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Abstract:



Although several self-indexes for highly repetitive text collections exist, developing an index and search algorithm with editing operations remains a challenge. Edit distance with moves (EDM) is a string-to-string distance measure that includes substring moves in addition to ordinal editing operations to turn one string into another. Although the problem of computing EDM is intractable, it has a wide range of potential applications, especially in approximate string retrieval. Despite the importance of computing EDM, there has been no efficient method for indexing and searching large text collections based on the EDM measure. We propose the first algorithm, named string index for edit distance with moves (siEDM), for indexing and searching strings with EDM. The siEDM algorithm builds an index structure by leveraging the idea behind the edit sensitive parsing (ESP), an efficient algorithm enabling approximately computing EDM with guarantees of upper and lower bounds for the exact EDM. siEDM efficiently prunes the space for searching query strings by the proposed method, which enables fast query searches with the same guarantee as ESP. We experimentally tested the ability of siEDM to index and search strings on benchmark datasets, and we showed siEDM’s efficiency.
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1. Introduction


Vast amounts of text data are created, replicated, and modified with the increasing use of the internet and advances of data-centric technology. Many of these data contain repetitions of long substrings with slight differences, so called highly repetitive texts, such as Wikipedia and software repositories like GitHub with a large number of revisions. Also, recent biological databases store a large amount of human genomes while the genetic differences among individuals are less than [image: there is no content] percent, which results in the collections of human genomes being highly repetitive. Therefore, there is a strong need to develop powerful methods for processing highly repetitive text collections on a large scale.



Building indexes is the de facto standard method to search large databases of highly repetitive texts. Several methods have been presented for indexing and searching large-scale and highly repetitive text collections. Examples include the ESP-index [1], SLP-index [2] and LZ77-based index [3]. Recently, Gagie and Puglisi [4] presented a general framework called kernelization for indexing and searching highly repetitive texts. Although these methods enable fast query searches, their applicability is limited to exact match searches.



The edit distance between two strings is the minimum cost of edit operations (insertions, deletions, and replacements of characters) to transform one string to another. It has been proposed for detecting evolutionary changes in biological sequences [5], detecting typing errors in documents [6], and correcting errors on lossy communication channels [7]. To accelerate the quadratic time upper bound on computing the edit distance, Cormode and Muthukrishnan introduced a new technique called edit sensitive parsing (ESP) [8]. This technique allows us to compute a modified edit distance in near linear time by sacrificing accuracy with theoretical bounds. The modified distance is known as edit distance with moves (EDM) [8], which includes substring move operations in addition to insertions and deletions. While the exact computation of EDM is known to be intractable [9], the approximate computation of EDM using ESP achieves a good approximation ratio [image: there is no content], and runs in almost linear time [image: there is no content] for the string length N, where lg denotes the logarithm of base two.



ESP is extended to various applications for highly repetitive texts. Examples are data compressions called grammar compression [10,11,12,13], indexes for exact matches [1,14,15], an approximated frequent pattern discovery [16] and an online pattern matching for EDM [17]. Despite several attempts to efficiently compute EDM and various extensions of ESP, there is no method for indexing and searching texts with EDM. Such a method is required in bioinformatics where approximated text searches are used to analyze massive genome sequences. Thus, an open challenge is to develop an efficient string index and search algorithm for EDM.



We propose a novel method called siEDM that efficiently indexes massive text, and performs query searches for EDM. As far as we know, siEDM is the first string index for searching queries for EDM. A space-efficient index structure for a string is built by succinctly encoding a parse tree obtained from ESP, and query searches are performed on the encoded index structures. siEDM prunes useless portions of the search space based on the lower bound of EDM without missing any matching patterns, enabling fast query searches. As in existing methods, similarity searches of siEDM are approximate but have the same guarantee of the approximation ratio as in ESP.



Experiments were performed on indexing and searching repetitive texts for EDM on standard benchmark datasets. The performance comparison with an online pattern matching for EDM [17] demonstrates siEDM’s practicality.




2. Preliminaries


2.1. Basic Notations


Let Σ be a finite alphabet, and σ be [image: there is no content]. All elements in Σ are totally ordered. Let us denote by [image: there is no content] the set of all strings over Σ, and by [image: there is no content] the set of strings of length q over Σ, i.e., [image: there is no content] and an element in [image: there is no content] is called a q-gram. The length of a string S is denoted by [image: there is no content]. The empty string ϵ is a string of length 0, namely [image: there is no content]. For a string [image: there is no content], α, β and γ are called the prefix, substring, and suffix of S, respectively. The i-th character of a string S is denoted by [image: there is no content] for [image: there is no content]. For a string S and interval [image: there is no content] ([image: there is no content]), let [image: there is no content] denote the substring of S that begins at position i and ends at position j, and let [image: there is no content] be ϵ when [image: there is no content]. For a string S and integer [image: there is no content], let [image: there is no content] and [image: there is no content]. We assume a recursive enumerable set [image: there is no content] of variables with [image: there is no content]. All elements in [image: there is no content] are totally ordered, where all elements in Σ must be smaller than those in [image: there is no content]. In this paper, we call a sequence of symbols from [image: there is no content] a string. Let us define [image: there is no content], and [image: there is no content] for [image: there is no content]. The iterated logarithm of u is denoted by [image: there is no content], and defined as the number of times the logarithm function must be applied before the result is less than or equal to 1, i.e., [image: there is no content].




