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Abstract: The gravitational search algorithm (GSA) is a kind of swarm intelligence optimization
algorithm based on the law of gravitation. The parameter initialization of all swarm intelligence
optimization algorithms has an important influence on the global optimization ability. Seen from
the basic principle of GSA, the convergence rate of GSA is determined by the gravitational constant
and the acceleration of the particles. The optimization performances on six typical test functions are
verified by the simulation experiments. The simulation results show that the convergence speed of
the GSA algorithm is relatively sensitive to the setting of the algorithm parameters, and the GSA
parameter can be used flexibly to improve the algorithm’s convergence velocity and improve the
accuracy of the solutions.
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1. Introduction

The function optimization problem is to find the optimal solution of the objective function
by the iterative [1]. In general, the search objective is to optimize the function of the objective
function, which is usually described by the continuous, discrete, linear, nonlinear, concave and
convex of the function. For constrained optimization problems, one can adopt the specific operators
to make the solutions always feasible, or use the penalty function to transform the solutions into
the unconstrained problems. So, the unconstrained optimization problems are the research focus
here. There has been considerable attention paid to employing metaheuristic algorithms inspired
from natural processes and/or events in order to solve function optimization problems. The swarm
intelligent optimization algorithm [2] is a random search algorithm simulating the evolution of
biological populations. It can solve complex global optimization problems through the cooperation
and competition among individuals. The representative swarm intelligence optimization algorithms
include Ant Colony Optimization (ACO) algorithm [3], Genetic Algorithm (GA) [4], Particle Swarm
Optimization (PSO) algorithm [5], Artificial Bee Colony (ABC) algorithm [6], etc.

However, not all met heuristic algorithms are bio-inspired, because their sources of inspiration
often come from physics and chemistry. For the algorithms that are not bio-inspired, most have
been developed by mimicking certain physical and/or chemical laws, including electrical charges,
gravity, river systems, etc. The typical physics and chemistry inspired met heuristic algorithms
include Big Bang-big Crunch optimization algorithm [7], Black hole algorithm [8], Central force
optimization algorithm [9], Charged system search algorithm [10], Electro-magnetism optimization
algorithm [11], Galaxy-based search algorithm [12], Harmony search algorithm [13], Intelligent water
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drop algorithm [14], River formation dynamics algorithm [15], Self-propelled particles algorithm [16],
Spiral optimization algorithm [17], Water cycle algorithm [18], etc.

The gravitational search algorithm (GSA) was introduced by E. Rashedi et al. in 2009 [19].
It was constructed based on the law of gravity and the notion of mass interactions. The GSA
algorithm uses the theory of Newtonian physics and its searcher agents are the collection of masses.
A multi-objective gravitational search algorithm (MOGSA) technique was proposed to be applied in
hybrid laminates to achieve minimum weight and cost [20]. A fuzzy gravitational search algorithm
was proposed for a pattern recognition application, which in addition provided a comparison with
the original gravitational approach [21]. The grouping GSA (GGSA) adapted the structure of GSA
for solving the data clustering problem [22]. Combining the advantages of the gravitational search
algorithm (GSA) and gauss pseudo spectral method (GPM), an improved GSA (IGSA) is presented to
enhance the convergence speed and the global search ability [23]. A novel modified hybrid Particle
Swarm Optimization (PSO) and GSA based on fuzzy logic (FL) was proposed to control the ability to
search for the global optimum and increase the performance of the hybrid PSO-GSA [24]. A binary
quantum-inspired gravitational search algorithm (BQIGSA) was proposed by using the principles
of QC together with the main structure of GSA to present a robust optimization tool to solve binary
encoded problems [25]. Another binary version of hybrid PSOGSA called BPSOGSA was proposed to
solve many kinds of optimization problems [26]. A new gravitational search algorithm was proposed
to solve the unit commitment (UC) problem, which is the integrated binary gravitational search
algorithm (BGSA) with the Lambda-iteration method [27].

In conclusion, GSA has been successfully applied in many global optimization problems,
such as, multi-objective optimization of synthesis gas production [28], the forecasting of turbine heat
rate [29], dynamic constrained optimization with offspring repair [30], fuzzy control system [31], grey
nonlinear constrained programming problem [32], reactive power dispatch of power systems [33],
minimum ratio traveling salesman problem [34], parameter identification of AVR system [35],
strategic bidding [36], etc. In this paper, the research on the function optimization problem is
solved based on the gravitation search algorithm (GSA). Then the parameter performance comparison
and analysis are carried out through the simulation experiments in order to verify its superiority.
The paper is organized as follows. In Section 2, the gravitational search algorithm is introduced.
The simulation experiments and results analysis are introduced in details in Section 3. Finally,
the conclusion illustrates the last part.

