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Abstract: Lung cancer continues to rank as the leading cause of cancer deaths worldwide. 

One of the most promising techniques for early detection of cancerous cells relies on sputum 

cell analysis. This was the motivation behind the design and the development of a new 

computer aided diagnosis (CAD) system for early detection of lung cancer based on the 

analysis of sputum color images. The proposed CAD system encompasses four main 

processing steps. First is the preprocessing step which utilizes a Bayesian classification 

method using histogram analysis. Then, in the second step, mean shift segmentation is 

applied to segment the nuclei from the cytoplasm. The third step is the feature analysis.  

In this step, geometric and chromatic features are extracted from the nucleus region. These 

features are used in the diagnostic process of the sputum images. Finally, the diagnosis  

is completed using an artificial neural network and support vector machine (SVM) for 

classifying the cells into benign or malignant. The performance of the system was analyzed 

based on different criteria such as sensitivity, specificity and accuracy. The evaluation was 

carried out using Receiver Operating Characteristic (ROC) curve. The experimental results 

demonstrate the efficiency of the SVM classifier over other classifiers, with 97% sensitivity 

and accuracy as well as a significant reduction in the number of false positive and false 

negative rates. 

Keywords: compute-aided diagnosis; sputum images; lung cancer detection; Bayesian 

theorem; mean shift segmentation; feature extraction; neural network; support vector machine 
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1. Introduction 

Lung cancer ranks as one of the most common causes of death amongst all diseases. While there have 

been a lot of approaches to minimize the fatalities caused by this disease, early detection is considered 

the best step towards effective treatment. The overall five-year survival rate for lung cancer is 14%. 

Nonetheless, patients at the early stage of the disease who undergo curative resection have a five-year 

survival rate of 40% to 70%. The most recent estimate statistics, according to the American Cancer 

Society, indicate that in 2014, there were 224,210 new cases, accounting for about 13% of all cancer 

diagnoses. Lung cancer accounts for more deaths than any other cancer in both men and women. An 

estimated 221,200 new cases of lung cancer are expected in 2015. Furthermore, an estimated 158,040 

deaths are expected to occur in 2015, accounting for about 27% of all cancer deaths [1]. 

The detection of lung cancer can be achieved in several ways, such as computed tomography (CT), 

magnetic resonance imaging (MRI), and X-ray. All these methods consume a lot of resources in terms of 

both time and money, in addition to their invasiveness. Recently, scientists have proven that the  

non-invasive technique of sputum cell analysis can assist in the successful diagnosis of lung cancer.  

A computer-aided-diagnosis (CAD) system using this modality would be of great support for 

pathologists when dealing with large amounts of data, in addition to relieving doctors from tedious and 

routine tasks. The design and development of sputum color image segmentation is an extremely 

challenging task. A part from the work reported in [2], where the authors used Hopfield Neural Network 

(HNN) to classify the sputum cells into cancer or non-cancer cell, little or nothing has been done in 

developing a CAD system based on sputum cytology. 

In this paper a state-of-the-art CAD system is implemented based on sputum color image analysis. 

The CAD system can play a significant role in early lung cancer detection. It serves as a useful second 

opinion when physicians examine patients during lung cancer screening [3]. A CAD system involves a 

combination of image processing and artificial intelligent techniques that can be used to detect 

abnormalities in medical images as well as enhancing medical interpretation for a better performance in 

the diagnosis process. In addition, a CAD system could direct the pathologist’s attention to the regions 

where the probability of presence of the disease is greater [4]. On the other hand, the major role of the 

CAD system is to improve the sensitivity of the diagnosis process and not to make decisions about the 

patient’s health status [5]. The proposed CAD system was tested on 100 sputum color images for early 

lung cancer detection, the experimental results were substantially improved, with high values of 

sensitivity, specificity and accuracy, in addition to an accurate detection of the cancerous cells when 

compared with the pathologist’s diagnosis results. Therefore, the new CAD system could increase the 

efficiency of the mass screening process by detecting the lung cancer candidates successfully and 

improve the performance of pathology in the diagnosis process. The novelty of this work is defined as 

follows: a state-of-the-art complete CAD system is implemented based on the sputum color image 

analysis, and optimal deployment and combination of existing image processing and analysis techniques 

for building the computer aided diagnosis (CAD) system is used. The contributions can be summarized 

as follows: (1) Detection of sputum cell using a Bayesian classification framework; (2) Best color space 

after analysis of the images with histogram analysis; (3) Mean shift technique for the sputum cell 

segmentation; (4) Feature extraction, where a set of features are extracted from the nucleus region to be 

used in the diagnosis process. Based on medical knowledge, the following features were used in our 
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proposed CAD system: Nucleus to Cytoplasm (NC) ratio, perimeter, density, curvature, circularity and 

eigen ratio; (5) Classification of sputum cells into benign or malignant cells is done by using different 

classification techniques: artificial neural network (ANN) and support vector machine (SVM). 

The rest of the paper is organized as follows. Section 2 provides the background to the existing 

methods of lung cancer diagnosis. Section 3 describes sputum cells extraction and segmentation.  

Section 4 presents the feature extraction. Section 5 provides a detail description about the different 

classification methods. Section 6 compares the proposed CAD system with other systems. Finally,  

the conclusion and future works are discussed in Section 7. 

2. Background 

Lung cancer remains the leading cause of mortality. There is significant evidence indicating that  

the early detection of lung cancer will decrease the mortality rate, by using asymptomatic screening 

methods, followed by effective treatment. Most recent research relies on quantitative information,  

such as size, shape, and the ratio of the affected cells. Computer vision methods are employed to  

elicit information from medical images, such as the detection of cancerous cells. Many diagnostic 

ambiguities are removed when transforming these images from their continuous to their digital form. 

