
Algorithms 2015, 8, 697-711; doi:10.3390/a8030697

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Comparative Study of DE, PSO and GA for Position Domain
PID Controller Tuning

Puren Ouyang 1,2,* and Vangjel Pano 2

1 College of Mechanical and Electrical Engineering, Hunan University of Science and Technology,

Xiangtan 411201, China
2 Department of Aerospace Engineering, Ryerson University, Toronto 350 Victoria St, ON, Canada,

E-Mail: vpano@ryerson.ca

* Author to whom correspondence should be addressed; E-Mail: pouyang@ryerson.ca;

Tel.:+1-4169-795-000 (ext. 4928).

Academic Editors: Faisal N. Abu-Khzam and Giuseppe Lancia

Received: 1 July 2015 / Accepted: 18 August 2015 / Published: 21 August 2015

Abstract: Gain tuning is very important in order to obtain good performances for a given

controller. Contour tracking performance is mainly determined by the selected control gains

of a position domain PID controller. In this paper, three popular evolutionary algorithms are

utilized to optimize the gains of a position domain PID controller for performance

improvement of contour tracking of robotic manipulators. Differential Evolution (DE),

Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) are used to determine the

optimal gains of the position domain PID controller, and three distinct fitness functions are

also used to quantify the contour tracking performance of each solution set. Simulation

results show that DE features the highest performance indexes for both linear and nonlinear

contour tracking, while PSO is quite efficient for linear contour tracking. Both algorithms

performed consistently better than GA that featured premature convergence in all cases.

Keywords: optimization; position domain control; PID; differential evolution (DE); genetic

algorithm (GA); and Particle Swarm Optimization (PSO)

OPEN ACCESS

Algorithms 2015, 8 698

1. Introduction

Since the introduction of PID controllers, a great number of methods such as trial-and-error,

D-partitioning, Ziegler-Nichols, and pole placement have been developed for the gain tuning of PID

controlled systems [1]. Nonetheless, most of these direct methods have been developed for linear, time

invariant systems and require extensive knowledge of the system and its frequency response in order to

be employed efficiently. Due to these facts, various meta-heuristic optimization methods have been used

for the gain tuning of PID controllers for nonlinear systems such as robotic systems. More specifically,

evolutionary algorithms such as genetic algorithm (GA), differential evolution (DE), and particle swarm

optimization (PSO) have been very popular for PID tuning of various systems [2].

Recent research suggests that meta-heuristic algorithms such GA, DE, and PSO produce consistently

better results than conventional tuning techniques with DE outperforming the other algorithms in results

and computational cost [3].Furthermore, Kachitvichyanukul [2], in a comparison of the three algorithms,

concluded that GA falls into local minima with greater tendency than the other algorithms, while PSO

tends to result in higher density of solutions within the solution space with DE being closely comparable

to PSO.

Comparing PSO with GA, controllers tuned by the PSO method were found to be more efficient, with

the PSO exhibiting better performance and a higher convergence rate than GA [4]. This can be attributed

to PSO’s ability to avoid premature convergence to local minima and therefore provides higher quality

solutions [5]. Similarly, in [6] DE was found to produce better tuning results than the GA with the

authors, however noting that for high order systems, the results of both optimization techniques were

quite similar. Furthermore, controllers optimized by DE performed better than the PSO tuned

equivalents, leading to the conclusion that DE can be more robust than PSO [7]. However, it should be

noted that the performance of each optimization algorithm is also subject to the optimization problem

itself as demonstrated in [8].

In our previous research, the concept of position domain (PDC) was introduced in the form of PD

and PID control types [9–11], with its main feature being its good contour tracking efficiency when

compared to pre-existing control schemes in time domain. The main idea behind PDC is the

discretization of the system into master and slave motions, with the use of the master motion as reference

for the slave motions instead of time [9–11].

In this paper, the performance of GA, DE and PSO are studied for the gain tuning of a position domain

PID controller (PDC-PID). The controller is tasked with contour tracking of a 3R planar serial robotic

manipulator on the end-effector level. The robotic manipulator is used to track two different contours,

one is linear and the one is nonlinear, for which different optimized control gains are generated.

Furthermore, the optimizations are executed under various fitness functions for a large variation in

performance criteria.

The rest of this paper is organized as follows: Section 2 summarizes the concept of position domain

control and the PDC-PID controller. Section 3 synopsizes optimization algorithms to be compared.

Section 4 describes the details of optimization, and Section 5 exhibits some optimized results for contour

tracking of the end-effector of a robotic manipulator. Finally, Section 6 provides some conclusions.

