8–11]. Civco [12] described the application of ANNs to the problem of deriving land-cover
information from Landsat satellite Thematic Mapper digital imagery. Skabar [13] reported on the
application of ANNs to mapping reef gold mineralization potential and showed that the ability of
ANNs to predict the presence of hold-out test deposits is significantly better than that for logistic
regression. Conceptually, ANNs are well suited to processing noisy data and handling non-linear
modeling tasks [14], and they seem to offer methodological advantages over traditional spatial analysis
methods in that ANNs contain no critical assumptions about the nature of spatial data. The analysis
of a priori knowledge and data on known physical constraints can also be incorporated into ANNs’
interpolation process [15,16], while traditional interpolation methods such as kriging seem to lack of
the flexibility to incorporate important general and case-specific sources.

The idea of our multiple artificial neural networks (MANN) model with interaction noise is to
apply a linear function to the input nodes, i.e., transition probabilities (two-point), and regard the
pre-posterior probabilities (multi-point) as derived features via nonlinear transformation. We need to
construct multiple ANNs to obtain the target multi-point posterior probabilities by employing Bayes’
theorem. The interaction noises are used for estimating the multi-point pre-posterior probabilities
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in the MANN training processes. The originality of the proposed solution lies in that no additional
assumptions are made about the relationship between the multi-point pre-posterior probabilities
and two-point transition probabilities, which takes a step forward with respect to the existing
methods. In addition, we have also proposed a method for measuring the spatial interaction effects.
The remainder of this paper is organized as follows. We give an overview and formulate the method
of MANN with interaction noise in Section 2. To demonstrate our model, an artificial and a real-word
case study have been carried out in Section 3. Conclusions and directions for future research are
presented in Section 4.

2. Method

Consider a categorical random variable (RV) C (x0) which can take one out of K mutually exclusive
and collectively exhaustive states c(x0) ∈ {1, · · · , K} at any arbitrary location with coordinate x0;
when there is no other information, we assume that the probability mass function (PMF) of RV C (x0)

is stationary and can be approximated by the K global class proportions π1, · · · , πK. A central task
in prediction and simulation of categorical random fields is the estimation of the conditional PMF of
C (x0) in the presence of observed class labels c (x1) , · · · , c (xN) available at N locations x1, · · · , xN .
Our task can now be re-stated as that of estimating the conditional PMF P {C (x0)|c (x1) , · · · , c (xN)}.
To simplify notation, we use A and D1, · · · , DN to represent the events in sample spaces of C (x0)

and C (x1) , · · · , C (xN), respectively, and A to denote the complementary event of A. ANNs offer
an approach to geostatistical simulation with the possibility of automatic recognition of the correlation
structure. We consider fi = P

(
Dj
∣∣A) , j ∈ {1, 2, · · · , i} as the input node, and thus the pre-posterior

(multi-point) probabilities yi = P (Di|AD1 · · ·Di−1) , i = 2, · · · , N can be regarded as the desired
output node. To obtain the target (multi-point) posterior probability P (A|D1D2 · · ·DN), we need to
train N − 1 ANNs, which is called the MANN.

The continuously differentiable sigmoid functions are the most common form of activation
function in ANNs [17], and the learning process is achieved by using feed forward and back
propagation algorithms. Let ŷi = P̂ (Di|AD1 · · ·Di−1) be the actual output obtained on one particular
iteration after fi has been fed forward through the network. The current total error, which is defined as
a function of the connection weights, is:

E(W) = ∑N
i=2(yi − ŷi)

2 (1)

where W is the matrix of connection weights.
In most traditional neural networks, the desired output nodes are considered as known response

variables. Thus, the central work of an ANN is to train the appropriate weights in hidden layers.
However, the desired outputs yi = P (Di|AD1 · · ·Di−1) , i = 2, · · · , N in our model cannot be obtained
from the available training set directly. We use MANN with interaction noise to solve this problem.
Just as MCRF, Tau (τ) model [18] and Nu (υ) expression [19] suggested, P (Di|AD1 · · ·Di−1) is
primarily determined by P (Di|A). We assume that

ln
P (Di|AD1 · · ·Di−1)

P (Di|A)
= εi (2)

where ln denotes the natural logarithm, εi is a random noise which capsules the interaction information
from D1 to Di. Spearman correlation coefficients are used to measure the interdependence from
P (D1|A) to P (Di|A). In this method, the one that has the most significant correlation with P (Di|A) is
chosen to be the input node.