Today, very large amounts of data are produced from medical imaging modalities, such as sputum 

cytology, computed tomography (CT) and magnetic resonance imaging (MRI) [6]. In the literature,  

there exists many modalities that have been used for detecting lung cancer, some of them can detect  

the cancer in early stages, and others can detect the cancer in advanced stages. Some of lung cancer 

modalities are: computed tomography (CT) scans, positron emission tomography (PET) data, X-ray 

images and sputum color image analysis. 

The authors in [7] used CT scans to detect histological images of the lungs and diagnose into 

cancerous or non-cancerous nodules. The segmentation process is done by using a fuzzy system based 

on the area and the gray level of the nodule region. These methods attain an accuracy of 90% with high 

values for sensitivity and specificity that can meet the clinical diagnosis requirement. Other authors [8] 

used high resolution (HRCT) images to detect small lung nodules by applying a series of 3D cylindrical 

and spherical filters. The drawback was in the limitation of this method in detecting all cancerous 

nodules. Using CT scans in detecting lung cancer has a number of limitations with high false-positive 

rate, because it detects a lot of non-cancerous nodules and it misses many small cancer nodules. 

The PET scan which is used in conjunction with X-rays or CT scans, is considered the most recent 

nuclear medicine imaging of the functional processes within the human body. The biggest advantage  

of a PET scan, compared to other modalities, is that it can reveal how a part of the patient’s body is 

functioning, rather than just how it looks. The author in [9] proposed an automated process of tumor 

delineation and volume detection from each frame of PET lung images. The spatial and frequency 

domain features have been used to represent the data. K-nearest neighbor and support vector machines 

(SVM) classifiers have been used to measure the performance of the features. Wavelet features with a 

SVM classifier gave a consistent accuracy of 97% with an average sensitivity and specificity of 81% and 

99%, respectively. The calculated volume from the detected tumor by the proposed method matched the 

manually segmented volume by physicians. Their methods succeeded in eliminating the need for manual 

tumor segmentation, thus reducing physician fatigue to a great extent, however the limitation of the PET 
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scan is that it can be time consuming. It can take from several hours to days for the radiotracer to 

accumulate in the body part of interest. In addition, the resolution of body structures with nuclear 

medicine may not be as high as with other imaging techniques, such as CT. 

The X-ray image, or chest radiography, is one of the most commonly used diagnostic modalities  

in lung cancer detection and is regarded as one of the cheapest diagnostic tools. The authors in [10] 

proposed a nodule detection algorithm in chest radiographs. The algorithm consisting of four steps: 

image acquisition, image preprocessing, nodule candidate segmentation and feature extraction. Active 

shape model technique for lung image segmentation was used, while gray level co-occurrence matrix 

technique was adopted for texture features. The limitation can be in its invasive nature (patients’ 

radiation exposure), plus high false positive and negative rates. 

The latest modality is sputum cytology, which has developed to become an important modality that 

can be used to detect early lung cancer. A number of medical researchers now utilize analysis of sputum 

cells for this early detection. The detection of lung cancer by using sputum color images was introduced 

in [2] where, for the diagnosis, the authors presented unsupervised classification technique based on 

HNN to segment the sputum cells into cancerous and normal cells. They used energy function with cost 

term to increase the accuracy in the segmented regions. Their technique resulted in correct segmentation 

of sputum color image cells into nuclei, cytoplasm and clear background classes. However, the methods 

have limitations due to the problem of early local minima of the HNN. The HNN can make a crisp 

classification of the cells after removing all debris cells. The authors in [11] overcame this problem by 

using a mask algorithm as a pre-processing step for removing all debris cells and classifying the 

overlapping cells as separate cells. They concluded that the HNN gives better classification results than 

other methods such as fuzzy clustering technique and can be used in the diagnosis process. 

The author in [12] used all the previous results to come up with an automatic computer aided 

diagnosis system for early detection of lung cancer based on the analysis of pathological sputum color 

images. Two segmentation processes were used, the first one was Fuzzy C-Means Clustering algorithm 

(FCM), and the second was the improved version of HNN for the classification of the sputum images 

into background, nuclei and cytoplasm. The two regions were used as a main feature to diagnose each 

extracted cell. It was found that the HNN segmentation results are more accurate and reliable than FCM 

clustering in all cases. The HNN succeeded in extracting the nuclei and cytoplasm regions. However, 

FCM failed in detecting the nuclei, instead detecting only part of it. In addition, the FCM is not sensitive 

to intensity variations as segmentation error at convergence is larger with FCM compared to that  

with HNN. 

In the previous cases [2,11,12], the detection of lung cancer was done through the analysis of sputum 

color images by applying data mining techniques such as clustering and classification followed by shape 

detection. However, the techniques which were used to analyze these images have a number of 

limitations namely: the high number of false negatives representing the missed cancer cells, and the high 

number of false positives representing cells classified as cancerous, resulting in putting a patient through 

unnecessary radiation and surgical operations. In addition, most techniques fail to consider the outer 

pixels which may sometimes represent a class in themselves. Moreover, the preprocessing techniques 

need further enhancement to discard the debris cells in the background of the images, and to remove all 

noise from the images, in addition to the overlapping between the sputum cells which have not been 

considered by the previous techniques. 
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The current segmentation results are not accurate enough to be used in the diagnosis part. In the  

HNN-based method, the cluster number has to be provided in advance. This affects the feature extraction 

part, especially in the presence of outliers. These problems have to be tackled, and more features have to 

be computed to develop a successful CAD system. Hence this leaves scope for further investigation of a 

method that detects the lung cancer in the early stage. 