Algorithms 2015, 8 699

2. Position Domain Control for Contour Tracking

The dynamic model of an n-DOF robotic manipulator can be expressed as: ݍ(ݍ)ܯሷ (ݐ) + ,ݍ)ܥ ሶݍ ሶݍ(+ (ݍ)ܩ + ,ݐ)ܨ ,ݍ ሶݍ) = (1) (ݐ)߬

where (ݍ)ܯ is the inertial matrix, ݍ)ܥ, ሶݍ) is the matrix of coriolis and centrifugal forces, (ݍ)ܩ is the

vector of gravitational terms, ݐ)ܨ, ,ݍ ሶݍ) is the vector of friction forces, ߬(ݐ) is the vector of

joint torques, and (ݐ)ݍ, ሶݍ 	,(ݐ) and 	ݍሷ (ݐ) are the joint position, velocity, and acceleration vectors,

respectively [12–14].

In the position domain control approach, the robotic manipulator is viewed as a combination of a

master motion and a number of slave motions [9–11], and the dynamic model in Equation (1) can be

discretized in a master motion and slave motions by taking the following form: ൤݉௠௠ ௦௠ܯ௠௦ܯ ௦௦ܯ ൨ ൤ݍሷ௠ݍሷ௦ ൨ + ൤ܿ௠௠ ௦௠ܥ௠௦ܥ ௦௦ܥ ൨ ൤ݍሶ௠ݍሶ௦ ൨ + ൤ܩ௠ܩ௦ ൨ + ൤ܨ௠ܨ௦ ൨ = 	 ቂ߬௠߬௦ ቃ (2)

with subscripts m and s indicating the master and the slave motions, respectively.

The position of the master motion replaces time as the main reference for the slave motions,

something that requires the reinterpretation of the slave section of Equation (2) as functions of the master

motion. This reinterpretation takes the form of a one-to-one mapping from time domain to position

domain as described in the following subsection.

2.1. Relative Derivatives and Position Domain Mapping

To transform the dynamics of slave motions from time domain to position domain, a relationship has

to be developed that relates time domain to position domain for master motion and slave motions. This

relationship can be introduced by the relative derivative of the ith slave motion (ݍ௜) with regard to the

master motion (ݍ௠): ݍ௦௜ᇱ = ௠ݍ௦௜݀ݍ݀ = ሶ௠ (3)ݍሶ௦௜ݍ

Equation (3) indicates that 	ݍ௜ᇱ, also called the relative position velocity, is the ratio of the slave motion

speed over the master motion speed, and it describes the synchronized relationship of motions between

the master and the slave motions.

Similarly, the relative position acceleration of the slave motions can be expressed as the second

relative derivative of Equation (3): ݍ௦௜ᇱᇱ = ௠ݍᇱ௦௜݀ݍ݀ (4)

According to Equations (3) and (4), a one-to-one transformation from time domain to position domain

can be defined as: ൜ ሶ௦௜ݍ = ሷ௦௜ݍ௦௜ᇱݍሶ௠ݍ = ଶ(ሶ௠ݍ)௦௜ᇱᇱݍ + ௦௜ᇱݍሷ௠ݍ (5)

Equation (5) shows the relationship between the absolute motions and the relative motions, and relate

the absolute velocities and accelerations in time domain to the relative velocities and accelerations in

Algorithms 2015, 8 700

position domain. These two equations are used to transform a dynamic system from time domain to

position domain [9–11].

2.2. Dynamic Model in Position Domain

Substituting Equation (5) in the slave section of Equation (2), the position domain slave motion

dynamics [10,11] is derived as functions of the master motion as follows: ݍሶ௠ଶ (௠ݍ)௦ᇱᇱݍ௦௦ܯ + ௦௦ܯሷ௠ݍ) + ௦௠ܯሷ௠ݍ+ (௠ݍ)௦ᇱݍ(௦௦ܥሶ௠ݍ + ௦௠ܯሶ௠ݍ + ௦ܩ + ௦ܨ = ߬௦(ݍ௠) (6)

2.3. PDC-PID Control Law

Similar to a time domain PID controller, a PDC-PID controller can be expressed as: ߬௦௜(ݍ௠) = (௠ݍ)௉௜݁௦௜ܭ + ஽௜݁௦௜ᇱܭ (௠ݍ) + ூ௜ܭ න ݁௦௜(ݏ)݀ݏ௤೘଴ (7)

where ܭ௉௜,	ܭ஽௜ , and ܭூ௜ are the control gains for the ith slave motion, respectively. The tracking errors

of the slave motions are defined as follows: ൜ ݁௦(ݍ௠) = (௠ݍ)௦ௗݍ − (୫ݍ)௦′݁(௠ݍ)௦ݍ = (௠ݍ)௦ௗ′ݍ − (௠ݍ)௦′ݍ (8)

It should be noticed that the errors of the system, and consequently the control input, are functions of

the master axis motion. Furthermore, the master motion is still being controlled in time domain by a

conventional PID controller [10]. The tracking performance mainly depends on the selection of PID

control gains. DE, PSO, and GA are compared and used to determine the optimal gains of the

PDC-PID controller to obtain better contour tracking performances.

