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Abstract: Kung-Traub’s conjecture states that an optimal iterative method based on d function
evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence
order of 2d−1. During the last years, many attempts have been made to prove this conjecture or
develop optimal methods which satisfy the conjecture. We understand from the conjecture that
the maximum order reached by a method with three function evaluations is four, even for quadratic
functions. In this paper, we show that the conjecture fails for quadratic functions. In fact, we can find
a 2-point method with three function evaluations reaching fifth order convergence. We also develop
2-point 3rd to 8th order methods with one function and two first derivative evaluations using weight
functions. Furthermore, we show that with the same number of function evaluations we can develop
higher order 2-point methods of order r + 2, where r is a positive integer, ≥ 1. We also show that we
can develop a higher order method with the same number of function evaluations if we know the
asymptotic error constant of the previous method. We prove the local convergence of these methods
which we term as Babajee’s Quadratic Iterative Methods and we extend these methods to systems
involving quadratic equations. We test our methods with some numerical experiments including an
application to Chandrasekhar’s integral equation arising in radiative heat transfer theory.

Keywords: quadratic equation; 2-point iterative methods; Kung-Traub’s conjecture; efficiency
Index; dynamic behaviour; systems of equations
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1. Introduction

The problem of finding a simple zero of a nonlinear equation f (x) = 0, is an often discussed
problem in many applications of science and technology. The most commonly used method is
the Newton-Raphson method (simply called as Newton’s method). Many higher order variants of
Newton’s method have been developed and rediscovered in the last 15 years. Recently, the order
of convergence of many variants of Newton’s method has been improved using the same number
of functional evaluations by means of weight functions (see [1–6] and the references therein). The
aim of such research is to develop optimal methods which satisfy Kung-Traub’s conjecture. In this
paper, we develop 2-point methods with 1 function and 2 first derivative evaluations for solving
quadratic equations and study Kung-Traub’s conjecture for these methods. We extend these methods
to systems of quadratic equations and conduct some numerical experiments to test the efficiencies of
the methods.
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2. Developments of the Methods

Let x(k+1) = ψ(x(k)) define an Iterative Function (I.F.).

Definition 1. [7] If the sequence {x(k)} tends to a limit x∗ in such a way that

lim
n→∞

x(k+1) − x∗

(x(k) − x∗)p = C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.
Let e(k) = x(k) − x∗, then the relation

e(k+1) = C (e(k))p + O
(
(e(k))p+1

)
= O

(
(e(k))p

)
(1)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2. [8] The Efficiency Index is given by

EI = p
1
d (2)

where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.

Let x(k+1) be determined by new information at x(k), φ1(x(k)), ..., φi(x(k)), i ≥ 1
No old information is reused. Thus,

x(k+1) = ψ(x(k), φ1(x(k)), ..., φi(x(k))) (3)

Then ψ is called a multipoint I.F without memory. Kung-Traub’s Conjecture [9]

Let ψ be an I.F. without memory with d evaluations. Then

p(ψ) ≤ pOpt = 2d−1 (4)

where popt is the maximum order.
The second order Newton I.F. (2ndNR) is given by

ψ2nd NR(x) = x− u(x), u(x) =
f (x)
f ′(x)

(5)

The 2ndNR I.F. is a 1-point I.F. with 2 functions evaluations and it satisfies the Kung-Traub
conjecture with d = 2. Thus, EI2nd NR = 1.414. The 2-point fourth order Jarratt I.F. (4thJM) [10] is
given by

ψ4th JM(x) = x− u(x)
(

3τ + 1
6τ − 2

)
τ =

f ′
[

x− 2
3

u(x)
]

f ′(x)
(6)

The 4thJM I.F. with 3 function evaluations satisfies the Kung-Traub conjecture with d = 3.
According to Kung-Traub’s conjecture, it is not possible to obtain an I.F. with three function

evaluations reaching an order greater than four. We show that this conjecture fails for quadratic
functions.
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We consider the quadratic function f (x) = κ2x2 + κ1x + κ0, where κ2 6= 0, κ1, κ0 are constants.
Consider the following I.F. for quadratic function:

ψ(r+2)thBQIM(x) = x− u(x) H(τ, r) (7)

where

H(τ, r) = 1 +
r

∑
i=1

ai(τ − 1)i

where ai’s are constants.
The error equation of the I.F. defined by Equation (7) for r = 6 is given by

ψ(x)− x∗ =
((

4
3

a1 + 1
)

c2

)
(e(k))

2
+

((
−16

3
a1 −

16
9

a2 − 2
)

c2
2
)
(e(k))

3

+

((
52
3

a1 +
112

9
a2 +

64
27

a3 + 4
)

c2
3
)
(e(k))

4

+

((
−152

3
a1 −

176
3

a2 −
640
27

a3 −
256
81

a4 − 8
)

c2
4
)
(e(k))