3. Sputum Cells Extraction and Segmentation 

A database of 100 sputum color images collected from the Tokyo Center for lung cancer was utilized 

in this study. These images were stained into red and blue dye images by using the Papanicolaou 

standard methods [13]. Some of the nuclei of the sputum cells overlapped with the cytoplasm due to the 

dispersion of the cytoplasm in the staining process. Moreover, there was an intensity variation in the 

cytoplasm and background regions in the sputum image. 

3.1. Cell Detection and Extraction 

A Bayesian classification was used to extract the sputum cells from the background. Thus, the sputum 

image extraction into a sputum cell region and a background can be viewed as a classification problem, 

in which each pixel has to be assigned to one of the two classes (sputum cell or background). The 

Bayesian classification approach allows a systematic and methodologist estimation of the threshold 

parameters rather than using heuristics with trial and error testing. 

In a Bayesian classifier a pixel x is considered part of the sputum region if: (ݔ|ܾ݃)݌ ൏ (1) (ݔ|݌ݏ)݌

where sp and bg refer to the sputum and the background respectively. This equation reflects that: given 

the pixel x, the conditional probability of belonging to the sputum cell area is larger than the conditional 

probability of belonging to the background. Using the Bayesian theorem and the concept of 

classification Equation (1) can be brought to: μ௦௣μ௕௚ (݌ݏ)݌(ܾ݃)݌ ൏ (2) (ܾ݃|ݔ)݌(݌ݏ|ݔ)݌

where μ௦௣	 is the loss weight incurred if the sputum class has been selected instead of the background, 

and μ௕௚	 is the loss weight incurred if the background class has been selected instead of the sputum cell. 

p(bg) and p(sp) are the prior probabilities of the background and the sputum classes respectively. These 

parameters are estimated from the total number of sputum and background pixels in the training set of 

the images. 
The setting of the ratio λ = ஜೞ೛ஜ್೒	 is based on the following reasoning: In the context of cancer cell 

detection, false positives usually prevail over false negatives. Bearing in mind that cancerous cells are 

characterized by an oversized nucleus relative to the cytoplasm, mistakenly selecting a background pixel 

as a sputum pixel does rather increase the detected cytoplasm region thus disproportioning the nucleus, 

and therefore increases the likelihood of assessing a cancerous cell. From this perspective, the loss 

incurred in a false sputum cell classification should be assigned a larger weight than its counterpart in the 
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opposite case, (e.g., loss incurred if the background class has been selected instead of the sputum). 

Therefore, the ratio λ should be set larger than 1. 

The class conditional pdfs p(x|sp) and p(x|bg) were estimated using the histogram technique [14],  

due to the ability of the histogram to design the Bayesian classifier very rapidly even with the large 

training set. We applied a Bayesian classifier to detect and extract the ROI (sputum cells) from the 

background in the sputum color images. Figure 1 shows some examples of sputum cell detection 

obtained by using the Bayesian classifier technique with two different values of the ratio λ. Figure 1a 

depicts raw images, Figure 1b depicts the ground-truth images obtained manually, Figure 1c depicts  

the resulted images from the Bayesian classification with λ = 2, and Figure 1d depicts the results with  

λ = 7. As can be noticed from the figure, the size of the detected cell for λ = 7 is less than the size for  

λ = 2, thus confirming the previously adopted cost condition on the ratio λ. 

  

  

  
(a) (b) (c) (d) 

Figure 1. Samples of sputum cell extraction results. From left to right: (a) raw images;  

(b) ground truth data; (c) cell detection by using the Bayesian classifier with λ = 2;  

and (d) with λ = 7. 

3.2. Segmentation 

We target the cell segmentation by using the mean shift algorithm to segment the sputum cells  

into nuclei and cytoplasm regions. These regions exhibit reddish colors with different levels of intensity 

(dark for nucleus and clear in the cytoplasm). Therefore, the edge-based and parametric segmentation 

methods are not suitable because of the noisy aspect of the cytoplasm and the nucleus in the sputum 

cells, and the closeness of their chromatic values. In addition to that, the mean shift algorithm is the most 

popular density-based segmentation method. It is a non-parametric iterative technique that operates on a 

particular density function defined in the feature space. 

Basically, the mean shift iteratively shifts candidate solutions in the feature space towards points of 

maximum density. In our application, the feature space is defined by the pixel’s gray level and the pixel 

spatial coordinates. The detailed algorithm can be found in [14]. Figure 2, depicts an example of  

sputum cells through the different mean shift segmentation stages. Figure 2a shows the sputum cells 

extraction (nucleus and cytoplasm). We converted the sputum cell pixels to gray level and applied 

histogram equalization to enhance the contrast of the images as shown in Figure 2b. 

The results of the mean shift segmentation are illustrated in Figure 2c. We observed that the 

segmentation produces several non-compact regions that do not fit the desired target (e.g., the nucleus 
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and cytoplasm). Statistically, we found that the number of regions varies between 3 and 6. Thus, we 

performed region merging. First, from each region represented as a binary image, we extracted the 

largest connected patches (excluding the isolated and tiny ones). Afterwards, we performed region 

merging by computing the mean distance of the modes to the center of the image. Then, the mode with 

the minimal distance was assumed to be the nucleus. If this mode has more than one area, we repeated 

the same procedure for the different areas. Since we want to have a connected nucleus, therefore  

we perform a rule-based region merging (as shown in Figure 2d), followed by a basic hole-filling 

morphological operation [15] to get the fully compact regions corresponding to the nucleus and 

cytoplasm. On one hand, the final number of regions should not exceed 2. On the other hand, when the 

number of regions is above 2, meaning that the nuclei contains separated regions, and in this case the cell 

is considered as abnormal, since such configuration reflects nucleus duplication known as the mitosis 

(cell division) process [16]. Figure 3, illustrates an example of such a case. 