2. Gravitational Search Algorithm

2.1. Physics Foundation of GSA

The law of universal gravitation is one of the four basic forces in nature. It is one of the
fundamental forces in nature. The gravitational force is proportional to the product of the mass, and
is inversely proportional to the square of the distance. The gravitational force between two objects is
calculated by:

F “ G
M1 ¨M2

R2 (1)

where, F is the gravitational force between two objects, G is the gravitational constant, M1 and M2 are
the masses of the objects 1 and 2 respectively, R is the distance between these two objects. According
to the international unit system, the unit of F is Newton (N), the unit of M1 and M2 is kg, the unit of
R is m, and the constant G is approximately equal to 6.67ˆ 10´11N ¨m2{kg2.

The acceleration of the particle a is related to its mass M and of the gravitational force F, which
is calculated by the following equation.

a “
F
M

(2)

According to the Equations (1) and (2), all of the particles in the world are affected by gravity.
The closer the distance between two particles, the greater the gravitational force. Its basic principle
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is shown in Figure 1, where the mass of the particles is represented by the image size. Particle M1

is influenced by the gravity of the other three particles to produce the resultant force F. Such an
algorithm will converge to the optimal solution, and the gravitational force will not be affected by the
environment, so the gravity has a strong local value.
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Figure 1. Gravitational phenomena.

The gravitational search algorithm should make the moving particle in space into an object with
a certain mass. These objects are attracted through gravitational interaction between each other,
and each particle in the space will be attracted by the mutual attraction of particles to produce
accelerations. Each particle is attracted by the other particles and moves in the direction of the
force. The particles with small mass move to the particles with great mass, so the optimal solution
is obtained by using the large particles. The gravitation search algorithm can realize the information
transmission through the interaction between particles.

2.2. Basic Principles of Gravitation Search Algorithm

Because there is no need to consider the environmental impact, the position of a particle
is initialized as Xi. Then in the case of the gravitational interaction between the particles,
the gravitational and inertial forces are calculated. This involves continuously updating the location
of the objects and obtaining the optimal value based on the above mentioned algorithm. The basic
principal of gravitational search algorithm is described as follows in detail.

2.2.1. Initialize the Locations

Firstly, randomly generate the positions x1
i , x2

i , ..., xk
i , ...xd

i of N objects, and then the positions of
N objects are brought into the function, where the position of the ith object are defined as follows.

Xi “ px1
i , x2

i , ...xk
i , ..., xd

i q (3)

2.2.2. Calculate the Inertia Mass

Each particle with certain mass has inertia. The greater the mass, the greater the inertia.
The inertia mass of the particles is related to the self-adaptation degree according to its position.
So the inertia mass can be calculated according to the self-adaptation degree. The bigger the inertial
mass, the greater the attraction. This point means that the optimal solution can be obtained. At the
moment t, the mass of the particle Xi is represented as Mi ptq. Mass Mi ptq can be calculated by the
followed equation.

Mai “ Mpi “ Mii “ Mi (4)

miptq “
f itiptq ´worstptq
bestptq ´worstptq

(5)
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Miptq “
miptq

N
ř

mjptq
(6)

where i “ 1, 2, ¨ ¨ ¨ , N, f itpiq is the fitness value of the object i, bestptq is the optimal solution and
worstptq is the worst solution. The calculation equation of bestptq and worstptq are described as follows.

For solving the maximum problem:

bestptq “ max
j“t1,2,...,Nu

f itjptq (7)

worstptq “ min
j“t1,2,...,Nu

f itjptq (8)

For solving the minimum value problem:

bestptq “ min
j“t1,2,...,Nu

f itjptq (9)

worstptq “ min
j“t1,2,...,Nu

f itjptq (10)

2.2.3. Calculate Gravitational Force

At the moment t, the calculation formula for the gravitational force of object j to object i described
as follows.

Fk
ij “ Gptq

Mpiptq ¨Majptq
Rijptq ` ε

pxk
j ptq ´ xk

i ptqq (11)

where, ε is a very small constant, Maiptq is the inertial mass of the object itself, Mpiptq is the inertial
mass of an object i. G ptq is the universal gravitational constant at the moment t, which is determined
by the age of the universe. The greater the age of the universe, the smaller G ptq. The inner relationship
is described as follows.

Gptq “ G0 ¨ e´αt{T (12)

where G0 is the universal gravitational constant of the universe at the initial time t0, generally it is set
as 100. α is 20, T is the maximum number of iterations and Rijptq represented the Euclidean distance
between object i and object j.