2.2. Straight-Line Program (SLP)


A context-free grammar (CFG) in Chomsky normal form is a quadruple [image: there is no content], where V is a finite subset of [image: there is no content], D is a finite subset of [image: there is no content], and [image: there is no content] is the start symbol. An element in D is called a production rule. Denote [image: there is no content] (resp. [image: there is no content]) as a left symbol (resp. right symbol) on the right hand side for a production rule with a variable [image: there is no content] on the left hand side, [image: there is no content], [image: there is no content]. [image: there is no content] for variable [image: there is no content] denotes the string derived from [image: there is no content]. A grammar compression of S is a CFG G that derives S and only S. The size of a CFG is the number of variables, i.e., [image: there is no content] and let [image: there is no content].



The parse tree of G is a rooted ordered binary tree such that (i) internal nodes are labeled by variables in V and (ii) leaves are labeled by symbols in Σ, i.e., the label sequence in leaves is equal to the input string. In a parse tree, any internal node Z corresponds to a production rule [image: there is no content], and has the left child with label X and the right child with label Y.



Straight-line program (SLP) [18] is defined as a grammar compression over [image: there is no content], and its production rules are in the form of [image: there is no content] where [image: there is no content] and [image: there is no content].




2.3. Rank/Select Dictionaries


A rank/select dictionary for a bit string B [19] supports the following queries: [image: there is no content] returns the number of occurrences of [image: there is no content] in [image: there is no content]; [image: there is no content] returns the position of the i-th occurrence of [image: there is no content] in B; [image: there is no content] returns the i-th bit in B. Data structures with only the [image: there is no content] bits storage to achieve [image: there is no content] time rank and select queries [20] have been presented.



GMR [21] is a rank/select dictionary for large alphabets and supports rank/ select/access queries for strings in [image: there is no content]. GMR uses [image: there is no content] bits while computing both rank and access queries in [image: there is no content] times and also computing select queries in [image: there is no content] time.





3. Problem


We first review the notion of EDM. The distance [image: there is no content] between two strings S and Q is the minimum number of edit operations to transform S into Q. The edit operations are defined as follows:

	
Insertion: A character a is inserted at position i in S, which generates [image: there is no content],



	
Deletion: A character is deleted at position i in S, which generates [image: there is no content],



	
Replacement: A character is replaced by a at position i in S, which generates [image: there is no content],



	
Substring move: A substring [image: there is no content] is deleted from the position i, and inserted at the position k in S, which generates [image: there is no content] for [image: there is no content], and [image: there is no content] for [image: there is no content].








Problem 1 

(Query search for EDM). For a string [image: there is no content], a query [image: there is no content] and a distance threshold [image: there is no content], find all [image: there is no content] satisfying [image: there is no content].





Shapira and Storer [9] proved the NP-completeness of EDM and proposed a polynomial-time algorithm for a restricted EDM. Cormode and Muthukrishnan [8] presented an approximation algorithm named ESP for computing EDM. We present a string index and search algorithm by leveraging the idea behind ESP for solving Problem 1. Our method consists of two parts: (i) an efficient index structure for a given string S and (ii) a fast algorithm for searching query Q on the index structure of S with respect to EDM. Although our method is also an approximation algorithm, it guarantees upper and lower bounds for the exact EDM. We first review ESP in the next section and then discuss the two parts.




4. Edit Sensitive Parsing (ESP) for Building SLPs


4.1. ESP Revisit


We review the edit sensitive parsing algorithm for building SLPs [10]. This algorithm, referred to as ESP-comp, computes an SLP from an input sting S. The tasks of ESP-comp are to (i) partition S into [image: there is no content] such that [image: there is no content] for each [image: there is no content], (ii) if [image: there is no content], generate the production rule [image: there is no content] and replace [image: there is no content] by X (this subtree is referred to as a 2-tree), and if [image: there is no content], generate the production rule [image: there is no content] and [image: there is no content] for [image: there is no content], and replace [image: there is no content] by Y (referred to as a 2-2-tree), (iii) iterate this process until S becomes a symbol. Finally, the ESP-comp builds an SLP representing the string S.