3. Optimization Algorithms

3.1. Differential Evolution

The DE optimization algorithm was first introduced by Storn and Price [15] as a simple, robust

alternative to pre-existing heuristic optimizations approaches. The DE optimization procedure starts with

a randomly generated population of ܰ individuals, each characterized by D parameters which represent

a candidate solution to the optimization problem. A mutation is introduced to the population at each

generation, creating a new mutated population. The mutation for each individual of the population is

defined as the sum of the weighted difference of two individuals added to a third individual, all of which

are randomly selected from the existing non-mutated population. Mathematically, the mutation equation

can be expressed as: ߥ௜,௞ାଵ = ௥భ,௞ݔ + ܨ ∗ ൫ݔ௥మ,௞ − ௥య,௞൯ (9)ݔ

where ߥ௜,௞ାଵ is the ith mutated individual of the (k + 1)th generation, ݔ௥భ,௞, ,௥మ,௞ݔ ௥య,௞ݔ are randomly

selected members of the kth generation with ݎଵ, ,ଶݎ	 ଷݎ ∈ {1,2, . . , ܰ} and ܨ is a constant mutation factor.

Algorithms 2015, 8 701

To introduce greater diversity for the population of the optimization, a crossover procedure is

introduced that compares the current generation with the mutated population by passing the values of
both in a test population ൫ݑ௝௜,௞ାଵ൯ as follows: ݑ௝௜,௞ାଵ = 	 ൜ߥ௝௜,௞ାଵ ݂݅ ݈ ≤ ܴܥ ݎ݋ ݆ = ௝௜,௞ݔܴ ݂݅ ݈ > ܴܥ ܽ݊݀ ݆ ≠ ܴ , ݆ = 1,… , (10) ܦ

where, ݈ ∈ [0,1]	 is randomly generated, ܴܥ ∈ [0,1] is a user determined crossover constant and ܴ	 ∈ {	1,2, . . is a randomly chosen index which ensures that at least one characteristic is part from the {ܦ

mutated population to the test population.

The new generation is selected based on the performance of the test population ݑ௞	compared to the

performance of the existing generation	ݔ௞. If the ith individual of the test population performs better

than the ith individual of the current generation, it takes its place in the new generation and the procedure

is repeated until the end of the optimization [16].

3.2. Genetic Algorithm

One of the older evolutionary optimization algorithms, GA, is inspired by the change in inherited

characteristics of living organisms over successive generations, and similar to DE, it features selection,

crossover, and mutations as its main mechanisms. In GA, each individual of the optimization population

features a set of “chromosomes” that constitutes a set of possible solutions for a given optimization

problem. As in real life evolution, the most successful members of the generation are selected as the

most likely to reproduce and create the successful offspring for the next generation. Each offspring is

created by usually two individuals of the previous generation and its chromosomes are a combination of

its parents’ chromosomes. Mutation is also introduced in order to avoid population stagnation. This

usually takes the form of randomly generated changes in the chromosomes of a part of the population

which may be bounded or unbound depending on whether the optimization is constrained or

unconstrained [17].

Although a number of different methods have been developed for the crossover of the individuals

(Single-point, Two-point, Heuristic, Arithmetic, etc.), for the purposes of this paper, the Intermediate

Crossover method is used. This method produces the offspring as a weighted average of the parents, and

it can be expressed as: offspring = parent1 + ݀݊ܽݎ ∗ ܴ ∗ (parent2 − parent1) (11)

where rand is a randomly generated variable and [0,1]R ∈ [18].

3.3. Particle Swarm Optimization

PSO is a heuristic search method inspired by social interaction of animals living in groups. PSO

begins with a group (swarm) of randomly generated particles, each of which represents a possible

solution for the optimization problem. Each particle is characterized by two main properties: position

and velocity. The position of a particle is the evaluation of the optimization’s fitness function, which

represents the particles distance from the ideal optimum solution (i.e., zero). Similarly, each particle’s

velocity dictates the motion of the particle in the solution space.

Algorithms 2015, 8 702

The social behaviour of the swarm is represented by two important variables, pbest and gbest. pbest

represents the personal best position that a particle can achieve through the iterations of the optimization,

while the best position achieved by the whole swarm is represented by gbest. Both variables do not

change in every iteration, but only gain new values if the swarm or the particles have achieved better

positions in the current iteration that the stored gbest and pbest. In a sense, gbest represents the goal

position for the particles of the swarm while pbest represents the memory of each particle [19].