Thus, a neural network can be represented in terms of nested transformations of linear
combinations of input units, where the initial input units are the predictor variables themselves,
so that the overall network function with H hidden units and activation functions φ and ψ becomes
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P (Di|AD1 · · ·Di−1) = ψ

{
H

∑
h=0

ω
(2)
h φ

[
H

∑
h=0

ω
(1)
h P

(
Dj
∣∣A)]} , j ∈ {1, 2, · · · i} , i = 2, · · · , N (3)

where ω
(1)
h and ω

(2)
h indicate the weights in the inner and outer layer, respectively, and the bias

parameters are absorbed into the set of weight parameters by defining an additional input variable
P (D0|A) whose value is clamped at P (D0|A) = 1. Using Bayes’ theorem (or the definition of
conditional probability), we can decompose the conditional PMF as follows

P {C (x0) = k|C (x1) = l1, · · · , C (xN) = lN}
= P (A|D1D2 · · ·DN)

= P(D1)P(A|D1)P(D2|AD1)···P(DN |AD1···DN−1)
P(D1D2···DN)

(4)

where x1 is the nearest neighbor of x0 among the N locations, l1, · · · lN ∈ {1, 2, · · · , K}. Therefore,
we can compute the posterior occurrence probabilities of different classes according to Equation (4),
and then estimate the category at the target location based on the “maximum a posterior” criterion.
According to the above description, the proposed approach can be coded easily on the computer and
the flowchart can be summarized as in Figure 1.
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Figure 1. Flowchart of the proposed method.

One of the commonly used methods to compute the multi-point posterior PMF is the MCRF model.
The highlight of this theory is that there is only a single spatial Markov chain that moves (or jumps) in
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a space, which avoids the small-class underestimation problem in modeling the categorical random
field [2]. Nevertheless, the multi-point probabilities P (Di|AD1 · · ·Di−1), i = 2, 3, · · · , N are difficult
to calculate. Hence, the general solution of the MCRF model is deduced based on the conditional
independence assumption, which is

P (Di|AD1 · · ·Di−1) = P (Di|A) , i = 2, · · · , N (5)

By plugging Equations (3) and (5) into Equation (4), the posterior PMF can be determined.
Note that P (A|D1) is the two-point transition probability and can be estimated from paired samples.
Additionally, P (D1) and P (D1D2 · · ·DN) are the normalization constants and should be computed
using the sum rule, since they do not contain the unknown event A.

3. Case Study

3.1. Synthetic Case Study

We first illustrate our method on a synthetic case study with three categories (Figure 2). There are
606 locations that have been randomly sampled from this image. The prediction is conducted over
a 64 × 64 grid covering the square. The marginal probability of the occurrence vector is (0.2756, 0.4653,
0.2591). The categories may represent geological facies, soil types, land uses or any other categorical
variable [20].Algorithms 2016, 9, 56 
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Figure 2. Reference map with dimension 64 × 64 and three categories.

As a first task, the data set is used to estimate the two-point input transition probabilities.
Experimental transition probabilities can be directly estimated from paired sampling data by counting
the transition frequencies of classes with different lags [21]. A continuous transiogram [22] can
be obtained via interpolation [23] or fitting the transition probabilities cloud with various models.
Following [6], the exponential model is employed for transiogram fitting. After all these preparations,
the input vectors of the ANNs can be determined.

We consider the four nearest sampling points as the neighbors of the unknown location. To use
Equation (3), we must train three compositional ANNs to compute the pre-posterior (multi-point)
probabilities. The problem here is the choice of the input nodes. By analyzing the correlation plot
(Figure 3) of these four transition probabilities, no significant correlation is found among the input
vectors; therefore, we choose P (Di|A) as the input of P (Di|AD1 · · ·Di−1), i = 2, 3, 4, respectively.

As a second task, the Gaussian-distributed interaction noises with different means and variances
are simulated. For the 606 training data set, the output nodes P (Di|AD1 · · ·Di−1) can be computed via
Equation (2). For comparison purposes, we use 10 groups of parameters for estimating and simulating
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the spatial categorical data in the remaining 3490 locations. We find in Table 1 that when the parameters
are specified by µ = −3 and σ = 1.2, the prediction has the highest overall classification accuracy with
56.45% (1970 out of 3490). From the interpolation map generated by MANN with interaction noise
(Figure 4), we find that clear inter-class boundaries have been shaped and spatial patch patterns have
been retained. To demonstrate the superiority in terms of accuracy, MCRF, as a competing method,
has been used for comparison. This counterpart, however, only correctly classifies 1936 samples out
of 3490 locations. Based on this result, MANN with interaction noise performs better than MCRF in
terms of prediction accuracy in this artificial data set.
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Table 1. Prediction accuracy comparison of the raster data set. µ and σ denote the mean and standard
deviation, respectively.