We focus on how to determine the partition [image: there is no content]. A string of the form [image: there is no content] with [image: there is no content] and [image: there is no content] is called a repetition. First, S is uniquely partitioned into the form [image: there is no content] by its maximal repetitions, where each [image: there is no content] is a maximal repetition of a symbol in [image: there is no content], and each [image: there is no content] contains no repetition. Then, each [image: there is no content] is called type1, each [image: there is no content] of length at least [image: there is no content] is type2, and any remaining [image: there is no content] is type3. If [image: there is no content], this symbol is attached to [image: there is no content] or [image: there is no content] with preference [image: there is no content] when both cases are possible. Thus, if [image: there is no content], each [image: there is no content] and [image: there is no content] is longer than or equal to two. One of the substrings is referred to as [image: there is no content].



Next, ESP-comp parses each [image: there is no content] depending on the type. For type1 and type3 substrings, the algorithm performs the left aligned parsing as follows. If [image: there is no content] is even, the algorithm builds 2-tree from [image: there is no content] for each [image: there is no content]; otherwise, the algorithm builds a 2-tree from [image: there is no content] for each [image: there is no content] and builds a 2-2-tree from the last trigram [image: there is no content]. For type2 [image: there is no content], the algorithm further partitions it into short substrings of length two or three by alphabet reduction [8].



Alphabet reduction: Given a type2 string S, consider [image: there is no content] and [image: there is no content] as binary integers. Let p be the position of the least significant bit, in which [image: there is no content], and let [image: there is no content] be the bit of [image: there is no content] at the p-th position. Then, [image: there is no content] is defined for any [image: there is no content]. Because S is repetition-free (i.e., type2), the label string [image: there is no content] is also type2. If the number of different symbols in S is n (denoted by [image: there is no content]), then [image: there is no content]. For the [image: there is no content], the next label string is iteratively computed until the final [image: there is no content] satisfying [image: there is no content] is obtained. [image: there is no content] is called the landmark if [image: there is no content].



The alphabet reduction transforms S into [image: there is no content] such that any substring of [image: there is no content] of length at least [image: there is no content] contains at least one landmark because [image: there is no content] is also type2. Using this characteristic, the algorithm ESP-comp determines the bigrams [image: there is no content] to be replaced for any landmark [image: there is no content], where any two landmarks are not adjacent, and then the replacement is deterministic. After replacing all landmarks, any remaining maximal substring s is replaced by the left aligned parsing, where if [image: there is no content] = 1, it is attached to its left or right block.



We give an example of the edit sensitive parsing of an input string in Figure 1-(i) and (ii). The input string S is divided into three maximal substrings depending on the types. The label string L is computed for the type2 string. Originally, L is iteratively computed until [image: there is no content]. This case shows that a single iteration satisfies this condition. After the alphabet reduction, three landmarks [image: there is no content] are found, and then each [image: there is no content] is parsed. Any other remaining substrings including type1 and type3 are parsed by the left aligned parsing shown in Figure 1-(ii). In this example, a dashed node denotes that it is an intermediate node in a 2-2-tree. Originally, an ESP tree is a ternary tree in which each node has at most three children. The intermediate node is introduced to represent ESP tree as a binary tree.


Figure 1. The edit sensitive parsing. In (i), an underlined [image: there is no content] means a landmark, and [image: there is no content]. In (i) and (ii), a dashed node is corresponding to the intermediate node in a 2-2-tree.
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As shown in [8], the alphabet reduction approximates the minimum CFG as follows. Let S be a type2 string containing a substring α at least twice. When α is sufficiently long (e.g., [image: there is no content]), there is a partition [image: there is no content] such that [image: there is no content] and each landmark of [image: there is no content] within α is decided by only [image: there is no content]. This means the long prefix [image: there is no content] of α is replaced by the same variables, independent of the occurrence of α.



ESP-comp generates a new shorter string [image: there is no content] of length from [image: there is no content] to [image: there is no content], and it parses [image: there is no content] iteratively. Given a string S, ESP builds the ESP-tree of height [image: there is no content] in [image: there is no content] time and in [image: there is no content] space. The approximation ratio of the smallest grammar by ESP is [image: there is no content] [10].




4.2. Approximate Computations of EDM from ESP-Trees


ESP-trees enable us to approximately compute EDM for two strings. After constructing ESP-trees for two strings, their characteristic vectors are defined as follows. Let [image: there is no content] be the ESP-tree for string S. We define that an integer vector [image: there is no content] to be the characteristic vector if [image: there is no content] represents the number of times the variable X appears in [image: there is no content] as the root of a 2-tree. For a string S, [image: there is no content] and its characteristic vector are illustrated in Figure 2. The EDM between two strings S and Q can be approximated by [image: there is no content]-distance between two characteristic vectors [image: there is no content] and [image: there is no content] as follows:


[image: there is no content]










Figure 2. Illustration of edit sensitive parsing (ESP)-tree and characteristic vector.
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Cormode and Muthukrishnan showed the upper and lower bounds on the [image: there is no content]-distance between characteristic vectors for the exact EDM.