In each operation, the position and velocity of each particle are calculated as follows: ݔ௜௞ାଵ = ௜௞ݔ + ௜௞ାଵݒ௜௞ାଵ (12)ݒ = 	߶௞ݒ௜௞ + ௜ݐݏܾ݁݌ଵ,௜൫ߛଵߙ − ௜௞൯ݔ + ௜ݐݏଶ,௜൫ܾ݃݁ߛଶߙ − ௜௞൯ (13)ݔ

where ݔ௜௞ and ݒ௜௡ are the position and velocity of the ith particle in the kth iteration, ߛଵ,௜ and ߛଶ,௜ are

uniformly distributed parameters of the ith particle, and ߙଵ, ߙଶ are acceleration constants.

The acceleration parameters	ߙଵ, and ߙଶ of Equation (19) have a great impact on the convergence of

the optimization. ߙଵ represents the swarm’s cognitive acceleration parameter, which determines the

“confidence” of each particle in itself, while ߙଶ represents the influence of the gbest position on every

particle of the swam and is named social acceleration parameter.

Additionally, parameter 	߶ represents the particle inertia that produces a certain momentum for the

swarm and is defined as: ߶௞ = ߶௕ − ߶௔ܭ ∙ (݇ − 1) + ߶௔ (14)

where K is the maximum number of iterations and ߶௕, ߶௔ are inertia constants defined as [20]: ൝ ߶௔ = 1 − ௕߶ߝ = ଵߙ + ଶ2ߙ − 1 + ߝ , ߝ ≪ 1 (15)

4. Optimization Process

4.1. Dynamic Model

For the purposes of the simulation, a 3-DOF planar robotic manipulator shown in Figure 1 is used,

set on a vertical plane. The robotic manipulator consists of three revolute joints and structural properties

of the robot are listed in Table 1 [11].

Figure 1. Scheme of 3-DOF serial robotic manipulator.

Algorithms 2015, 8 703

Table 1. Structural properties of a serial robotic manipulator.

Link
Mass (ࢍࡷ)࢏࢓ Length ࢏࢒ ࢏࢘ Centre of Mass (࢓) ࢏ࡵ Inertia (࢓) ࢍࡷ) · (૛࢓

1 1.00 0.50 0.25 0.10

2 1.00 0.50 0.25 0.10

3 0.50 0.30 0.25 0.05

Furthermore, the following friction model [21] is used to provide a more realistic model for the

optimization: F(ݍሶ௜) = (ሶ௜ݍଶߛ)ଵ(tanhߛ	 − tanh(ߛଷݍሶ௜)) + ସߛ tanh(ߛହݍሶ௜) + ሶ௜ (16)ݍ଺ߛ

with the following properties:

ଵߛ • + ସ act as an approximation of the static coeffient of frictionߛ

• tanh(ߛଶݍሶ௜) − tanh(ߛଷݍሶ௜) is the equivalent of the Stribeck friction effect

ସߛ • tanh(ߛହݍሶ௜)	is the term representing Coulomb friction

 .ሶ௜ is the viscous dissipation term [21]ݍ଺ߛ •

The friction parameters ߛଵ to ߛ଺ are chosen as described in Table 2.

Table 2. Friction parameters.

Parameter Value ࢽ૚ 3 ࢽ૛ 100 ࢽ૜ 10 ࢽ૝ 0.1 ࢽ૞ 100 ࢽ૟ 0.01

Finally, three actuators of the robotic manipulator are assumed to produce finite torque with the

maximum allowable torque being 	|߬௠௔௫| = 15	[ܰ݉].
4.2. Contours

To demonstrate the efficiency of the optimization procedure, the controller is tuned for two different

types of contours: linear and nonlinear. Specifically, a straight line and a circular contour are traced by

the end-effector of the manipulator. The linear contour is a fast and short type of motion while the

circular contour is longer in duration, slower in speed and covers a greater distance. The characteristics

of the two contours can be found in Table 3.

Algorithms 2015, 8 704

Table 3. Simulation contours.