5

+

((
3968

27
a3 +

688
3

a2 +
416

3
a1 +

3328
81

a4 + 16 +
1024
243

a5

)
c2

5
)
(e(k))

6

+

((
−1088

3
a1 − 800 a2 −

19456
27

a3 −
16384
243

a5 −
25600

81
a4 − 32− 4096

729
a6

)
c2

6
)
(e(k))

7

+

((
64 +

2752
3

a1 +
7744

3
a2 +

82496
27

a3 +
151040

81
a4 +

50176
81

a5 +
77824

729
a6

)
c2

7
)
(e(k))

8
+ ....

where c2 =
f ′′(x∗)
f ′(x∗)

, f ′(x∗) 6= 0.

Eliminating the terms in (e(k))
j
, j = 2, 3, 4, 5, 6, 7 we obtain a system of 6 linear equations with

6 unknowns:
AX = B

where

A =



4
3 0 0 0 0 0

− 16
3 − 16

9 0 0 0 0

52
3

112
9

64
27 0 0 0

− 152
3 − 176

3 − 640
27 − 256

81 0 0

416
3

688
3

3968
27

3328
81

1024
243 0

− 1088
3 −800 − 19456

27 − 25600
81 − 16384

243 − 4096
729



X =



a1

a2

a3

a4

a5

a6


, B =



−1

2

−4

8

−16

32
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whose solutions are given by

X =



a1

a2

a3

a4

a5

a6


= A−1B =



− 3
4

9
8

− 135
64

567
128

− 5103
512

24057
1024


We note that A is a lower triangular matrix and the solutions are easily obtained once the first

solution is obtained from the first equation.
In this way, we obtain a family of higher order I.F.s which we term as higher order 2-point

Babajee’s Quadratic Iterative Methods for solving quadratic equations ((r + 2)thBQIM).
The first six members of (r + 2)thBQIM’s family in Equation (7) with their error equation are

1. r = 1: 2-point 3rdBQIM I.F.

H(τ, 1) = 1− 3
4
(τ − 1)

ψ3thBQIM(x)− x∗ =
(

2 c2
2
)
(e(k))

3
+ O

(
(e(k))

4)
2. r = 2: 2-point 4thBQIM I.F.

H(τ, 2) = 1− 3
4
(τ − 1) +

9
8
(τ − 1)2

ψ4thBQIM(x)− x∗ =
(

5 c2
3
)
(e(k))

4
+ O

(
(e(k))

5)
3. r = 3: 2-point 5thBQIM I.F.

H(τ, 3) = 1− 3
4
(τ − 1) +

9
8
(τ − 1)2 − 135

64
(τ − 1)3

ψ5thBQIM(x)− x∗ =
(

14 c2
4
)
(e(k))

5
+ O

(
(e(k))

6)
4. r = 4: 2-point 6thBQIM I.F.

H(τ, 4) = 1− 3
4
(τ − 1) +

9
8
(τ − 1)2 − 135

64
(τ − 1)3 +

567
128

(τ − 1)4

ψ6thBQIM(x)− x∗ =
(

42 c2
5
)
(e(k))

6
+ O

(
(e(k))

7)
5. r = 5: 2-point 7thBQIM I.F.

H(τ, 5) = 1− 3
4
(τ − 1) +

9
8
(τ − 1)2 − 135

64
(τ − 1)3 +

567
128

(τ − 1)4 − 5103
512

(τ − 1)5

ψ7thBQIM(x)− x∗ =
(

132 c2
6
)
(e(k))

7
+ O

(
(e(k))

8)
6. r = 6: 2-point 8thBQIM I.F.

H(τ, 6) = 1− 3
4
(τ− 1)+

9
8
(τ− 1)2− 135

64
(τ− 1)3 +

567
128

(τ− 1)4− 5103
512

(τ− 1)5 +
24057
1024

(τ− 1)6
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ψ8thBQIM(x)− x∗ =
(

429 c2
7
)
(e(k))

8
+ O

(
(e(k))

9)
We note that the maximum order reached by optimal methods with four function evaluations

is eight. We have obtained an eighth order 2-point method with only three function
evaluations for solving quadratic equations. This implies that the Kung-Traub conjecture fails for
quadratic equations.

3. Convergence Analysis

Theorem 3. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open interval D.
Then the six members of 2-point (r + 2)thBQIM’s family in Equation (7) (r = 1, 2, 3, 4, 5, 6) are of local 3rd to
8th order convergence, respectively.

Proof. We will prove the 3rd order convergence of the 2-point 3rdBQIM I.F. and 8th order
convergence of the 2-point 8thBQIM I.F.