Theorem 1 

(Upper and lower bounds of the approximated EDM [8]) . For [image: there is no content],


[image: there is no content]















5. Index Structure for ESP-Trees


5.1. Efficient Encoding Scheme


siEDM encodes an ESP-tree built from a string for fast query searches. This encoding scheme sorts the production rules in an ESP-tree such that the left symbols on the right hand side of the production rules are in monotonically increasing order, which enables encoding of these production rules efficiently and supporting fast operations for ESP-trees. The encoding scheme is performed from the first and second levels to the top level (i.e., root) in an ESP-tree.



First, the set of production rules at the first and second levels in the ESP-tree is sorted in increasing order of the left symbols on the right hand of the production rules, i.e., [image: there is no content] in the form of [image: there is no content], which results in a sorted sequence of these production rules. The variables in the left hand side in the sorted production rules are renamed in the sorted order, generating a set of new production rules that is assigned to the corresponding nodes in the ESP-tree. The same scheme is applied to the next level of the ESP-tree, which iterates until it reaches the root node.



Figure 3 shows an example of the encoding scheme for the ESP-tree built from an input string [image: there is no content]. At the first and second levels in the ESP-tree, the set of production rules, [image: there is no content], is sorted in the lexicographic order of the left symbols on right hand sides of production rules, which results in the sequence of production rules, [image: there is no content]. The variables on the right hand side of the production rules are renamed in the sorted order, resulting in the new sequence [image: there is no content], whose production rules are assigned to the corresponding nodes in the ESP-tree. This scheme is repeated until it reaches level 4.


Figure 3. Illustration of encoding scheme.



[image: Algorithms 09 00026 g003 1024]






Using the above encoding scheme, we obtain a monotonically increasing sequence of left symbols on the right hand side of the production rules, i.e., [image: there is no content] in the form of [image: there is no content]. Let [image: there is no content] be the increasing sequence; [image: there is no content] can be efficiently encoded into a bit string by using the gap-encoding and the unary coding. For example, the gap-encoding represents the sequence [image: there is no content] by [image: there is no content], and it is further transformed to the bit string [image: there is no content] by unary coding. Generally, for a sequence [image: there is no content], its unary code U represents [image: there is no content] by [image: there is no content]. Because the number of 0s and the number of 1s is [image: there is no content] and n, respectively, the size of U is [image: there is no content] bits. The bit string is indexed by the rank/select dictionary.



Let [image: there is no content] be the sequence consisting of the right symbols on the right hand side of the production rules, i.e., [image: there is no content] in the form of [image: there is no content]. [image: there is no content] is represented using [image: there is no content] bits. [image: there is no content] is indexed by GMR [21].



The space for storing [image: there is no content] and [image: there is no content] is [image: there is no content] bits in total. [image: there is no content] and [image: there is no content] enable us to simulate fast queries on encoded ESP-trees, which is presented in the next subsection.




5.2. Query Processing on Tree


The encoded ESP-trees support four tree operations, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], which are used in our search algorithm. [image: there is no content] returns the left child [image: there is no content] of [image: there is no content] and can be implemented on bit string [image: there is no content] in [image: there is no content] time as [image: there is no content] and [image: there is no content]. [image: there is no content] returns the right child [image: there is no content] of [image: there is no content] and can be implemented on array [image: there is no content] in [image: there is no content] time as [image: there is no content].



[image: there is no content] and [image: there is no content] return sets of parents of [image: there is no content] as left and right children, respectively, i.e., [image: there is no content] and [image: there is no content].



Because [image: there is no content] is a monotonic sequence, any [image: there is no content] appears consecutively in [image: there is no content]. Using the unary encoding of [image: there is no content], [image: there is no content] is computed by {p+i:p=select1(Al,Xk),rank0(Al,p+i)=rank0(Al,p)} in [image: there is no content] time. [image: there is no content] can be computed by repeatedly applying select operations for [image: there is no content] on [image: there is no content] until no more [image: there is no content] appear, i.e., [image: there is no content] for [image: there is no content]. Thus, [image: there is no content] for [image: there is no content] can be computed in [image: there is no content] time.




5.3. Other Data Structures


As a supplemental data structure, siEDM computes the node characteristic vector, denoted by [image: there is no content], for each variable [image: there is no content]: the characteristic vector consisting of the frequency of any variable derived from [image: there is no content]. The space for storing all node characteristic vectors of n variables is at most [image: there is no content] bits. Figure 3-(V) shows an example of the node characteristic vectors for ESP-tree in Figure 3-(III). In addition, let [image: there is no content] be a set of [image: there is no content] and variables appearing in all the descendant nodes under [image: there is no content], i.e., [image: there is no content]. Practically, [image: there is no content] is represented by a sequence of a pair of [image: there is no content] and [image: there is no content]. Additionally, because [image: there is no content] ([image: there is no content] represents adding 1 to dimension [image: there is no content]), the characteristic vectors can be stored per level 2 of the ESP-tree. The data structure is represented by a bit array [image: there is no content] indexed by a rank/select dictionary and the characteristic vectors reduced per level 2 of ESP-tree. [image: there is no content] is set to 1 for i-th bit if [image: there is no content] is stored, otherwise it is 0. Then, [image: there is no content] can be computed by [image: there is no content]-th characteristic vector if the i-th bit of [image: there is no content] is 1; otherwise, [image: there is no content].