Contour Type Linear Circular

Starting Point (࢓) ቀ0.5,0.5, గଷቁ ቀ0.6,0.0, గଷቁ

Ending Point (࢓) ቀ0.7,0.7, గଷቁ ቀ0.6,0.0, గଷቁ

Maximum Joint Speed (࢙ࢊࢇ࢘) 1.281 2.290

Duration (࢙) 8 1

4.3. Fitness Functions

A fitness function is needed in the optimization in order to convert the contour error from a vector

into a singular arithmetic value that can be used for optimization purposes. In this paper, three different

fitness functions are used. Two of them, ISE and IAE, are existing and widely used fitness functions in

controller tuning via optimization. The third one, MSMAE, was introduced by the authors in order to

investigate its practicality as an alternative to the existing fitness functions. ܧܣܫ = න |݁௖|݀ݐஶ
଴ (17)

ܧܵܫ = න ݁௖ଶ ஶݐ݀
଴ ܧܣܯܵܯ(18) = |݁௖|തതതതത + (|௖݁|)ߪ + max(|݁௖|) (19)

where ݁௖ is the contour error, |݁௖|തതതതത (|௖݁|)ߪ , , and max	(|݁௖|) are the mean, standard derivation, and

maximum value of the absolute contour error that will be defined in the next section. The rationale to

propose MSMAE is to consider the statistics of the contour error distributions.

4.4. Optimization Parameters

Table 4 summarizes the values of parameters affecting the optimization. It should be noted that the

sampling frequency of the system is kept low in order for the optimization to maintain logical completion

times. Furthermore, Table 5 displays the optimization parameters for each optimization method used in

this paper.

Table 4. Optimization parameters.

Master Motion Sampling Frequency 100 [Hz]

Population Size 30

Maximum Allowed Iterations 30

Feasible Bounds of gain 0–10ସ

Algorithms 2015, 8 705

Table 5. Optimization methods parameters.

Optimization Method Optimization Parameter Value/Method

Differential Evolution
 0.8 ܨ 0.7 ܴܥ

Genetic Algorithm

Selection Stochastic Universal Sampling *

R 1

Mutation Gaussian *

Particle Swarm Optimization
 ଶ 1.0ߙ ଵ 0.5ߙ

* More information on Stochastic Universal Sampling and Gaussian Mutation can be found in [17].

5. Results

In the optimization process for the 3-dof robotic manipulator, the first joint connecting to the ground

is used as the master motion and controlled by the time domain PID controller, and the other two joints

are viewed as he slave motions and controlled by the PDC-PID controller. There are nine control gains

that need to be optimized for the control of the 3-dof robotic manipulator for contour tracking. The

optimized control gains for linear and nonlinear contours under three different fitness functions can be

seen in Tables 6 and 7, respectively. All optimization procedures are successful, producing gains inside

the specified bounds and providing valid solutions for each case.

Figure 2 shows the best values of each fitness function per iteration for every optimization algorithm

in the linear contour. One can see that, in all cases, GA converged faster (locally minima) than DE and

PSO, something that was expected mostly due to literature. DE and PSO took a similar number of

iterations to converge with convergence values of PSO however being closer to GA than DE. Also,

Figure 3 shows that, for the nonlinear case, GA converged once again faster than the other two algorithms

which featured similar convergence trends. However, this time DE led to lower fitness values than PSO

for all three fitness functions.

Table 6. Resulting gains for linear contour.

Optimization

Algorithm

Fitness

Function
 ࡵࡷ ࡰࡷ ࡼࡷ

DE

ISE ݀݅ܽ݃{100, 4885, 155} ݀݅ܽ݃{100, 10,000, 385} ݀݅ܽ݃{100, 10,000, 9783}
IAE ݀݅ܽ݃{9866, 5774, 100} ݀݅ܽ݃{8543, 10,000, 198} ݀݅ܽ݃{10,000, 100, 100}

MSMAE ݀݅ܽ݃{5336, 100, 490} ݀݅ܽ݃{5949, 7771, 321} ݀݅ܽ݃{5573, 2451, 8693}
GA

ISE ݀݅ܽ݃{7196, 7776, 72} ݀݅ܽ݃{6183, 1372, 1223} ݀݅ܽ݃{5924, 193, 9774}
IAE ݀݅ܽ݃{1612, 7300, 1761} ݀݅ܽ݃{4847, 866, 551} ݀݅ܽ݃{7788, 820, 8292}

MSMAE ݀݅ܽ݃{6583, 3196, 1130} ݀݅ܽ݃{7635, 592, 2771} ݀݅ܽ݃{6752, 166, 6211}
PSO

ISE ݀݅ܽ݃{839, 4098, 2657} ݀݅ܽ݃{3276, 666, 291} ݀݅ܽ݃{9997, 260, 4773}
IAE ݀݅ܽ݃{4143, 9572, 976} ݀݅ܽ݃{5060, 9324, 217} ݀݅ܽ݃{2710, 4056, 9083}

MSMAE ݀݅ܽ݃{4210, 6421, 5722} ݀݅ܽ݃{8451, 1026, 6392} ݀݅ܽ݃{6605, 10, 1567}

Algorithms 2015, 8 706

Table 7. Resulting gains for nonlinear contour.