Parameters Class 1 Class 2 Class 3 Total

µ = 0;σ = 0.1 58.02% (579/998) 50.49% (830/1644) 60.97% (517/848) 55.19% (1926/3490)
µ = −1;σ = 0.1 58.62% (585/998) 50.67% (833/1644) 60.85% (516/848) 55.42% (1934/3490)
µ = −1;σ = 0.5 58.82% (587/998) 51.03% (839/1644) 60.02% (509/848) 55.44% (1935/3490)
µ = −2;σ = 0.5 57.72% (576/998) 52.86% (869/1644) 59.55% (505/848) 55.87% (1950/3490)
µ = −3;σ = 0.9 54.91% (548/998) 56.20% (924/1644) 57.90% (491/848) 56.25% (1963/3490)
µ = −3;σ = 1.2 55.71% (556/998) 55.90% (919/1644) 58.37% (495/848) 56.45% (1970/3490)
µ = −4;σ = 1.2 52.30% (522/998) 57.85% (951/1644) 56.60% (480/848) 55.96% (1953/3490)
µ = −4;σ = 1.5 53.51% (534/998) 57.24% (941/1644) 57.19% (485/848) 56.16% (1960/3490)
µ = −5;σ = 1.2 53.51% (518/998) 54.01% (888/1644) 57.08% (484/848) 54.15% (1890/3490)
µ = −5;σ = 1.5 50.00% (499/998) 55.41% (911/1644) 56.84% (482/848) 54.21% (1892/3490)

MCRF 57.21% (571/998) 51.64% (849/1644) 60.85% (516/848) 55.47% (1936/3490)
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3.2. Real-World Case Study

To further investigate the performance of the proposed method in real cases, the lithology types in
the well-known Swiss Jura data set [24] are used, in which five rock types are sampled at 359 locations
in a 14.5 km2 area (Figure 5). The class proportions of these five categories are (0.2046, 0.3282, 0.2432,
0.0116, 0.2124), respectively. We focus on MANN with sigmoid activation functions and consider the
10 nearest samples as the neighbors of the target point. For the proposed method, we choose the one
that has the maximum correlation with output probabilities as the input and we have trained nine
compositional ANNs.Algorithms 2016, 9, 56 
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Figure 5. Jura lithology data set with 359 samples.

We furthermore assume that the random interaction noise ε = (ε1, ε2, · · · , ε9) is a Gaussian
random field. By trial and error, we find that the model which has the highest classification accuracy
can be specified by mean µ = 0 and standard deviation σ = 0.1; that is,

P (εi) = N (0, 0.01) , cov
(
εi, ε j

)
= 0 for i 6= j . (6)

Correlation coefficients between various transition probabilities are compared with each other
and the maximum correlation pairs are shown in Figure 6, where the red pictures (Figure 6d,h) are
worthy of discussion. Note that the correlation between P (D4|A) and P (D5|A) is quite weak with
r = 0.2364, and the relevance from P (D1|A) to P (D3|A) with P (D5|A) is even lower. In such a case,
we choose P (D5|A) itself as the input node of P (D5|AD1 · · ·D4), since no significant interaction
information is found from D1 to D5. In the same way, P (D9|A) is considered as the input node
of P (D9|AD1 · · ·D8). It is rather remarkable that the maximum correlation pairs may not always
be P (Di|A) and P (Di−1|A), just as Figure 6g displays. P (D6|A) rather than P (D7|A) is chosen as
the input node for output P (D8|AD1 · · ·D7), which means that the main interaction information
among D1, D2, · · ·D8 is encapsulated in D6 and D8. In general, the input nodes of P (Di|AD1 · · ·Di−1),
i = 2, 3, · · · , 10, should be P (Di−1|A) if the correlation coefficients between P (Di−1|A) and P (Di|A)

exceed 0.5. The R package “nnet” designed under the framework of feed forward and back propagation
algorithms is used during the training process. We consider three units in the hidden layer. The training
weights of MANN with interaction noise are given in Table 2.
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Figure 6. Maximum correlation coefficients between various transition probabilities.