  

  

  
(a) (b) (c) (d) 

Figure 2. Samples of sputum cells through different mean shift segmentation stages.  

(a) sputum cells; (b) conversion to gray level and apply histogram equalization; (c) mean 

shift segmentation; (d) mode merging and region refinement. 

  
(a) 

  
(b) 

Figure 3. Mitosis (cell division). (a) raw cells and (b) two or more nuclei in each cytoplasm. 

3.3. Experiments 

We conducted a comprehensive set of experiments to analyze the effect of the detection and 

segmentation process on the sputum cell extraction. Quantitatively, the performance was assessed in 

terms of sensitivity, specificity and accuracy in term of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) as follows: 
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Sensitivity = ୘୔୘୔ା୊୒ 	Specificity = ୘୒୘୒ା୊୔, Accuracy = ୘୔ା୘୒୘୔ା୘୒ା୊୔ା୊୒ 

Ground-truth data was obtained for the training, and the Receiver Operating Characteristic (ROC) 

curves are computed to analysis the effect of color representation and color quantization. In the detection 

process, we computed the ROC curves for the four color representations (RGB, HSV, YCbCr, and 

L*a*b*) for five histogram resolutions (16, 32, 64, 128 and 256), then the Bayesian classifier was 

applied to the test images. We noted that the HSV and the RGB maintain a strong performance across all 

the resolutions. Furthermore, the HSV and RGB with histogram resolution greater than or equal to 64 

and a higher threshold, seem slightly more suitable for our purposes as shown in Figure 4 and Table 1. 

Figure 4 shows that the larger the threshold becomes, the better the performance [17], and Table 1 

compiled the best accuracy scored by the four color spaces for the different histogram resolutions. 

 

Figure 4. The performance measurement in the four color spaces for histogram resolutions of 64 bins. 

Table 1. Best accuracy for each color space/quantization combination. 

Bins/Colors Spaces RGB YCbCr HSV L*a*b* 

16 0.9843 0.9826 0.9848 0.9823 
32 0.9850 0.9838 0.9852 0.9820 
64 0.9853 0.9849 0.9855 0.9842 

128 0.9857 0.9853 0.9859 0.9851 
256 0.9861 0.9858 0.9861 0.9856 

In the sputum cell segmentation, we have analyzed the results of the mean shift in gray level feature 

space and compared them to the results obtained from the Hopfield Neural Network (HNN) proposed  

in [11]. Table 2 represents a comparison between the HNN, gray mean shift, and gray-space mean shift 

methods, respectively. We can see that the gray-space mean shift achieves the best performance, 

especially for accuracy. In addition, we noticed that the HNN performance is significantly below the 

other methods. This result suggests that the gray level density estimation is an appropriate technique for 

segmenting the nucleus. 
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Table 2. Performance of the nucleus segmentation algorithms. 

Performance/Algorithm HNN Gray Mean Shift Gray-Space Mean Shift 

Sensitivity 73.77% 92.7% 93.40% 
Accuracy 65.01% 85.43% 87.11% 

The only drawback of the mean shift algorithm is the computation cost. The complexity of the mean 

shift algorithm is ܱ(݊ଷ), where n is the size of the data set. It is certainly possible to reduce this time 

complexity to O (nlogn), by using better storage of the data, when only neighboring points are used in 

the computation of the mean. 

4. Feature Extraction 

After detecting the nucleus and cytoplasm area in the cell, we extracted different features, which  

will be used in the diagnostic process for detecting the cancer cells. The main problem that faces any 

CAD systems for early diagnosis of lung cancer is associated with the ability of the CAD system to 

discriminate between normal and abnormal cells (cancer cells). Thus, using the appropriate features we 

can reduce or eliminate the number of misclassifications. In the literature, different features have been 

proposed depending on the adopted decision method. In our proposed CAD system, we used the 

following features: Nucleus to Cytoplasm (NC) ratio, perimeter, density, curvature, circularity and  

eigen ratio. 

The first feature is the NC ratio, which is computed by dividing the nucleus area (total number of the 

pixels in the nucleus region) over the cytoplasm area (total number of pixels in the cytoplasmic region), 

as follows: NC	ratio = Area (Nucleus)Area(Cytoplasm) × 100 (3)

Therefore, based on medical information, the morphology, the size, and the growing correlation of 

the nuclei and their corresponding cytoplasm regions, reflect the diagnostic situation of the cell life 

cycle, bearing in mind that cancerous cells are characterized by oversized nucleus-relatively to  

the cytoplasm. 

Figure 5a shows samples of extracted nuclei and cytoplasm. Figure 5b depicts the nucleus and 

cytoplasm extraction where the black and white areas represent the nucleus and the cytoplasm 

respectively. Figure 5c shows the nucleus area. 