Another data structure that siEDM uses is a non-negative integer vector named length vector, each dimension of which is the length of the substring derived from the corresponding variable (See Figure 3-(VI)). The space for storing length vectors of n variables is [image: there is no content] bits.



From the above argument, the space of the siEDM’s index structure for n variables is [image: there is no content] bits in total.





6. Search Algorithm


6.1. Baseline Algorithm


Given a [image: there is no content], the maximal subtree decomposition of [image: there is no content] is a sequence [image: there is no content] of variable in [image: there is no content] defined recursively as follows. [image: there is no content] is the variable of the root of the maximal subtree satisfying that [image: there is no content] is its leftmost leaf and [image: there is no content]. If [image: there is no content], then [image: there is no content] is the maximal subtree decomposition of [image: there is no content]. Otherwise, let [image: there is no content] be already determined and [image: there is no content]. Then, let [image: there is no content] be the variable of the root of the maximal subtree satisfying that [image: there is no content] is its leftmost leaf and [image: there is no content]. Repeating this process until [image: there is no content], the maximal subtree decomposition is determined.



Based on the maximal subtree decomposition, we explain the outline of the baseline algorithm, called online ESP [17], for computing an approximation of EDM between two strings. [image: there is no content] is constructed beforehand. Given a pattern Q, the online ESP computes [image: there is no content], and for each substring [image: there is no content] of length [image: there is no content], it computes the approximate EDM as follows. It computes the maximal subtree decomposition [image: there is no content] of [image: there is no content]. Then, the distance [image: there is no content] is approximated by [image: there is no content] because ESP-tree is balanced and then [image: there is no content]. This baseline algorithm is, however, required to compute the characteristic vector of [image: there is no content] at each position i. Next, we improve the time and space of the online ESP by finding those [image: there is no content]-grams for each variable X in [image: there is no content] instead of each position i.




6.2. Improvement


The siEDM approximately solves Problem 1 with the same guarantees presented in Theorem 1. Let [image: there is no content] such that [image: there is no content]. There are [image: there is no content]-grams formed by the string suf(val(Xl(i)),|Q|−k)pre(val(Xr(i)),k) with [image: there is no content]. Then, the variable [image: there is no content] is said to stab the [image: there is no content]-grams. The set of the [image: there is no content]-grams stabbed by [image: there is no content] is denoted by [image: there is no content]. Let [image: there is no content] be the set of [image: there is no content] for all [image: there is no content] appearing in [image: there is no content]. An important fact is that [image: there is no content] includes any [image: there is no content]-gram in S. Using this characteristic, we can reduce the search space .



If a [image: there is no content]-gram R is in [image: there is no content], there exists a maximal subtree decomposition [image: there is no content]. Then, the [image: there is no content]-distance of [image: there is no content] and [image: there is no content] guarantees the same upper bounds in the original ESP as follows.



Theorem 2. 

Let [image: there is no content] be a [image: there is no content]-gram on S and [image: there is no content] be its maximal subtree decomposition in the tree [image: there is no content]. Then, it holds that


∥F(Q)−∑j=1mF(Xij)∥1=O(lg|Q|lg*|S|)d(Q,R)













Proof. 

By Theorem 1, ∥F(Q)−F(R)∥1=O(lg|Q|lg*|S|)d(Q,R). On the other hand, for an occurrence of R in S, let [image: there is no content] be the smallest subtree in [image: there is no content] containing the occurrence of R, i.e., [image: there is no content]. For [image: there is no content] and [image: there is no content], let [image: there is no content] and [image: there is no content] be the sequences of the level 2 symbols in [image: there is no content] and [image: there is no content], respectively. By the definition of the ESP, it holds that [image: there is no content] and [image: there is no content] for some strings satisfying [image: there is no content], and this is true for the remaining string β iteratively. Thus, [image: there is no content] since the trees are balanced. Hence, by the equation


∥F(Q)−∑j=1mF(Xij)∥1=O(lg|Q|lg*|S|)d(Q,R)+O(lg|Q|lg*|S|)=O(lg|Q|lg*|S|)d(Q,R)








we obtain the approximation ratio. ☐





To further enhance the search efficiency, we present a lower bound of the [image: there is no content]-distance between characteristic vectors, which can be used for reducing the search space.



Theorem 3 

(A lower bound μ). For any [image: there is no content], the inequality [image: there is no content] holds where


[image: there is no content]













Proof. 