Algorithm Fitness Function ࡵࡷ ࡰࡷ ࡼࡷ
DE

ISE ݀݅ܽ݃{9381, 6743, 9950} ݀݅ܽ݃{10,000, 1405, 2720} ݀݅ܽ݃{4263, 194, 268}
IAE ݀݅ܽ݃{100, 10,000, 8905} ݀݅ܽ݃{100, 1062, 1110} ݀݅ܽ݃{6231, 761, 363}

MSMAE ݀݅ܽ݃{100, 8679, 9976} ݀݅ܽ݃{4088, 1616, 2500} ݀݅ܽ݃{1104, 138, 100}
GA

ISE ݀݅ܽ݃{8697, 5218, 8903} ݀݅ܽ݃{5647, 3336, 7018} ݀݅ܽ݃{6390, 1908, 1018}
IAE ݀݅ܽ݃{517, 7841, 4345} ݀݅ܽ݃{2701, 4737, 1814} ݀݅ܽ݃{4421, 4754, 144}

MSMAE ݀݅ܽ݃{4221, 9594, 7538} ݀݅ܽ݃{7750, 9450, 9421} ݀݅ܽ݃{2079, 5081, 296}
PSO

ISE ݀݅ܽ݃{4190, 5728, 6905} ݀݅ܽ݃{6708, 7823, 4957} ݀݅ܽ݃{5826, 8660, 317}
IAE ݀݅ܽ݃{5171, 5771, 7265} ݀݅ܽ݃{3234, 8737, 6333} ݀݅ܽ݃{732, 8454, 397}

MSMAE ݀݅ܽ݃{9300, 8031, 6380} ݀݅ܽ݃{1065, 9266, 4150} ݀݅ܽ݃{9634, 8893, 226}

Figure 2. Fitness function best values for linear contour.

Figure 3. Fitness function best values for nonlinear contour.

0 5 10 15 20 25 30
0

1

2

3
x 10

-6

Iteration

F
itn

es
s

V
al

ue

ISE Fitness Function

PSO

GA
DE

0 5 10 15 20 25 30
0

0.005

0.01

0.015

Iteration

F
itn

es
s

V
al

ue

IAE Fitness Function

0 5 10 15 20 25 30
0

2

4

6
x 10

-4

Iteration

F
itn

es
s

V
al

ue

MSMAE Fitness Function

0 5 10 15 20 25 30
0

0.5

1

1.5
x 10

-3

Iteration

F
itn

es
s

V
al

ue

ISE Fitness Function

PSO

GA
DE

0 5 10 15 20 25 30
0

0.2

0.4

Iteration

F
itn

es
s

V
al

ue

IAE Fitness Function

0 5 10 15 20 25 30
0

0.005

0.01

0.015

Iteration

F
itn

es
s

V
al

ue

MSMAE Fitness Function

Algorithms 2015, 8 707

For the linear contour, it can be deduced from Figure 4 that the DE-ISE case was the one to produce

the lowest contour error from all the cases, with DE-MSMAE coming a close second. In fact, DE

produced the best optimization results for all fitness function cases. GA and PSO, on the other hand,

produced contour errors an order of magnitude greater than DE, with the exception of PSO-IAE that was

numerically closer to DE-IAE. GA produced the worst results, something that was expected due to the

convergence rates as shown in Figure 2.

Figure 4. Contour errors produced by the optimized gains.

For the nonlinear contour case, the contour errors were numerically close for all three optimization

methods. For nonlinear contour tracking, DE-IAE produced the lowest contour error. GA was once again

the worst algorithm with the exception of GA-IAE that actually produced the second lowest contour

error. The PSO algorithm produced contour errors relatively close to DE for ISE and MSMAE but

featured the worst performance for IAE. The contour performances of each algorithm for both linear and

nonlinear contour cases are catalogued in Table 8 and also can be seen in Figures 5 and 6.

Table 8. Resulting contour errors and mean torques.