The second feature is the nucleus perimeter defined by: ܲ(Nucleus) = න ඥݔଶ(ݐ) + ௧ݐ݀(ݐ)ଶݕ  (4)

where x(t) and y(t) are the parameterized contour point coordinates. In the discrete case, x(t) and y(t) are 

defined by a set of pixels in the image. Thus, Equation (4) is approximated by: ܲ(Nucleus) =෍ඥ(ݔ௜ − ௜ିଵ)ଶݔ + ௜ݕ) − ௜ିଵ)ଶ௜ݕ  (5)

Figure 5d depicts the perimeter area in color red for the nuclei cell in Figure 5c. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 5. (a) raw sputum cells; (b) nucleus and cytoplasm segmentation; (c) nucleus region; 

(d) the perimeter of the nucleus area. 

The third feature representing the density is based on the darkness of the nucleus area after staining 

with a certain dye, thus it is based on the mean value of the nucleus region. The mean value represents 

the average intensity value of all pixels that belong to the same region, and in our case, each mean value 

is represented as a vector of RGB components, and is calculated as follows for a given nucleus: Mean(Nucleus) = ∑ Intensity(݅)ே௜ୀଵArea(Nucleus)  (6)

where i is the intensity color value and N is the total number of the pixels in the nucleus area. Figure 6 

shows the mean intensity values for both benign and malignant cells. As can be seen, all the values that 

are greater than or equal to the threshold value θ are classified as benign cells (color red) and, the other 

values which are less than θ are classified as malignant (color blue), BD and MD refer to the benign and 

malignant density respectively. In our system θ = 128. Nevertheless, some overlapping does exist, where 

very few malignant cells are classified as benign cells (FN) and vice versa. In this situation, we cannot 

consider the intensity feature alone. 

The fourth feature is the curvature, which is delineated by the rate of change in the edge direction. 

This rate of change characterizes the points in a curve which are known as corners where the edge 

direction changes rapidly [18]. A lot of significant information can be extracted from these points. The 

curvature at a single point in the boundary can be defined by its adjacent tangent line segments. The 

difference between slopes of two adjacent straight line segments is a good measure of the curvature at 

that point of intersection [19]. The slope is defined by: φ(ݐ) = tanିଵ ቆݕሶ(ݐ)ݔሶ ቇ (7)(ݐ)
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where ݔሶ(ݐ)	and ݕሶ(ݐ)  denote the derivative of x(t) and y(t). We computed the difference between 

adjacent slopes (δθ) for each point in the nucleus contour. 

 

Figure 6. Intensity variances for the nuclei cells, the blue represents the malignant cells 

(MD) and the red represents the benign cells (BD). 

In our data, we found that in the case of malignant cells, δθ goes above a threshold estimated to 50. 

Figure 7 shows the curvature extraction (δθ) of the benign cell. Figure 7a shows the benign sputum  

cell and Figure 7d shows the boundary, which is used to compute the curvature. Figure 7e depicts the 

curvature where the x-axis represents the slope between the points in the image boundaries and the  

y-axis represents the curvature. As can be seen from this figure, all the lines are between 0° and 45°,  

and no line exceeds our δθ = 50. 

  
(a) (b) (c) (d) 

 
(e) 

Figure 7. The curvature extraction of a benign cell. (a) Sputum cell; (b) Nucleus and 

cytoplasm segmentation; (c) Nucleus extraction; (d) Nucleus boundary and (e) reflects the 

curvature plot for the image boundary in (d). 
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On the other hand, Figure 8 shows the curvature extraction of a malignant cell. As can be seen from 

Figure 8e, there are some lines in the curvature (y-axis) which exceed δθ = 50, and this is a clear 

reflection of the irregularities in the boundary of the cell. 

  
(a) (b) (c) (d) 

 
(e) 

Figure 8. The curvature extraction of a malignant cell. (a) sputum cell; (b) nucleus and 

cytoplasm segmentation; (c) nucleus extraction; (d) nucleus boundary and (e) reflects the 

curvature plot for the image in (d). 

The fifth feature is the circularity, which is a feature that describes the roundness of the nucleus, and 

is defined as Circularity = 4πArea(Nucleus)Perimeter(Nucleus)ଶ (8)

Cells in cleavage are normally round, so their roundness value will be higher. On the other hand, 

normal growing cells are irregular so their roundness value will be lower. For the circularity, it should be 

less than or equal to 1 within the threshold ratio, to distinguish between normal and abnormal cells, 

where 1 means a perfect circle [20]. 

The last feature is the Eigen ratio [21]. In our system, irregular cells are long, thus expected to have a 

higher Eigen ratio than that of round floating cells. Thus, using a proper threshold value we can 

distinguish between benign and malignant cells with this feature. The Eigen ratio is computed  

as follows: 

Eigen_ratio = ܾܽ + ܾܽ2  (9)

where (a, b) are the eigenvalues of the covariance matrix C, defined by: 

ܥ = 1ܰ ෍݌௜ே
௜ୀଵ ௜்݌  (10)
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where ݌௜ is a point in the nucleus area. The eigenvalues (a, b) are used to show the direction of the cell 

distribution in the nucleus region in the horizontal direction by using value of (a) and in the vertical 

direction by using value of (b). 

Tables 3 and 4 depict the mean and standard deviation (std) for the benign and malignant cells, 

respectively. As can be seen from these two tables, there is a big difference between the mean and std for 

benign and malignant cells, thus indicating the potential of the proposed features for discriminating 

between benign and malignant cells. In addition to this, the NC ratio and the curvature show the 

possibility of linear separation between the benign and malignant cells. Figures 9 and 10 show the  

bar chart of the mean and standard deviation for the malignant and benign cells for the NC ratio  

and curvature. 

Table 3. Mean and standard deviation for the benign sputum cell. 