Rij “ ||Xiptq, Xjptq|| (13)

In GSA, the sum Fk
i ptq of the forces acting on the Xi in the K-th dimension is equal to the sum of

all the forces acting on this object:

Fk
i ptq “

ÿ

j“1,j‰i

rank jFk
ijptq (14)

where rank j is the random number in the range r0, 1s, Fk
ijptq is the gravity of the j-th object acting on

the i the object in the k-th dimension space. According to Newton's Second Law, the acceleration of
the i-th particle in the k-th dimension at the moment t is defined as follows:

ak
i ptq “

Fk
i ptq

Mptq
(15)

2.2.4. Change the Positions

In each iteration, the object position can be changed by calculating the acceleration, which is
calculated by the following equations.
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vk
i pt` 1q “ ranki ˆ vk

i ptq ` ak
i ptq (16)

xk
i pt` 1q “ xk

i ptq ` vk
i pt` 1q (17)

2.3. Algorithm Flowchart

The detailed flowchart of the algorithm is shown in Figure 2, and the optimization procedure is
described as follows.
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Step 1: Initialize the positions and accelerations of all particles, the number of iterations and the
parameters of the GSA;

Step 2: According to the Equation (12), calculate the fitness value of each particle and update the
gravity constant;

Step 3: According to the Equations (5)–(7), calculate the quality of the particles based on the
obtained fitness values and the acceleration of each particle according to the Equations (8) and (15);

Step 4: Calculate the velocity of each particle and update the position of the particle according
to the Equation (17);

Step 5: If the termination condition is not satisfied, turn to Step 2, otherwise output the
optimal solution.

2.4. Analysis of Gravitational Search Algorithm

In GSA, the update of the particle positions is aroused by the acceleration caused by the
gravitational force of the particles. The value of gravity determines the size of the particle’s
acceleration, so the acceleration can be regarded as the search step of the particle position update.
Its size determines the convergence rate of the gravitational search algorithm. In the acceleration
calculation, the number of particles N and gravity play an important role, and the mass and gravity
of the particles are determined the variety of G. The particle with different mass and gravity has
different convergence rate. So it is very important to choose the number of particles and the gravity
of the universal gravitation search algorithm.

The parameter initialization for all swarm intelligence optimization algorithms has important
influence on the performance of the algorithms and the optimization ability. GSA has two main steps:
one is to calculate the attraction of other particles for their selves and the corresponding acceleration
calculated through gravitational, and another is to update the position of the particles according to the
calculated acceleration. As shown in Formula (11)–(17), the convergence rate of GSA is determined
by the value of Gravitational constant G0 to determine the size of the particle acceleration, and
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parameters α to determine the pace of change. In this section, the effect and influence of parameters
G0 and α will be analyzed in detail.

3. Simulation Experiments and Results Analysis

3.1. Test Functions

Six typical functions shown in Table 1 are selected and carried out simulation experiments for
the optimal solution under the condition of GSA changeable parameters. There is only one extreme
point for f1 „ f2, which is mainly used to investigate the convergence of the algorithm and to test
the accuracy of the algorithm. There are many extreme points for f3 „ f6, the difference are in that
f5 „ f6 has lower dimension 2 and 4 respectively, while f1 „ f4 are high dimension with 30.

Table 1. Typical test functions.

Function Name Expression Range Dim

f1 Griewank
n
ř

i“1

x2
i

4000
´

n
ś

i“1
cos

ˆ

xi
?

i

˙

` 1 [´32, 32]n 30

f2 Quartic
řn

i“1 ix4
i ` randomr0, 1q [´1.28, 1.28]n 30

f3 Rastrigin
n
ř

i“1

“

x2
i ´ 10cosp2πxiq ` 10

‰

[´5.12, 5.12]n 30

f4 Schwefel 418.9829n´
n
ř

i“1

´

xisin
a

|xi|
¯

[´600, 600]n 30

f5 Shekel’s Foxholes p
1

500
`
ř25

j“1
1

j`
ř2

i“1 pxi ´ aijq
6 q

´1
[´65.53, 65.53]2 2

f6 Kowalik’s
11
ř

i“1

«

ai ´
x1pb2

i ` bix2q

b2
i ` bix3 ` x4

ff2

[´5, 5]4 4

3.2. Simulation Results and Corresponding Analysis

The GSA parameters are initialized as follows: max iterations max_it = 1000, objects N = 100.
When the simulation experiments are carried out for the parameters G0, α = 20. In order to reduce
the influence of random disturbance, the independent operation 50 times is carried out for each test
function. The optimum values and average values of GSA under different G0 are shown in Table 2.
The simulation curves for six test functions are shown in Figure 3a–f.

Table 2. The simulation result of different number of G0.