The proofs for the 2-point 4th to 7th order I.F.s follow on similar lines.
It is easy to see that for a quadratic function,

f (x) = f ′(x∗)

[
e(k) + c2(e(k))2

]

and

f ′(x) = f ′(x∗)

[
1 + 2c2 e(k)

]
By Taylor expansion and using computer algebra software as Maple

u(x) = e(k) − c2(e(k))
2
+ 2 c2

2(e(k))
3
− 4 c2

3(e(k))
4
+ 8 c2

4(e(k))
5
− 16 c2

5(e(k))
6

+ 32 c2
6(e(k))

7
− 64 c2

7(e(k))
8
+ 128 c2

8(e(k))
9
+ ...

(8)

so that

τ = 1− 4
3

c2 e(k) + 4 c2
2(e(k))

2
− 32

3
c2

3(e(k))
3
+

80
3

c2
4(e(k))

4
− 64 c2

5(e(k))
5
+

448
3

c2
6(e(k))

6

− 1024
3

c2
7(e(k))

7
+ 768 c2

8(e(k))
8
+ ...

(9)

Now,
H(τ, 1) = 1 + c2 e(k) − 3 c2

2(e(k))
2
+ 8 c2

3(e(k))
3
+ ... (10)

Using Equations (8) and (10), we have

u(x) H(τ, 1) = e(k) − 2 c2
2(e(k))

3
+ O

(
(e(k))

4)
which leads to the error equation for the 2-point 3rdBQIM I.F.

Similarly,

H(τ, 6) = 1 + c2 e(k) − c2
2(e(k))

2
+ c2

3(e(k))
3
− c2

4(e(k))
4
+ c2

5(e(k))
5
− c2

6(e(k))
6
− 428c2

7(e(k))
7
+ ...
(11)

Using Equations (8) and (11), we have

u(x) H(τ, 6) = e(k) − 429 c2
7(e(k))

8
+ O

(
(e(k))

9)
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which leads to the error equation for the 2-point 8thBQIM I.F.

We next prove the local convergence of the 2-point (r + 2)thBQIM’s family for any r.

Theorem 4. Let a sufficiently smooth function f : D ⊂ R → R has a simple root x∗ in the open
interval D. Then the members of 2-point (r + 2)thBQIM’s family in Equation (7) are of local (r + 2)th
order convergence.

Proof. We prove this result by induction.
The case r = 1 corresponds to the 3rdBQIM I.F.
Assume the 2-point (r + 2)thBQIM family has order of convergence of (r + 2). Then it satisfies

the error equation

ψ(r+2)thBQIM(x)− x∗ = Cr c2
r+1(e(k))

r+2
+ O

(
(e(k))

r+3)
(12)

where Cr is the asymptotic error constant.
Assume that Equation (12) holds for r = m.
Now from Equation (9), we have

τ − 1 = −4
3

c2 e(k)
(

1− 3c2 e(k) + 8c2
2(e(k))

2
+ ...

)
so that

(τ − 1)m+1 =

(
−4

3

)m+1
c2

m+1(e(k))
m+1(

1− 3c2 e(k) + 8c2
2(e(k))

2
+ ...

)m+1

=

(
−4

3

)m+1
c2

m+1(e(k))
m+1

(
1 + O

(
e(k)
))

(13)

For the case r = m + 1,

ψ(m+3)thBQIM(x)− x∗

= x− u(x) H(τ, m + 1)− x∗

= x− u(x) H(τ, m)− x∗ − am+1 u(x) (τ − 1)m+1

= ψ(m+2)thBQIM(x)− x∗ − am+1 u(x) (τ − 1)m+1

= Cm c2
m+1(e(k))

m+2
− am+1

(
−4

3

)m+1
c2

m+1(e(k))
m+2

+ O
(
(e(k))

m+3)
using Equations (8), (12) and (13)

=

(
Cm − am+1

(
−4

3

)m+1
)

c2
m+1(e(k))

m+2
+ O

(
(e(k))

m+3)
which shows that the 2-point (m + 3)thBQIM family has (m + 3)th order of convergence if we choose

am+1 = Cm

(
−3

4

)m+1
(14)

From Equation (14), we can obtain higher order I.F. if we know the asymptotic error constant of
the previous I.F.
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For example, for the 2-point 3rdBQIM I.F., C1 = 2 and from Equation (14),

a2 = C1

(
−3

4

)2
=

9
8

and we can obtain the 4thBQIM I.F.
Similarly, for the 2-point 8thBQIM I.F., C6 = 429 and from Equation (14),

a7 = C6

(
−3

4

)7
= −938223

16384

and we can obtain the 2-point 9thBQIM I.F. with

H(τ, 7) = 1− 3
4
(τ − 1) +

9
8
(τ − 1)2 − 135

64
(τ − 1)3 +

567
128

(τ − 1)4 − 5103
512

(τ − 1)5

+
24057
1024

(τ − 1)6 − 938223
16384

(τ − 1)7

From Theorem 4, we conclude that we can have a family of order r + 2, r = 1, 2, ... with only 3
function evaluations.