Features NCratio Perimeter Density Curvature Circularity Eigen Rati 

Mean 0.06 87.8 128.3 40.88 0.44 1.21 
Std 0.03 27.9 9.5 6.46 0.12 0.22 

Table 4. Mean and standard deviation for the malignant sputum cell. 

Features NCratio Perimeter Density Curvature Circularity Eigen Rati 

Mean 0.47 124.3 113.4 69.59 0.55 1.42 
Std 0.37 41.1 12.1 15.57 0.16 0.22 

 

Figure 9. Mean and standard deviation for the NC ratio. 

 

Figure 10. Mean and standard deviation for the curvature. 
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5. Classification 

Classification technique plays a significant role in medical imaging, especially in the detection and 

classification of tumors [22]. Thus, lung cancer classification is a critical task for a CAD system because 

it is the final step in a system where best outcomes are achieved based on the available features. The 

main objective of the proposed CAD system is to obtain a high level of true positive rates even for small 

cells and a low number of false positives. In this work we implemented and compared two different 

classification methods, namely: artificial neural network (ANN), and support vector machine (SVM). 

5.1. Artificial Neural Network 

Artificial neural network (ANN) is one of the major approaches in the field of medical image 

classification, because of its inherent function approximation and decision-making capability. In this 

work we applied neural network-supervised learning with its specification (multilayer perceptron, MLP) 

at three layers (input, hidden and output layers) [23] to the sets of input data which were obtained from 

features extracted from the sputum color images. This architecture is widely used in the field of 

cytology. The input data of the ANN has been normalized in the range of 0 to 1, as the ANN works better 

in this range as proven by [24]. 

For a given data set ሼݔ௜, ௜ሽ௜ୀଵேݕ , the unknown function, ݕ =  .is estimated (ݔ)݂

In this work, we used a feedforward neural network, which takes a row vectors of M hidden layer 

sizes, and a backpropagation training function, and returns a feedforward neural network. The 

relationship between the input neurons (xi, i = 1, 2, ….., n1), and the output neurons (Yk, k = 1, 2, …., N) 

which are connected by the hidden neurons (hj, j = 1, 2, …, m1), is determined with the equation: 

௞ܻ = ݃ ቎෍ݓ௞௝݃ ൭෍ݓ௝௜ݔ௜௡ଵ
௜ୀଵ + θ௜௡ଵ൱ + θ௛௜ௗ௠ଵ

௝ୀଵ ቏ (11)

where g(z) = 1/(1 + e−z), wkj is the weight from jth hidden neuron to the kth output neuron, wji is the 

weight from the ith input neuron to the jth hidden neuron, θin1is a bias neuron in the input layer, and θhid 

is another bias neuron in the hidden layer. Furthermore, for each of the processing neurons in the ANN, 

an activation function is used which is a nonlinear sigmoid function defined as follows [25]: 	ܱ௣௝ୀ ଵଵାୣ୶୮(ି∑ ௪ೕ೔ை೛೔ା஘ೕ)೔  
(12)

where Opj is the jth element of the output pattern produced by the input pattern Opi. After that, the 

backpropagation function is used to adjust the weights between pairs of neurons iteratively in a way that 

minimizes the difference between the actual output values and the desired output values. Initially, the 

weights are randomly assigned, and the adjusted weights are calculated as: ∆ݓ௝௜(݇ଵ + 1) = ݈݊δ௣௝ܱ௣௜ + α∆ݓ௝௜(݇ଵ) (13)

where nl is the learning rate which equal to 0.3, α is the momentum term used to determine the effect of 

past weight changes on the current changes and its value is 0.9, k1 is the number of iterations, and δpj is 

the error between the desired and actual ANN output values. 
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The final weights in ANN can be determined when either error δpj becomes smaller than a threshold 

value (e.g., 0.001), or training iteration number k1 has reached another threshold value (e.g., 3000). 

Another important decision when using ANN is the number of hidden layers. Usually the network 

requires enough hidden neurons to make a good separation between different classes (e.g., true positive 

and false positive abnormalities in medical images). The number of hidden nodes is varied based on the 

constant value of epochs selected (from 5 to 10). 

Finally, the best trained network is used for classification processing of sputum color images into 

benign and malignant. The evaluation for the ANN is done by using a test data set on the trained network 

to validate that the acquired mapping is of satisfactory quality. 

5.2. Support Vector Machine 

The support vector machine (SVM) is one of the most effective classification methods that has 

recently received considerable attention since its introduction by Vapnik [26]. It is based on the 

definition of an optimal separating hyperplane (OSH) that separates the training data. It employs a 

supervised learning approach by labeling the training data with the output class. These are also known as 

maximum margin classifiers as they simultaneously minimize the empirical risk. The aim of SVM is to 

determine the optimal hyperplane by maximizing the margin between the separator hyperplane: ሼh ∈ ԯ|〈w, h〉ԯ + ଴ݓ = 0ሽ (14)

and the mapped data Φ(ܛ௜), where ˂w, h˃ denotes the inner product in space ԯ, and w are the 

hyperplane parameter. Such optimal hyperplane is often considered as the solution of the following 

Quadratic Programming problem: 

min௪,௪బ,ஞ೔,…,ஞಿ ൭12 ଶ‖ݓ‖ + ෍ξ௜ேܥ
௜ୀଵ ൱ (15)