Algorithm

Linear Contour Nonlinear Contour ࣎ [࢓]ࢉࢋ૚	
(Mean)

 ૛࣎

(Mean)

 ૜࣎

(Mean)

 	૚࣎ [࢓]ࢉࢋ
(Mean)

 ૛࣎

(Mean)

 ૜࣎

(Mean)

DE

ISE 3.73	 × 10ି଺ 9.40	 0.73 0.63 1.48 × 10ିସ 5.56	 1.43	 0.79
IAE 8.19	 × 10ି଺	 9.56	 0.78 0.78 6.82 × 10ିହ 5.53	 1.74	 1.33

MSMAE 4.88	 × 10ି଺	 9.47	 0.73 0.56 1.51 × 10ିସ 5.43	 1.30	 0.84
GA

ISE 6.84	 × 10ିହ	 10.73	 1.75 0.90 1.78 × 10ିସ 5.75	 2.33	 0.45
IAE 6.54	 × 10ିହ	 11.48	 2.28 1.00 1.11 × 10ିସ 5.59	 2.25	 0.58

MSMAE 8.64	 × 10ିହ	 10.76	 1.79 0.89 2.52 × 10ିସ 5.63	 2.49	 0.41
PSO

ISE 6.68	 × 10ିହ	 10.87	 1.67 0.80 1.57 × 10ିସ 5.68	 2.52	 0.45
IAE 8.38	 × 10ି଺	 9.65	 0.781 0.57 1.34 × 10ିସ 5.79	 2.56	 0.44

MSMAE 8.45	 × 10ିହ	 11.95	 1.87 0.93 1.50 × 10ିସ 6.73	 2.47	 0.49

ISE IAE MSMAE
0

0.5

1
x 10

-4 Linear Contour Error [m]

DE

GA
PSO

ISE IAE MSMAE
0

1

2

3

4
x 10

-4 NonLinear Contour Error [m]

Algorithms 2015, 8 708

Figure 5. Contour performance for linear contour.

Figure 6. Contour performance for nonlinear contour.

Figure 7. Mean required torques for both contours.

0 0.2 0.4 0.6 0.8 1
-2

0

2
x 10

-4

Time [s]

e c [
m

m
]

ISE Fitness Function

0 0.2 0.4 0.6 0.8 1
-2

0

2
x 10

-4

Time [s]

e c [
m

m
]

IAE Fitness Function

DE

GA

PSO

0 0.2 0.4 0.6 0.8 1
-2

0

2
x 10

-4

Time [s]

e c [
m

m
]

MSMAE Fitness Function

0 1 2 3 4 5 6 7 8
-5

0

5
x 10

-4

Time [s]

e c [
m

m
]

ISE Fitness Function

0 1 2 3 4 5 6 7 8
-10

-5

0

5
x 10

-4

Time [s]

e c [
m

m
]

IAE Fitness Function

DE

GA
PSO

0 1 2 3 4 5 6 7 8
-10

-5

0

5
x 10

-4

Time [s]

e c [
m

m
]

MSMAE Fitness Function

ISE IAE MSMAE
0

5

10

15

τ 1 [
N

m
]

ISE IAE MSMAE
0

1

2

3

τ 2 [
N

m
]

Linear Contour Mean Torque Values

ISE IAE MSMAE
0

0.5

1

1.5

τ 3 [
N

m
]

ISE IAE MSMAE
0

2

4

6

8

τ 1 [
N

m
]

ISE IAE MSMAE
0

1

2

3

τ 2 [
N

m
]

NonLinear Contour Mean Torque Values

ISE IAE MSMAE
0

0.5

1

1.5

τ 3 [
N

m
]

DE

GA

PSO

Algorithms 2015, 8 709

Taking a close look at the required torque produced by each gain solution set in Figure 7, one can see

that all optimization algorithms produced similar mean torques values for the first actuator while the

torque from the other two actuators varied greatly. In the linear contour, DE, which produced the lowest

contour errors, produced the lowest mean required torques. Similarly, the best performing algorithm for

the nonlinear contour, DE, produced the lowest required mean torques, with the exception of the third

actuator where all DE cases produced the highest mean torque.

6. Conclusion

In this paper, a position domain PID controller for a robotic manipulator was tuned using three distinct

meta-heuristic optimization algorithms. The gains of the controller were determined based on the

algorithms of differential evolution, genetic algorithm, and particle swarm optimization, with the main

goal being the minimum of the contour error on the end-effector level. Three different fitness functions

were used to measure the efficiency of each optimization, and two different contours, a linear and a

nonlinear, were used in order to assess the validity of the optimization process.

From the comparative study results, it is shown that the DE-ISE case produced the least contour error

for the linear contour tracking, while the DE-IAE case was proven to be the most efficient for the

nonlinear contour tracking. More specifically, the DE algorithm performed consistently better than the

other two algorithms for both linear and nonlinear contours. This can be attributed to DE’s more efficient

population diversification due to Equation (9) that makes DE more flexible in avoiding local minima.

The PSO and DE algorithms performed generally better than GA that was always the first to converge

without producing the best fitness values or results. However, it should be noted that all the optimizations

resulted in relatively close results for the nonlinear contour.

It should be mentioned that the gain tuning optimization methods can be extended to other controller

designs of the contour tracking problems of robotic manipulators, as the principle and parameter

selection methods are the same for all the controller designs.