The [image: there is no content] distance between [image: there is no content] and [image: there is no content] is divided into four classes of terms: (i) both members in [image: there is no content] and [image: there is no content] are non-zero, (ii) both members in [image: there is no content] and [image: there is no content] are zero, (iii) the members in [image: there is no content] and [image: there is no content] are zero and non-zero, (iv) the members in [image: there is no content] and [image: there is no content] are non-zero and zero, respectively. Terms consisting of class (iii) and (iv) can be written as [image: there is no content], which is a lower bound of the [image: there is no content]-distance. Thus, [image: there is no content]. ☐





Theorem 4 

(Monotonicity of μ). If a variable [image: there is no content] derives [image: there is no content], the inequality [image: there is no content] holds.





Proof. 

Every entry in [image: there is no content] is less than or equal to the corresponding entry in [image: there is no content]. Thus, the inequality holds. ☐






6.3. Candidate Finding


By Theorems 2, 3 and 4, the task of the algorithm is reduced to finding a maximal subtree decomposition [image: there is no content] within [image: there is no content]. Given a threshold [image: there is no content], for each [image: there is no content]-gram in [image: there is no content], the algorithm finds the candidate: the maximal subtree decomposition [image: there is no content] satisfying [image: there is no content].



For an [image: there is no content] and an occurrence of some [image: there is no content]-gram in [image: there is no content], the [image: there is no content]-gram is formed by the expression [image: there is no content] for a k [image: there is no content]. The algorithm computes the maximal subtree decompositions [image: there is no content] covering [image: there is no content] and [image: there is no content] covering [image: there is no content], and outputs [image: there is no content] covering the [image: there is no content]-gram when [image: there is no content]. We illustrate the computation of candidates satisfying [image: there is no content] in Figure 4 and show the pseudo-code in Algorithm 1.


Figure 4. Illustration of candidate finding and [image: there is no content]-distance computation.



[image: Algorithms 09 00026 g004 1024]






Applying all variables to Algorithm 1 enables us to find the candidates covering all solutions. There are no possibilities for missing any [image: there is no content]-grams in [image: there is no content] such that the [image: there is no content]-distances between their characteristic vectors and [image: there is no content] are at most τ, i.e., false negatives. The set may include a false positive, i.e., the solution set encodes a [image: there is no content]-gram such that the [image: there is no content]-distance between its characteristic vector and [image: there is no content] is more than τ. However, false positives are efficiently removed by computing the [image: there is no content]-distance [image: there is no content] as a post-processing.



Theorem 5. 

The computation time of FindCandidates is [image: there is no content].





Proof. 

Because the height of the ESP-tree is [image: there is no content], for each variable X, the number of visited nodes is [image: there is no content]. The computation time of [image: there is no content] and [image: there is no content] is [image: there is no content], and the time of FindLeft and FindRight is [image: there is no content]. Thus, for n iterations of the functions, the total computation time is [image: there is no content]. ☐










	Algorithm 1 to output the candidate [image: there is no content] for [image: there is no content], a query pattern Q and a distance threshold τ.



	
	1:

	
function FindCandidates(X,Q,τ)




	2:

	
    for [image: there is no content]do




	3:

	
        [image: there is no content]                              ▹ Initialize solution set 




	4:

	
        [image: there is no content]FindLeft([image: there is no content])                ▹ for left child 




	5:

	
        [image: there is no content]FindRight([image: there is no content])                 ▹ for right child 




	6:

	
        if [image: there is no content] and [image: there is no content]then 




	7:

	
           Output R 




	8:

	
function FindLeft([image: there is no content]) 




	9:

	
    if [image: there is no content]then 




	10:

	
        return ∞ 




	11:

	
    else if [image: there is no content]then 




	12:

	
        return 0 




	13:

	
    else if [image: there is no content]then 




	14:

	
        [image: there is no content] if [image: there is no content] 




	15:

	
        [image: there is no content] 




	16:

	
        return [image: there is no content] 




	17:

	
    else if [image: there is no content]then 




	18:

	
        [image: there is no content] 




	19:

	
        [image: there is no content] 




	20:

	
        return [image: there is no content] 




	21:

	
    [image: there is no content]FindLeft([image: there is no content]) 




	22:

	
    if [image: there is no content]then 




	23:

	
        return FindLeft[image: there is no content] 




	24:

	
function FindRight([image: there is no content]) 




	25:

	
    if [image: there is no content]then 




	26:

	
        return ∞ 




	27:

	
    else if [image: there is no content]then 




	28:

	
        return 0 




	29:

	
    else if [image: there is no content]then 




	30:

	
        [image: there is no content] if [image: there is no content] 




	31:

	
        [image: there is no content] 




	32:

	
        return [image: there is no content] 




	33:

	
    else if [image: there is no content]then 




	34:

	
        [image: there is no content] 




	35:

	
        [image: there is no content] 




	36:

	
        return [image: there is no content] 




	37:

	
    [image: there is no content]FindRight([image: there is no content]) 