Subject to ݕ௜(〈w,Φ(ܛ୧)〉ԯ + w଴) − 1 + ξ୧ ൒ 0 i = 1,… ௜ߦ ܰ, ൒ 0 ݅ = 1,… ,ܰ 
(16)

where N is the number of training samples, ξ௜ are slack variables, which are introduced to take account 

of the eventual non-separability of Φ(ܛ௜) and C is a positive constant, which controls the trade-off 

between the slack variable and the size of the margin. The problem in the Equation (15) is solved by 

using the dual representation and the kernel trick, as: 

max஑௟೔,…,஑௟ಿ ቌ෍α݈௜ே
௜ୀଵ − 12 ෍ α݈௜α ௝݈ݕ௜ݕ௝ܭ൫ܛ௜, ௝൯ேܛ

௜,௝ୀଵ ቍ (17)

subject to 0 ൑ α݈௜ ൑ ܥ ݅ = 1,… ,ܰ (18)
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෍α݈௜ݕ௜ = 0ே
௜ୀଵ  (19)

where ܭ൫ݏ௜, ௝൯ݏ = 〈Φ(ݏ௜), Φ൫ݏ௝൯〉  is the kernel function, which is introduced to avoid direct 

manipulation of the samples in ԯ, and α݈௜ are Lagrange multipliers, which can be determined as the 

solution of a Quadratic Programming problem. In addition to this, SVM kernel is used to map training 

data implicitly into a higher dimensional feature space. Data vectors which are nearest to the OSH in  

the higher feature space are called support vectors and contain all information that is required for  

the classification. 

Figure 11 depicts the SVM learning approach where a decision boundary separating the two classes is 

determined with the support vectors that define the margin. In addition, support vectors are considered 

the key players that define the decision boundary in any SVM. Furthermore, the objective of the SVM is 

to select the boundary that maximizes the margin, in other words, the boundary with the largest 

separation between the classes, so that the risk of over-fitting between the classes will be reduced to  

a minimum. 

 

Figure 11. Diagram for SVM learning approach. The red line represents the first class, black 

line represents the margin, and the blue line represents the second class. 

In this work, SVM classification with Gaussian kernel was used. Given that the number of training 

points is moderate, an SVM classifier with Gaussian kernel is considered as the state of the art choice for 

a given problem. The Gaussian kernel is defined as: ݔ)ܭ௜, (ݔ = eି‖௫೔ି௫‖మ/ଶ஢మ (20)

where xi belongs to the training data, x is the support vector and σ is the kernel width, and  

hyper-parameter of the method, by applying SVM Equation (20) with its specification to the input  

data (features extraction), the kernel seeks to map the input data to a higher dimensional feature  

space where the separation between the classes is possible with the output being two classes, e.g.,  

benign and malignant cells. The major strengths of SVMs are the existence of one global minimum, they 

scale very well to high dimensional data, the trade-off between classifier complexity and error can be 

controlled explicitly, and the regularized empirical risk minimization overcomes over-fitting and weak 

generalization performance. On the other hand, the complexity of SVMs increases with the size of the 

training dataset. 
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5.3. Experiments 

We conducted a comprehensive set of experiments to assess the classification techniques (ANN and 

SVM classifiers). These different classifiers were applied to the sets of the input data composed of the 

extracted features (NC ratio, perimeter, density, curvature, circularity and Eigen ratio) from the sputum 

cells. Different performance criteria: sensitivity, specificity and accuracy have been computed for  

these classifiers. 

The first series was dedicated to the ANN classifier. Therefore, to validate the output results 10-fold, 

cross validation was used [27]. Tenfold cross validation is a resampling technique implemented by 

randomly choosing the training and testing data to evaluate the robustness of the ANN classifier. It will 

prevent the over-fitting that may occur if we divide the data into two sets only (training and testing sets). 

In 10-fold cross validation, the dataset (extracted features) was randomly divided into 10 blocks. For 

every hold out block, the system was trained on the remaining blocks and tested on the hold out block; 

results averaged over all test blocks, which reflects predictive performance. Initially, the best optimized 

ANN is obtained by varying various parameters of ANN, such as hidden nodes, number of epochs. 

Figure 12 shows the performance criteria of ANN obtained by applying 10-fold cross in the input data, 

where the x-axis represents the training and testing results and the y-axis represents the performance 

criteria which are: sensitivity, specificity and accuracy, in addition to displaying the misclassification 

error obtained in each training and testing fold in 10-fold cross validation. As can be seen from this 

figure, the overall accuracy reaches 90%. 

 

Figure 12. Performance criteria of ANN with 10-fold cross validation. 

The next experiment, dedicated to the SVM classifier. The training and testing were done by using 

10-fold cross validation. Figure 13 depicts the performance results for SVM. 

We tried many values for the kernel width (σ) (Equation (20)) and we found that σ = 0.6 gives  

the best performance in terms of the small number of support vectors and misclassification errors as 

illustrated in Table 5. We tried all combinations of two and three features to find the best feature subset 

that can separate the classes (benign and malignant) with better performance and less error, as well as 

less support vectors. Experimentally, we found that the geometric features (NC ratio, curvature and 

circularity) give us the best performance. Including additional features did not improve performance. 
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Figure 13. Performance criteria of SVM using 10-fold cross validation. 

Table 5. Misclassification errors obtained during support vector machine (SVM) classifier 

with different values of σ. 

Width (σ) Error

1 9 

0.9 8 

0.8 6 

0.7 5 

0.6 3 

0.5 4 

0.4 5 

As can be seen from Figure 13, the value of FN and FP was reduced to its minimal, and the resulting 

values for the sensitivity and accuracy are large. Furthermore, we found that the SVM produced small 

misclassification errors in the training and testing phases. 