The Efficiency Index of the 2-point (r + 2)thBQIM family is given by

EI = (r + 2)
1
3 , r ≥ 1 (15)

In the following section, we extend our methods to systems of equations.

4. Extension to Systems of Equations

Consider the system of nonlinear equations f(x) = 0, where f(x) = ( f1(x), f2(x), ..., fn(x))T ,
x = (x1, x2, ..., xn)T , fi : Rn → R, ∀i = 1, 2, . . . , n defined as

fi(x) = bi +
n

∑
l=1

n

∑
m=1

bl,m xl xm, bi, bl,m, i, l, m = 1, ..n, are constants.

and f : D ⊂ Rn → Rn is a smooth map and D is an open and convex set, where we assume that

x∗ = (x∗1 , x∗2 , ..., x∗n)T is a zero of the system and x(0) =
(

x(0)1 , x(0)2 , ..., x(0)n

)T
is an initial guess

sufficiently close to x∗.
We define the 2-point (r + 2)thBQIM’s family for systems of quadratic equations as:

ψ(r+2)thBQIM(x) = x−H(τ(x), r) u(x) (16)

where
u(x) = f′(x)−1f(x)

y(x) = x− 2
3

u(x)

τ(x) = f′(x)−1f′ (y(x))

H(τ(x), r) = I +
r

∑
i=1

ai(τ(x)− I)i, I is the identity matrix.

Let us define
c2 =

1
2
[f′(x∗)]−1f(2)(x∗), e(k) = x(k) − x∗

Using the notations in [11], it is noted that c2e(k) ∈ L(Rn).
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The error at the (k + 1)th iteration is e(k+1) = L(e(k))
p
+ O

(
(e(k))

p+1)
, where L is a p-linear

function L ∈ L(Rn × · · · ×Rn, Rn), is called the error equation and p is the order of convergence.
Observe that (e(k))

p
is (e(k), e(k), · · · , e(k)).

The first six members of (r + 2)thBQIM’s family in Equation (16) with their error equation are

1. r = 1: 2-point 3rdBQIM I.F.

H(τ(x), 1) = I− 3
4
(τ(x)− I)

ψ3thBQIM(x)− x∗ =
(

2 c2
2
)
(e(k))

3
+ O

(
(e(k))

4)
2. r = 2: 2-point 4thBQIM I.F.

H(τ(x), 2) = I− 3
4
(τ(x)− I) +

9
8
(τ(x)− I)2

ψ4thBQIM(x)− x∗ =
(

5 c2
3
)
(e(k))

4
+ O

(
(e(k))

5)
3. r = 3: 2-point 5thBQIM I.F.

H(τ(x), 3) = I− 3
4
(τ(x)− I) +

9
8
(τ(x)− I)2 − 135

64
(τ(x)− I)3

ψ5thBQIM(x)− x∗ =
(

14 c2
4
)
(e(k))

5
+ O

(
(e(k))

6)
4. r = 4: 2-point 6thBQIM I.F.

H(τ(x), 4) = I− 3
4
(τ(x)− I) +

9
8
(τ(x)− I)2 − 135

64
(τ(x)− I)3 +

567
128

(τ(x)− I)4

ψ6thBQIM(x)− x∗ =
(

42 c2
5
)
(e(k))

6
+ O

(
(e(k))

7)
5. r = 5: 2-point 7thBQIM I.F.

H(τ(x), 5) = I− 3
4
(τ(x)− I)+

9
8
(τ(x)− I)2− 135

64
(τ(x)− I)3 +

567
128

(τ(x)− I)4− 5103
512

(τ(x)− I)5

ψ7thBQIM(x)− x∗ =
(

132 c2
6
)
(e(k))

7
+ O

(
(e(k))

8)
6. r = 6: 2-point 8thBQIM I.F.

H(τ(x), 6) = I− 3
4
(τ(x)− I) +

9
8
(τ(x)− I)2 − 135

64
(τ(x)− I)3 +

567
128

(τ(x)− I)4

− 5103
512

(τ(x)− I)5 +
24057
1024

(τ(x)− I)6

ψ8thBQIM(x)− x∗ =
(

429 c2
7
)
(e(k))

8
+ O

(
(e(k))

9)
4.1. Convergence Analysis

Theorem 5. Let f : D ⊆ Rn −→ Rn be twice Frechet differentiable at each point of an open convex
neighborhood D of x∗ ∈ Rn, that is a solution of the quadratic system f(x) = 0. Let us suppose that f′(x) is
continuous and nonsingular in x∗, and x(0) is close enough to x∗. Then the sequence {x(k)}k≥0 obtained using
the iterative expressions Equation (16), r = 1, 2, ..., 6 converge to x∗ with order 3 to 8, respectively.
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Proof. We will prove for the case r = 6. The other cases follow along similar lines. Since f is a
quadratic function of several variables, we have

f(x(k)) = f′(x∗)
[
e(k) + c2(e(k))