	38:

	
    if [image: there is no content]then 




	39:

	
        return FindRight[image: there is no content] 













6.4. Computing Positions


The algorithm also computes all the positions of [image: there is no content], denoted by [image: there is no content]. Starting from [image: there is no content], the algorithm goes up to the root in the ESP-tree built from S. p is initialized to 0 at [image: there is no content]. If [image: there is no content] through the pass from [image: there is no content] to the root is the parent with the right child [image: there is no content] on the pass, non-negative integer [image: there is no content] is added to p. Otherwise, nothing is added to p. When the algorithm reaches the root, p represents a start position of [image: there is no content] on S, i.e., [image: there is no content]. To compute the set [image: there is no content], the algorithm starts from [image: there is no content] and goes up to the root for each parent in [image: there is no content] and [image: there is no content], which return sets of parents for [image: there is no content]. Algorithm 2 shows the pseudo-code.








	Algorithm 2 to compute the set P of all occurrence of [image: there is no content] on S for [image: there is no content].



	
	1:

	
function ComputePosition(X) 




	2:

	
    [image: there is no content]                    ▹ Initialize solution set 




	3:

	
    Recursion(X, 1) 




	4:

	
function Recursion(X,p) 




	5:

	
    if X is the root node then 




	6:

	
        [image: there is no content] 




	7:

	
        return




	8:

	
    for each [image: there is no content]do      ▹X is the right child of [image: there is no content] 




	9:

	
        Recursion([image: there is no content],[image: there is no content]) 




	10:

	
    for each [image: there is no content]do       ▹X is the left child of [image: there is no content] 




	11:

	
        Recursion([image: there is no content],p) 












Theorem 6. 

The computation time of [image: there is no content] is [image: there is no content], where [image: there is no content] is the number of occurrences of X in [image: there is no content].





Proof. 

Using the index structures of [image: there is no content] and [image: there is no content], we can traverse the path from any node with label [image: there is no content] to the root of [image: there is no content] counting the position. The length of the path is [image: there is no content]. ☐





Theorem 7. 

The search time is [image: there is no content] using the data structure of size [image: there is no content] bits.





Proof. 

The time for computing [image: there is no content] and [image: there is no content] is t1=O(|Q|lg*|S|). The time for finding candidates and computing [image: there is no content] is [image: there is no content] by Theorem 5. The time for computing positions is [image: there is no content] by Theorem 6. Thus, the total time for a query search is [image: there is no content]. The size of the data structure is derived by the results in Section 5. ☐





In Theorem 7, n and [image: there is no content] are incomparable because [image: there is no content] is possible for a highly repetitive string.





7. Experiments


We evaluated the performance of siEDM on one core of a quad-core Intel Xeon Processor E5540 (2.53GHz) machine with 144GB memory. We implemented siEDM using the rank/select dictionary and GMR in libcds (https://github.com/fclaude/libcds). We used two standard benchmark datasets of einstein and cere from repetitive text collections in the pizza and chili corpus (http://pizzachili.dcc.uchile.cl/repcorpus.html), which is detailed in Table 1. As a comparison method, we used the online pattern matching for EDM called online ESP (baseline) [17] that approximates EDM between a query Q and substrings of the length of [image: there is no content] of each position of an input text. We randomly selected [image: there is no content] as the query pattern Q for each [image: there is no content] and examined the performance.



Table 1. Summary of datasets.







	
Dataset

	
Length

	
[image: there is no content]

	
Size (MB)






	
einstein

	
[image: there is no content]

	
139

	
446




	
cere

	
[image: there is no content]

	
5

	
440










Table 2 shows the memory consumption in the search of the siEDM and baseline. The memory consumption of siEDM was larger than the baseline for both texts because the baseline does not have characteristic vectors of each node and length vector.



Table 2. Comparison of the memory consumption for the query search.







	
Dataset

	
Einstein

	
Cere






	
siEDM (MB)

	
[image: there is no content]

	
[image: there is no content]




	
baseline (MB)

	
[image: there is no content]

	
[image: there is no content]










Table 3 shows the size for each component of the index structure and the time for building the index structure on einstein and cere datasets. Most of the size of the index structure was consumed by the characteristic vector F. The index size of cere was much larger than that of einstein. The index sizes of cere and einstein were approximately 16 megabytes and 256 megabytes, respectively, because the number of variables generated from cere was much larger than that generated from einstein. The number of variables generated from einstein was [image: there is no content] and the number of variables generated from cere was [image: there is no content]. The construction times of the index structures were 118 s for einstein and 472 s for cere. The results for constructing the index structures demonstrate the applicability of siEDM to moderately large, repetitive texts.



Table 3. Comparison of the index size and construction time.