For qualitative purposes, Figure 14 illustrates the SVM result, by using NC ratio and curvature 

features respectively. As can be seen, there is a clear separation between the two classes (red points for 

benign and blue points for malignant) as represented by the black curve (margin) and the support 

vectors. Figure 15 illustrates a bad classification scenario, where the feature subset, which corresponds 

to the density (chromatic feature) and curvature (geometric feature), yields strong overlapping between 

classes; the classification task gives poor performance. 

 

Figure 14. SVM separation for benign and malignant classes by using NC ratio and 

curvature features (perfectly separable). Red points corresponding to benign cells and blue 

points corresponding to malignant cells. The black line represent the margin.  
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We found that the SVM outperforms the ANN classifiers. Indeed, the SVM classifier allows a clear 

separation and classification of the cells into benign and malignant classes. 

 

Figure 15. SVM separation for benign and malignant classes by using density and curvature 

features (strong class overlap). Red points corresponding to benign cells and blue points 

corresponding to malignant cells. The black line represent the margin. 

Therefore, it is more stable and reliable for the proposed CAD system. Table 6 summarizes the 

performances of the ANN and SVM classifiers, respectively. We found that the SVM classifier achieved 

the best scores. It obtains a high number of TP and TN, and reduced number of FP and FN which leads to 

successful classification where all the performance criteria measurements (sensitivity, specificity and 

accuracy) are increased and the classification error is highly reduced. 

Table 6. Performance of the classification methods. 

Performance ANN SVM 

Sensitivity 94% 97% 
Specificity 83% 96% 
Accuracy 90% 97% 

Error 10 3 

The comparison between the ROC-curves obtained from ANN and SVM classifiers, (as depicted in 

Figure 16) reveal a clear superiority of the SVM classifier, as it gives the highest accuracy. These ROC 

curves are generated by considering the rate at which true positives accumulate versus the rate at which 

false positives accumulate with each one corresponding to the vertical axis and horizontal axis. The 

point (0,1) means perfect classification, since it gives a correct classification for all the true positive and 

true negative cases. Therefore, an ideal system will be initiated by identifying all the positive instances, 

thus, the curve will rise to (0, 1) directly, which means zero false positive rates, and then continue along 

to (1,1). As can be seen for SVM (blue line in Figure 16), which gives the optimal high performance, i.e., 

high classification rate with low false alarm rate. 
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Figure 16. ROC curve obtained using ANN and SVM classifiers. 

6. Comparing the Proposed CAD System with Others 

The proposed CAD system is based on the analysis of sputum color images to detect lung cancer  

in its early stage. Other existing CAD systems for detecting lung cancer in the literature were based  

on other modalities such as chest radiograph, PET, CT scans and others as was explained earlier in 

Section 2 (Background). Therefore, we cannot compare our proposed CAD system results to these  

results as we have used different patient data. 

Nevertheless, we compared the proposed CAD system with the previous one which was presented  

in [12]. Table 7 shows the comparison between the two CAD systems on performance criteria. As can be 

seen, the new proposed CAD system achieved a superior performance over the previous CAD  

system across all the criteria, where the new CAD system obtained an accuracy of 97% in experiments. 

A significant reduction in the number of FP and FN rates was achieved. The superiority of our system is 

in the robust techniques employed in the sputum image segmentation and classification. We tested  

the proposed CAD system with a database of 100 of sputum color images from different patients. The 

pathologist-identified cells are used as the gold standard to analyze the accuracy of the proposed CAD. 

Table 7. Performance criteria of the computer aided diagnosis (CAD) systems. 

Performance Previous CAD System Proposed CAD System 

Sensitivity 93% 97% 
Specificity 70% 96% 
Accuracy 85% 97% 

7. Conclusions 

We have proposed a novel CAD system for the early diagnosis of lung cancer. We have used a 

database of 100 sputum color images for different patients collected by the Tokyo center of lung cancer. 

The new CAD system can process sputum images and classify them into benign or malignant cells. For 

the color quantization, it was found that, the higher the color space resolution, the more accurate the 
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detection and extraction of the sputum cell. It was found that the Bayesian classification is better than the 

heuristic rule-based classification as the former achieved an accuracy of 98%. The comparability of the 

performance with regard to the color format reveals close scores for histogram resolution above 64. In 

the segmentation process, it was demonstrated that the mean shift approach significantly outperforms the 

HNN technique, especially after acquiring additional information such as pixel space coordinates. The 

mean shift has a reasonable accuracy of 87%. 

In the classification process: it was found that the performance of the SVM is superior compared to 

the ANN classifier. The SVM classifier allows a clear separation and classification of the cells into 

benign and malignant classes. Therefore, it is more stable and reliable for the proposed CAD system. 

The SVM achieved an accuracy of 97%. The experimental result shows that the proposed CAD system is 

able to detect the false positives and false negatives correctly. The new system has achieved a good 

performance in terms of sensitivity, specificity and accuracy equal to: 97%, 96% and 97% respectively. 

In addition, the use of extreme SVM as a learning model increased the accuracy of detecting the 

malignant cells. The new CAD system will be useful in screening a large number of people for lung 

cancer while helping pathologists to focus on candidate samples, and reducing the pathologists fatigue to 

a great extent. 

With respect to the experimental work described in this paper, there is also considerable further work 

which could be undertaken. To solve the problem of inhomogeneity in the cytoplasmic region, we plan 

to use active contour snake segmentation which has the ability to work with images that have an 

overlapped nucleus and cytoplasm. This will be done by using Otsu’s automated thresholding selection 

method to segment the dysplastic sputum cells due to high inhomogeneities between the cells. We plan 

to extend the research to address these limitations as well as use a more extended data set of available 

sputum images. 
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