2]
(17)

and
f′(x(k)) = f′(x∗)

[
I + 2c2e(k)

]
(18)

f′(x(k))−1 =

[
I− 2c2e(k) + 4c2

2(e(k))
2
− 8c2

3(e(k))
3
+ 16c2

4(e(k))
4
− 32c2

5(e(k))
5

+ 64c2
6(e(k))

6
− 128c2

7(e(k))
7
+ 256c2

8(e(k))
8
...

]
[f′(x∗)]−1

(19)

Using Equations (17) and (19), we have

u(x(k)) = e(k) − c2(e(k))
2
+ 2c2

2(e(k))
3
− 4c2

3(e(k))
4
+ 8c2

4(e(k))
5
− 16c2

5(e(k))
6

+ 32c2
6(e(k))

7
− 64c2

7(e(k))
8
+ ...

(20)

and the expression for y(x(k)) is given by

y(x(k)) = x∗ +
1
3

e(k) +
2
3

c2(e(k))
2
− 4

3
c2

2(e(k))
3
+

8
3

c2
3(e(k))

4
− 16

3
c2

4(e(k))
5
+

32
3

c2
5(e(k))

6

− 64
3

c2
6(e(k))

7
+

128
3

c2
7(e(k))

8
+ ....

The Taylor expansion of Jacobian matrix f′(y(x(k))) is then given by

f′(y(x(k))) = f′(x∗)
[
I + 2c2(y(x(k))− x∗)

]
= f′(x∗)

[
I +

2
3

c2(e(k)) +
4
3

c2
2(e(k))

2
− 8

3
c2

3(e(k))
3
+

16
3

c2
4(e(k))

4
− 32

3
c2

5(e(k))
5

+
64
3

c2
6(e(k))

6
− 128

3
c2

7(e(k))
7
+

256
3

c2
8(e(k))

8
+ ....

]
Therefore, using Equation (19), we obtain

τ(x(k)) = [f′(x(k))]−1f′(y(x(k)))

= I− 4
3

c2(e(k)) + 4c2
2(e(k))

2
− 32

3
c2

3(e(k))
3
+

80
3

c2
4(e(k))

4
− 64c2

5(e(k))
5

+
448

3
c2

6(e(k))
6
− 1024

3
c2

7(e(k))
7
+ 768c2

8(e(k))
8
+ ....

so that
H(τ(x), 6) = I + c2(e(k))− c2

2(e(k))
2
+ c2

3(e(k))
3
− c2

4(e(k))
4
+ c2

5(e(k))
5

− c2
6(e(k))

6
− 428c2

7(e(k))
7
+ .....

(21)

Using Equations (20) and (21), we have, after simplifications,

H(τ(x), 6) u(x(k)) = e(k) − 429c2
7(e(k))

8
+ ...
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and, thus,
x−H(τ(x), 6) u(x(k)) = x∗ + e(k) − (e(k) − 429c2

7(e(k))
8
+ ...)

= x∗ + 429c2
7(e(k))

8
+ ...

Theorem 6. Let f : D ⊆ Rn −→ Rn be twice Frechet differentiable at each point of an open convex
neighborhood D of x∗ ∈ Rn, that is a solution of the quadratic system f(x) = 0. Let us suppose that f′(x) is
continuous and nonsingular in x∗, and x(0) is close enough to x∗. Then the sequence {x(k)}k≥0 obtained using
the iterative expressions Equation (16), r = 1, 2, ... converges to x∗ with order r + 2 with the error equation

ψ(r+2)thBQIM(x)− x∗ = Cr c2
r+1(e(k))

r+2
+ ... (22)

The proof is by induction and follows along similar lines.
Similarly as in the case of scalar equations, we can obtain higher order I.F. for systems if we know the
asymptotic error constant of the previous I.F. using

ar+1 = Cr

(
−3

4

)r+1
, r = 1, 2, ...

5. Numerical Experiments

5.1. Scalar Equation

We consider the Test problem 1 (TP1) of finding the positive zero of the quadratic function
f (x) = x2 − 2 to compare the efficiency of the proposed methods. Numerical computations have
been carried out in the MATLAB software rounding to 1000 significant digits. Depending on the
precision of the computer, we use the stopping criteria for the iterative process |x(k+1) − x(k)| < ε

where ε = 10−50. Let N be the number of iterations required for convergence. For simplicity, we
denote Xe−Y = X× 10−Y.