Acknowledgements

This research is supported by Hunan Province innovation platform and talent plan (Applied

Fundamental Research) No. 2015JC3109, and the Natural Sciences and Engineering Research Council

of Canada (NSERC) through a Discovery Grant.

Author Contributions

The contributions of both authors are similar. All of them have worked together to develop this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Cominos, P.; Munro, N. PID Controllers: Recent Tuning Methods and Design to Specification

Control Theory and Applications. IEE Proc. Control Theory Appl. 2002, 149, 46–53.

Algorithms 2015, 8 710

2. Kachitvichyanukul, V. Comparison of Three Evolutionary Algorithms: GA, PSO and DE. Ind. Eng.

Manag. Syst. 2012, 11, 215–223.

3. Chandrasekar, K.; Ramana, N.V. Performance Comparison of GA,DE,PSO and SA Approaches in

Enhancements of Total Transfer Capability Using FACTS Devices. J. Electr. Eng. Technol. 2012,

7, 493–500.

4. Kumar, A.; Gupta Rajeev, R. Compare the Results of Tuning of PID Controller by Using PSO and

GA Technique for AVR System. Intern. J. Adv. Res. Comput. Engin. Technol. 2013, 2,

2131–2138.

5. Ou, C.; Lin, W. Comparison Between PSO and GA for Parameter Optimization of PID Controller

IEEE Intern. Conf. Mechatron. Autom. 2006, doi:10.1109/ICMA.2006.257739.

6. Saad, M.S.; Jamaluddin, H.; Darus, I.Z. Implementation of PID Controller Tuning Using

Differential Evolution and Genetic Algorithm. Intern. J. Innov. Comput. Inf. Control. 2012, 8,

7761–7779.

7. Dong, R. Differential Evolution versus Particle Swarm Optimization for PID Controller Design.

Intern. Conf. Nat. Computat. 2009, 3, 236–240.

8. Hassan, R.; Cohanim, B.; de Weck, O. A Comparison of Particle Swarm Optimization and Genetic

Algorithm. In Proceedings of the 1st AIAA Multidisciplinary Design Optimziation Specialist

Conference, Austin, TX, USA, 18–21 April 2005; pp. 18–21.

9. Ouyang, P.R.; Huang, J.; Zhang, W.J.; Dam, T. Contour Tracking Control in Position Domain.

Mechatronics 2012, 22, 934–944.

10. Ouyang, P.R.; Pano, V.; Dam, T. PID Position Domain Control for Contour Tracking. Intern. J.

Syst. Sci. 2015, 46, 111–124.

11. Ouyang, P.R.; Pano, V. Position Domain Synchronization Control of Multi-Degrees of Freedom

Robotic Manipulator. ASME J. Dyn. Syst. Measurem. Control. 2014, 136, 021017.

12. Koren, Y. Cross-Coupled Biaxial Computer Control of Manufacturing Systems. ASME J. Dyn. Syst.

Measurem. Control. 1980, 102, 265–272.

13. Yeh, S.; Hsu, P.L. A New Approach to Biaxial Cross-Coupled Control. In Proceedings of the IEEE

International Conference on Control Applications, Anchorage, AK, USA, 25–27 September 2000;

pp. 168–173.

14. Koren, Y.; Lo, C.C. Variable Gain Cross-Coupling Controller for Contouring. Ann. CIRP 1991, 40,

371–374.

15. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359.

16. Panda, S. Robust Coordinated Design of Multiple and Multi-Type Damping Controller Using

Differential Evolution Algorithm. Electr. Power Energy Syst. 2011, 33, 1018–1030.

17. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Massachusetts, UK, 1998.

18. Ladkany, G.S.; Trabia, M.B. A Novel Crossover Operator for Genetic Algorithms: Ring Crossover.

Appl. Mathem. 2012, 3, 1220–1235.

19. Nagaraj, B.; Vijayakumar, P. A Comparative Study of PID Controller Tuning Using GA, EP, PSO

and ACO. J. Autom. Mob. Robot. Intell. Syst. 2011, 5, 42–48.

Algorithms 2015, 8 711

20. Ebbesen, S.; Kiwitz, P; Guzzella, L. A Generic Particle Swarm Optimization Matlab Function. In

Proceedings of the IEEE American Control Conference, Montreal, QC, Canada, 27–29 June 2012;

pp. 1519–1524.

21. Makkar, C.; Dixon, W.E.; Sawyer, W.G.; Hu, G. A New Continuously Differentiable Friction

Model for Control Systems Design. Advanced Intelligent Mechatronics. In Proceedings of the

IEEE/ASME International Conference, Monterey, CA, USA, 24–28 July 2005; pp. 600–605.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