Table 2. Training weights of MANN with interaction noise. Input node, hidden nodes and output node
are represented by i, h1 to h3 and o, respectively; b1 and b2 are the bias nodes in the hidden layers.

Nodes
Weights

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9

b1->h1 0.11 −3.74 −2.15 −0.15 −0.11 5.61 −0.05 0.23 0.03
i->h1 0.66 5.64 2.54 −6.28 2.04 −7.38 1.97 −2.48 −0.54

b1->h2 0.03 0.65 −0.53 0.29 4.02 0.56 6.08 0.24 0.53
i->h2 0.14 0.52 1.08 −1.02 −4.93 2.65 −7.00 −2.48 −0.42

b1->h3 −5.43 0.66 1.04 −3.16 0.60 0.09 0.28 0.24 2.73
i->h3 6.00 10.09 −1.58 3.85 12.06 0.13 0.80 −2.48 −5.02
b2->o −0.49 2.31 −0.70 −0.21 4.87 0.91 1.42 2.33 0.55
h1->o −0.75 4.81 3.05 −4.61 4.83 −4.12 2.18 −2.87 0.62
h2->o −0.24 1.71 1.18 −1.24 −3.58 2.25 −4.72 −2.87 0.60
h3->o 6.76 −5.56 −2.32 4.12 −5.68 0.47 1.30 −2.87 -2.91

As can be seen from Figure 7, the nine ANNs converge after a certain number of iterations.
The training error of MANN with interaction noise can be viewed as the summation of the nine ANNs,
which is illustrated in Figure 7 by different colors and line styles. Our original image (Figure 8a) is
obtained from the “jura.grid” data set kindly provided by R software 3.2.5, and the known 5957 grid
values are used as the validation set. We find that MANN with interaction noise has a classification
accuracy of 65.12% (3879 out of 5957) and can successfully preserve small-scale Quaternary patch
features (Figure 8b). We have also used the MCRF method for comparison. Not surprisingly, the latter
yields a relatively lower classification accuracy not only in overall prediction, but also in most of the
single categories (Table 3). This result is comprehensible, since the general solution of MCRF is based
on the conditional independence assumption, which fails to measure the interaction or redundancy
information among the neighboring sources. The important knowledge, however, has been successfully
incorporated in the form of interaction noise in the proposed MANN model.
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Figure 8. (a) Original image obtained from R software data set (jura.grid); (b) Classification maps
generated by MANN with interaction noise. Simulations are conditioned on 359 samples in Jura
lithology data set, note the small Quaternary patches (visualized in black) neglected in (a) are
successfully recovered in the result of the proposed method (b).

Table 3. Prediction accuracy comparison of the Jura data set.

Method Argovian Kimmeridgian Sequanian Portlandian Quaternary Total

MANN with
interaction noise

75.78%
(898/1185)

78.19%
(1592/2036)

64.07%
(1043/1628)

0.00%
(0/316)

43.69%
(346/792)

65.12%
(3879/5957)

MCRF 72.07%
(854/1185)

74.17%
(1510/2036)

61.61%
(1003/1628)

0.00%
(0/316)

47.60%
(377/792)

62.85%
(3744/5957)
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4. Conclusions

In this paper, a new prediction/interpolation algorithm, MANN with interaction noise,
is proposed for modeling and reproducing spatial patterns in categorical random fields. Connection
weights can be estimated in the framework of the feed forward and back propagation method.
Our algorithm is imposed by some form of Gauss assumption, which is suitable in most general
situations. Prediction results show that MANN with interaction noise has a higher classification
accuracy than the conditional independence-based MCRF method and can successfully preserve
small-scale features. However, the proposed model cannot exactly estimate the small class proportion
(category four: Portlandian) in the Jura data set. This undesirable phenomenon is caused by the
excessively sparse samples. Following [25], category four (Portlandian) was recategorized as five
(Quaternary) by the authors of [4,6] since there are only three sample points within this category.
Our experimental results confirm that this combination is necessary.

The most important step in the MANN framework is the estimation of the pre-posterior
multi-point probabilities for the training procedure. In this work, this problem is solved by imposing
exponential Gauss noise to the available two-point transition probabilities. Future research directions
may include but not be limited to the scanning approach, which is similar to multi-point statistics [26]
originating from petroleum geostatistics. The discussions with respect to these two parallel methods
will be the topic of our upcoming studies.
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