The computational order of convergence is given by

ρ =
ln |(x(N) − x(N−1)/(x(N−1) − x(N−2))|

ln |(x(N−1) − x(N−2))/(x(N−2) − x(N−3))|

We choose x(0) = 1. The results in Table 1 show that, as the order of the (r + 2)thBQIM I.F.
(r = 1,2,3,4,5,6), the methods converge in less iterations. The computational order of convergence
agree with the theoretical order of convergence confirming that Kung-Traub’s conjecture fails for
quadratic functions.

Table 1. Results of the quadratic function f (x) = x2 − 2 for the 3rdBQIM, 4thBQIM, 5thBQIM,
6thBQIM, 7thBQIM and 8thBQIM I.F.s.

Error 3rdBQIM 4thBQIM 5thBQIM 6thBQIM 7thBQIM 8thBQIM

|x1 − x0| 5.6e−1 5.8e−1 5.8e−1 5.8e−1 5.9e−1 5.9e−1
|x2 − x1| 2.3e−2 7.7e−3 2.8e−3 1.1e−3 4.3e-4 1.8e−4
|x3 − x2| 3.0e−6 7.5e−10 3.6e−14 3.5e−19 6.9e−25 2.9e−31
|x4 − x3| 7.0e−18 6.9e−38 1.3e−68 4.0e−112 1.8e−170 1.3e−245
|x5 − x4| 8.7e−53 4.9e−150 - - - -
|x6 − x5| - - - - - -

ρ 3 4 5 6 7 8
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5.2. Dynamic Behaviour in the Complex Plane

Consider our Test problem 2 (TP2) based on the quadratic function f (z) = z2 − 1 where z is
a complex number. We let z∗1 = −1 and z∗2 = 1 which are the roots of unity for f (z) = z2 − 1. We
study the dynamic behaviour of higher order (r + 2)thBQIM I.F.s (r = 1, 2, 3, 4, 5, 6). We take a square
R×R = [−2, 2]× [−2, 2] of 256× 256 points and we apply our iterative methods starting in every z(0)

in the square. If the sequence generated by the iterative method attempts a zero z∗j of the polynomial

with a tolerance | f (z(k))| < 1e− 4 and a maximum of 100 iterations, we decide that z(0) is in the basin
of attraction of this zero.

If the iterative method starting in z(0) reaches a zero in N iterations (N ≤ 100), then we mark this
point z(0) with a blue color if |z(N) − z∗1 | < 1e− 4 or green color if |z(N) − z∗2 | < 1e− 4. If N > 100, we
conclude that the starting point has diverged and we assign a dark blue color. Let ND be number of
diverging points and we count the number of starting points which converge in 1, 2, 3, 4, 5 or above
5 iterations.

Table 2 shows that all 6 methods are globally convergent and as the order of the method
increases, the number of starting points converging to a root in 1 or 2 iterations increases. This is
the advantage of higher order methods.

Table 2. Results of the quadratic function f (z) = z2 − 1 for the 3rdBQIM, 4thBQIM, 5thBQIM,
6thBQIM, 7thBQIM and 8thBQIM I.F.s.

I.F. N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

3rdBQIM 56 6536 28,736 16,240 5428 8540 0
4thBQIM 232 16,908 27,532 7780 3700 9564 0
5thBQIM 528 23,348 23,196 5928 3340 9196 0
6thBQIM 928 27,880 19,680 5272 3072 8704 0
7thBQIM 1392 31,304 16,736 4856 2864 8394 0
8thBQIM 1892 33,924 14,220 4564 2788 8184 0

(a) (b) (c)

Figure 1. Polynomiographs of 3rdBQIM, 4thBQIM and 5thBQIM I.F.s. for f (z) = z2 − 1. (a) 3rdBQIM;
(b) 4thBQIM; (c) 5thBQIM.

Bahman Kalantari coined the term “polynomiography” to be the art and science of visualization
in the approximation of roots of polynomial using I.F. [12]. Figures 1 and 2 show the
polynomiography of the six methods. It can be observed as the order of the method increases, the
methods behave more chaotically (the size of the “petals” become larger).
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(a) (b) (c)

Figure 2. Polynomiographs of 6thBQIM, 7thBQIM and 8thBQIM I.F.s. for f (z) = z2 − 1. (a) 6thBQIM;
(b) 7thBQIM; (c) 8thBQIM.