	
Dataset

	
Einstein

	
Cere






	

	
Encoded ESP-tree (MB)

	
[image: there is no content]

	
[image: there is no content]




	
Index Size

	
Characteristic vector F (MB)

	
[image: there is no content]

	
[image: there is no content]




	

	
Length vector L (MB)

	
[image: there is no content]

	
[image: there is no content]




	
Construction time (sec)

	
[image: there is no content]

	
[image: there is no content]










Figure 5 shows the total search time (sec.) of siEDM and the baseline for einstein and cere in distance thresholds τ from 10 to 60. In addition, this result does not contain the case [image: there is no content] because siEDM found no candidate under the condition. The query length is one of [image: there is no content]. Because the search time of baseline is linear in [image: there is no content], we show only the fastest case: [image: there is no content]. The search time of siEDM was faster than baseline in most cases.


Figure 5. Comparison of the search time for einstein (left) and cere (right).



[image: Algorithms 09 00026 g005 1024]






Figure 6 shows the detailed search time in second. CF is the time for finding candidates of Q in [image: there is no content], DIST is the time for computing approximated [image: there is no content] distance by characteristic vectors, and PC is the time for determining the positions of all [image: there is no content]-grams within the threshold τ.


Figure 6. Details of search time for different [image: there is no content] and τ: time for candidate findings, CF, time for [image: there is no content]-distance computations, DIST, and time for position computations, PC. (a) and (b) correspond to CF, (c) and (d) correspond to DIST, and (e) and (f) correspond to PC of einstein and cere, respectively.



[image: Algorithms 09 00026 g006 1024]






Figure 7 shows the number of nodes [image: there is no content] visited by the algorithm, #TN, the number of candidate [image: there is no content]-grams computed by [image: there is no content], #CAND, the number of true positives among candidate [image: there is no content]-grams, #TP, and the number of occurrences, #OCC. The most time-consuming task is the candidate finding.


Figure 7. Statistical information of the query search: the number of traversed nodes, #TN, the number of candidate [image: there is no content]-grams, #CAND, the number of true positives, #TP, the number of occurrences, #OCC. (a) and (b) correspond to #TN, (c) and (d) correspond to #CAND, (e) and (f) correspond to #TP, and (g) and (h) correspond to #TP of einstein and cere, respectively.



[image: Algorithms 09 00026 g007 1024]






By the monotonicity of characteristic vectors, pruning the search space for small distance thresholds and long query length is more efficient. Thus, it is expected that siEDM is faster for smaller distance thresholds and longer query lengths and the experimental results support this. The search time on cere is much slower than that on einstein because the number of generated production rules from cere is much larger than that from einstein, and a large number of iterations of FindCandidates is executed. In addition, the comparison of #CAND and #TP validates the efficiency of siEDM for candidate finding with the proposed pruning method.



In Figure 7, the algorithm failed to find a candidate. Such a phenomenon often appears when the required threshold τ is too small, because the ESP-tree [image: there is no content] is not necessarily identical to [image: there is no content] even if [image: there is no content]. Generally, the parsing of [image: there is no content] is affected by a suffix of [image: there is no content] and a prefix of [image: there is no content] of length at most [image: there is no content].



As shown in Table 3 and Figure 5, the search time of siEDM depends on the size of encoded ESP-tree for the input. Finally, we confirm this feature by an additional experiment for other repetitive texts. Table 4, Table 5 and Table 6 are the description of several datasets from the pizza & chili corpus. Figure 8 shows the search time of siEDM and baseline. This result supports our claim that siEDM is suitable for computing EDM of repetitive texts.


Figure 8. Search time (sec.) for repetitive texts: E. coli (left) and influenza (right).



[image: Algorithms 09 00026 g008 1024]






Table 4. Summary of additional datasets.







	
Dataset

	
Length

	
[image: there is no content]

	
Size (MB)






	
influenza

	
154808555

	
15

	
[image: there is no content]




	
Escherichia_Coli

	
112689515

	
15

	
[image: there is no content]










Table 5. Comparison of the memory consumption for the query search.







	
Dataset

	
Influenza

	
Escherichia_Coli






	
siEDM (MB)

	
[image: there is no content]

	
[image: there is no content]




	
baseline (MB)

	
[image: there is no content]

	
[image: there is no content]










Table 6. Comparison of the index size and construction time for additional datasets.







	
Dataset

	
Influenza

	
Escherichia_Coli






	

	
Encoded ESP-tree (MB)

	
[image: there is no content]

	
[image: there is no content]




	
Index Size

	
Characteristic vector F (MB)

	
[image: there is no content]

	
[image: there is no content]




	

	
Length vector L (MB)

	
[image: there is no content]

	
[image: there is no content]




	
Construction time (sec)

	
[image: there is no content]

	
[image: there is no content]











8. Conclusions


We have proposed siEDM, an efficient string index for computing approximate searching based on EDM. Experimental results demonstrated the applicability of siEDM to real-world repetitive text collections as well as a longer pattern search. Future work will make the search algorithm in siEDM faster, which would be beneficial for users performing query searches for EDM.
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