Function Result
The Simulation Results of GSA under Different G0

10 50 100 150 Minimum Time (s)

f1
optimum 1.4465e+3 153.1636 127.7572 86.9076

9.1665average 216.2229 210.4132 640.4764 1.0409e+4

f2
optimum 0.0092 0.0055 0.0059 0.0062

7.6812average 69.0872 101.8753 102.9537 78.0762

f3
optimum 4.9748 11.9395 13.9294 10.9445

7.4739average 236.9825 392.0198 367.3913 365.4881

f4
optimum 315.2694 7.6050 2.4267 0.0123

7.7866average 31.1370 0 0 0

f5
optimum 1.0012 1.0909 1.0602 0.9980

7.3759average 2.0043 0.9980 1.0836 1.4385

f6
optimum 0.0013 0.0015 0.0017 0.0016

3.8364average 0.0072 0.0106 0.096 0.0049
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Seen from the above simulation results, when G0 is 150, whether the optimal value or average
value, the functions ( f1, f2, f4) all have achieved the best results. When G0 are 100 and 50,
the optimization effect decreased successively. When G0 is 10, the functions ( f3, f5, f6) have the best
convergence performance. However, the most obvious performance of convergence curves appears
in the function f3 and the curves of optimization effect in function f1 and f4 is worst. The parameter
selection of different simulation curve fluctuates greatly in f4, where the simulation curves of the
difference maximum when G0 is 10 compared with other values. By analyzing the convergence
curves of each function, the convergence rate of the low dimensional function was higher than the
high dimensional function. Seen from the overall trends, as the growth of the value G0, the precision
of solution obtained in the related function optimization is not growth, but it is affected by the optimal
solution of distribution from the solution space of a different function. Moreover, it is also related to
the size of the solution space.

In view of the different values of the parameter α, the maximum or the minimum impact on the
performance of function optimization are all varying. Considering the running time, the parameter
G0 is 100 and the other parameters remain unchanged. The simulation experiments and the
corresponding analysis for α are shown in Table 3. The simulation curves of six test functions are
shown in Figure 4a–f.

Table 3. The simulation result of different α.

Function
The Simulation Results of GSA under Different α

10 15 20 25 35 Minimum Time (s)

f1 0.3386 19.7209 34.1272 89.9338 75.9954 31.9325
f2 0.0047 0.0033 0.0050 0.0048 0.0036 27.9789
f3 6.9647 4.9748 6.9647 5.9698 7.9597 27.9227
f4 3.2581e´11 1.5543e´15 1.3438 2.5285 5.3956 28.4755
f5 0.9980 0.9980 1.0064 3.9684 2.0038 19.3953
f6 0.0011 0.0019 0.0022 0.0018 0.0024 13.9513
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Figure 4. Simulation results of six typical test functions. (a) Griewank function f1; (b) Quartic
function f2; (c) Rastrigin function f3; (d) Schwefel function f4; (e) Shekel’s Foxholes function f5;
(f) Kowalik’s Foxholes function f6.

Seen from the above simulation results, there are most times to obtain the optimal solution when
the α value is 15, followed by 10. In addition to function f1, f4 has a greater difference among the
optimal solutions. The optimal solutions of other functions are close. The running time of low
dimensional functions is less than the high dimensional functions. Comparing the shortest running
times, the function f6 is only a half of function f1, which shows that low dimensional function has
better convergence performance. Seen from the points in convergence curves, when α is 10, the
most obvious optimization performances of f1, f4, f6 have converged to the optimal value. As the
α increases, the convergence effect showed a decreasing trend and the convergence curves of the
other three functions appear to show gradient optimization conditions. When α is 35, the functions
f2, f3 have the fastest convergence speed and reach the local optimal value early, but not the global
optimal value. Overall, for different functions, the smaller α, the better the convergence performance.
Compared to the slow convergence velocity, the functions with low dimension converge at a steeper
point on the curve.

4. Conclusions

Based on the basic principle of the gravitational search algorithm (GSA), the algorithm flowchart
is described in detail. The optimization performance is verified by simulation experiments on six test
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functions. G0 as a role of step in the particle position growth, through the simulation analysis of
functions, when G0 is 100, the algorithm is relatively inclined to be in a more stable state, which makes
the optimal results more stable. The parameter α played a key role in control algorithm convergence
rate. When the parameter value is small, the convergence speed of the algorithm is relatively slow.
Under the same number of iterations, the conditions need for an optimal solution are worse; thus,
a higher number of iterations is needed to obtain the optimal solution. However, the high value will
easily cause the algorithm convergence speed to be too fast and become caught into the local solution,
which will reduce the accuracy of the solution. As a result, the value 15 is appropriate. The simulation
results show that the convergence speed of the algorithm is relatively sensitive to the setting of the
algorithm parameters, and the GSA parameters can be used to improve the algorithm's convergence
velocity and improve the accuracy of the solutions.
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