5.3. Systems of Quadratic Equations

For our numerical experiments in this section, the approximate solutions are calculated correct
to 1000 digits by using variable precision arithmetic in MATLAB. We use the following stopping
criterion for the numerical scheme:

‖x(k+1) − x(k)‖2 < 1e− 50 (23)

For a system of equations, we used the approximated computational order of convergence pc

given by (see [13])

pc ≈
log (‖x(k+1) − x(k)‖2/‖x(k) − x(k−1)‖2)

log (‖x(k) − x(k−1)‖2/‖x(k−1) − x(k−2)‖2)
(24)

We consider the Test Problem 3 (TP3) which is a system of 2 equations:

x2
1 + x2

2 − 7 = 0
x1 − x2 + 1 = 0

(25)

Using the substitution method, Equation (25) reduces to the quadratic equation

x2
2 − x2 − 3 = 0 whose positive root is given by x∗2 =

1 +
√

13
2

= 2.302775638.. Therefore

x∗1 = x∗2 − 1 =

√
13
2

= 1.302775638..

We use x(0) = (1, 2)T as starting vector and apply our Equation (16), r = 1, 2, ..., 6 to calculate the
approximate solutions of Equation (25).

Table 3. Results of the TP3 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM
I.F.s.

Error 3rdBQIM 4thBQIM 5thBQIM 6thBQIM 7thBQIM 8thBQIM

‖x(1) − x(0)‖2 4.2e−1 4.3e−1 4.3e−1 4.3e−1 4.3e−1 4.3e−1
‖x(2) − x(1)‖2 9.2e−3 2.5e−3 7.6e−4 2.5e−4 8.6e−5 3.1e−5
‖x(3) − x(2)‖2 6.0e−8 1.4e−12 5.1e−18 2.9e−24 2.7e−31 4.0e−39
‖x(4) − x(3)‖2 1.6e−23 1.5e−49 7.5e−89 7.4e−144 7.0e−217 3.0e−310
‖x(5) − x(4)‖2 3.4e−70 1.9e−197 - - - -

pc 3 4 5 6 7 8
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Table 3 shows that as the order of the methods increase the methods converge in less iterations
(4 iterations) and with a smaller error. Similarly, as in the case for scalar equations, the computational
order of convergence for this system of 2 equations agree with the theoretical one.

We next consider the Test Problem 4 (TP4) [14]

x2
1 + x2

2 − 1 = 0
x2

1 − x2
2 − 0.5 = 0

(26)

Using the elimination method, Equation (26) reduces to the simple quadratic equation

2x2
2 − 1.5 = 0 whose positive root is given by x∗2 =

√
3

2
= 0.866025403.. and therefore x∗1 =

1
2

.

Using x(0) = (2, 3)T as starting vector far from the root, we apply our methods (16), r = 1, 2, ..., 6
to find the numerical solutions of Equation (26).

Table 4. Results of TP4 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.

Error 3rdBQIM 4thBQIM 5thBQIM 6thBQIM 7thBQIM 8thBQIM

‖x(1) − x(0)‖2 2.0e0 2.2e0 2.3e0 2.4e0 2.4e0 2.5e0
‖x(2) − x(1)‖2 5.3e−1 3.8e−1 2.8e−1 2.2e−1 1.7e−1 1.4e−1
‖x(3) − x(2)‖2 3.5e−2 5.0e−3 6.3e−4 6.8e−5 6.2e−6 4.5e−7
‖x(4) − x(3)‖2 3.1e−5 1.5e−9 9.2e−16 3.5e−24 4.1e−35 6.9e−49
‖x(5) − x(4)‖2 5.2e−14 2.3e−35 9.0e−75 8.3e−140 2.5e−239 0
‖x(6) − x(5)‖2 2.7e−40 1.3e−138 - - - -
‖x(7) − x(6)‖2 4.2e−119 - - - - -

pc 3.00 4.00 4.98 6.00 7.00 7.63

In Table 4, with the starting vector distant from the root, we observe that the methods take more
iterations to converge. As from the third iteration, the iterate of the methods are close to the root and
they converge to the root at their respective rate of convergence.

We next consider the Test Problem 5 (TP5) which is a system of 4 equations [15].

x2x3 + x4(x2 + x3) = 0
x1x3 + x4(x1 + x3) = 0
x1x2 + x4(x1 + x2) = 0
x1x2 + x1x3 + x2x3 = 1

(27)

Using the substitution method, Equation (27) reduces to the simple quadratic

equation 3x2
1 − 1 = 0 whose positive root is given by x∗1 =

1√
3
= 0.577350269.. Therefore

x∗2 = x∗3 = x∗1 =
1√
3
= 0.577350269.. and x∗4 = −

x∗1
2

= − 1
2
√

3
= −0.288675134..

Using x(0) = (0.5, 0.5, 0.5,−0.25)T as starting vector, we apply our Equation (16), r = 1, 2, ..., 6 to
find the numerical solutions of Equation (27).

In Table 5, we deduce that similar observations on computational order of convergence can be
made for this system of four equations.
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Table 5. Results of TP5 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.

Error 3rdBQIM 4thBQIM 5thBQIM 6thBQIM 7thBQIM 8thBQIM

‖x(1) − x(0)‖2 1.4e−1 1.4e−1 1.4e−1 1.4e−1 1.4e−1 1.4e−1
‖x(2) − x(1)‖2 1.7e−3 3.5e−4 8.1e−5 2.0e−5 5.2e−6 1.4e−6
‖x(3) − x(2)‖2 2.4e−9 8.6e−15 2.6e−21 7.1e−29 1.7e−37 3.9e−47
‖x(4) − x(3)‖2 6.5e−27 3.1e−57 9.7e−104 1.4e−169 7.9e−258 0
‖x(5) − x(4)‖2 1.3e−79 - - - - -

pc 3 4 5 6 7 8.1

5.4. Application

As an application, we consider the quadratic integral equation of the type:

x(s) = g(s) + λx(s)
∫ 1

0
K(s, t) x(t) dt (28)

Equation (28) appears in [16] and is known as Chandrasekhar’s integral equation. It arises from
the study of the radiative transfer theory, the transport of neutrons and the kinetic theory of the gases.
It is studied in [17] and, under certain conditions for the kernel, in [18,19].

We define the kernel K(s, t) as a continuous function in s, t ∈ [0, 1] such that 0 < K(s, t) < 1
and K(s, t) + K(t, s) = 1. Moreover, we assume that g(s) ∈ C[0, 1] is a given function and λ is a real
constant. The solution of Equation (28) is equivalent to solving the equation F(x) = 0, where
F : C[0, 1]→ C[0, 1] and

F(x)(s) = x(s)− g(s)− λ x(s)
∫ 1

0
K(s, t) x(t) dt, x ∈ C[0, 1], s ∈ [0, 1]

We choose g(s) = 1 and K(s, t) =
s

s + t
so that we are required to solve the following equation:

F(x)(s) = x(s)− 1− λ x(s)
∫ 1

0

s
s + t

x(t) dt, x ∈ C[0, 1], s ∈ [0, 1] (29)

If we discretize the integral given in Equation (29) using the Mid-point Integration Rule with n
grid points

∫ 1

0

s
s + t

x(t) dt =
1
n

n

∑
j=1

tj

ti + tj
xj, xj = x(tj), tj = (j− 0.5)h, h =

1
n

, 1 ≤ j ≤ n

we obtain the resulting system of non-linear equations:

fi(x) = xi − λ
xi
n

n

∑
j=1

tj

ti + tj
xj, 1 ≤ i ≤ n (30)

The λ are equally spaced with ∆λ = 0.01 in the interval λ ∈ (0, 0.5). We choose n = 100
and (1, 1, ....., 1)T as the starting vector. In this case, for each λ, we let Mλ be the minimum number
of iterations for which the infinity norm between the successive approximations ‖x(k+1) − x(k)‖∞ <

1e− 13, where the approximation x(k) is calculated correct to 16 digits (double precision in MATLAB).
Let Mλ be the mean of iteration number for the 49 λ’s.

All methods converge for all 49 values of λ. The results are given in Table 6 which shows that
all methods converge in less than five iterations. It is the 8thBQIM I.F. which has the greatest number
of λ converging in two or three iterations and the smallest mean iteration number. We also observe
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that there is a small difference in the mean iteration number between the 7thBQIM and 8thBQIM I.F.s.
Developing 9th or higher order I.F.s would not be necessary for this application.

Table 6. Results of the Chandrasekhar’s integral equation for the 3rdBQIM, 4thBQIM, 5thBQIM,
6thBQIM, 7thBQIM and 8thBQIM I.F.s.

Method M = 2 M = 3 M = 4 M = 5 M > 5 Mλ

3rdBQIM 0 21 23 5 0 3.67
4thBQIM 1 34 13 1 0 3.29
5thBQIM 3 38 8 0 0 3.10
6thBQIM 3 40 6 0 0 3.06
7thBQIM 3 41 5 0 0 3.04
8thBQIM 3 42 4 0 0 3.02

6. Conclusions and Future Work

In this work, we have shown that Kung-Traub’s conjecture fails for quadratic functions, that
is, we can obtain iterative methods for solving quadratic equations with three functions evaluations
reaching order of convergence greater than four. Furthermore, using weight functions, we showed
that it is possible to develop methods with three function evaluations of any order. These methods are
extended to systems involving quadratic equations. We have developed 3rd to 8th order methods and
applied them in some numerical experiments including an application to Chandrasekhar’s integral
equation. The dynamic behaviour of the methods were also studied. This research will open the
door to new avenues. For example, for solving quadratic equations numerically, we can improve
the order of fourth order method with two function and one first derivative evaluations (Ostrowski’s
method [8]) or fourth order derivative-free method with three function evaluations (higher order
Steffensen’s method (see [20])). The question we now pose: Is it possible to develop fifth order
methods with three function evaluations for solving cubic or higher order polynomials? This is for
future considerations.
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