
Algorithms 2014, 7, 229-242; doi:10.3390/a7020229

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Application of Imperialist Competitive Algorithm on Solving the
Traveling Salesman Problem

Shuhui Xu 1,2, Yong Wang 1,2,* and Aiqin Huang 1,2

1 School of Mechanical Engineering, Shandong University, Jinan 250061, China;

E-Mail: sduxushuhui@126.com
2 Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University),

Ministry of Education, Jinan 250061, China; E-Mail: aqhuang@163.com

* Author to whom correspondence should be addressed; E-Mail: meywang@sdu.edu.cn;

Tel.: +86-531-8839-2539.

Received: 9 March 2014; in revised form: 5 May 2014 / Accepted: 5 May 2014 /

Published: 13 May 2014

Abstract: The imperialist competitive algorithm (ICA) is a new heuristic algorithm

proposed for continuous optimization problems. The research about its application on

solving the traveling salesman problem (TSP) is still very limited. Aiming to explore its

ability on solving TSP, we present a discrete imperialist competitive algorithm in this

paper. The proposed algorithm modifies the original rules of the assimilation and

introduces the 2-opt algorithm into the revolution process. To examine its performance, we

tested the proposed algorithm on 10 small-scale and 2 large-scale standard benchmark

instances from the TSPLIB and compared the experimental results with that obtained by

two other ICA-based algorithms and six other existing algorithms. The proposed algorithm

shows excellent performance in the experiments and comparisons.

Keywords: discrete imperialist competitive algorithm; traveling salesman problem;

2-opt algorithm; numerical experiments

1. Introduction

Because of its widespread application and significant research value, the traveling salesman

problem (TSP) has probably become the most classical, famous and extensively studied problem in

the field of combinatorial optimization [1–3]. It can be simply described as to find out the shortest tour

OPEN ACCESS

Algorithms 2014, 7 230

that starts from one city from the set of given cities, visits every given city once, and returns to

the original finally. As a typical NP-hard combinatorial optimization problem, it is extremely difficult

to solve [4]. Compared with the exact algorithms for solving TSP, the approximate algorithms are

simpler. Although they cannot guarantee to find the optimal solution, often they can obtain a satisfactory

solution. They are more suitable to be used to solve larger-scale TSP [5]. Many approximate

algorithms have been applied to solve the TSP [6–26].

Imperialist competitive algorithm (ICA) is a new socio-politically motivated meta-heuristic

algorithm proposed by Atashpaz-Gargari and Lucas in 2007, inspired by the colonial phenomenon in

human society and history [27]. Although it has been successfully applied to many different

optimization tasks and has shown great performance in both the convergence rate and the global

optimal achievement [28–33], its application on solving TSP is still very limited. The literature [34]

gives some results obtained by ICA, but the description about how to use ICA to solve TSP is

ambiguous. The literature [35] submits a new approach, but in our test experiments, the approach

cannot produce the results given in the literature. Mohammad Ahmadvand et al. [36] proposed a

hybrid algorithm based on ICA and tabu search, using ICA to solve TSP at first and using a tabu

search to improve the solution, however, the results obtained by the hybrid algorithm are not yet

good enough.

Seeking to explore the potential of ICA and to find a novel and efficient way for solving TSP, we

present a novel discrete ICA in this paper.

The rest of this paper is organized as follows. In Section 2, a brief introduction about the basic ICA

is given. In Section 3, the proposed algorithm is set out in detail. In Section 4, the numerical

experiments, results and related discussion are given. In Section 5, we conclude the paper and put

forward the future works.

2. Basic Imperialist Competitive Algorithm

The ICA simulates the process of competition between empires in human society. It starts with a

randomly generated initial population of size N, which are called countries, just like the chromosomes

in the genetic algorithm. The cost of each country is calculated by the equation specific for the

problem to be optimized. Then, countries are divided into imperialists and colonies. Imperialists are

the best countries in the population, and colonies are the others left. Then the colonies are randomly

distributed to the imperialists. The number of colonies that an imperialist obtains is proportional to its

power. Here the power of each imperialist is calculated and normalized depended on its cost. The

imperialist with bigger power value is better. One imperialist and its colonies consist of an empire

together, thus several empires are initialized.

After, within each empire group, the colonies are moved to the position of the imperialist according

to a certain rule. This process is called “assimilation”, simulates the assimilation process the

imperialist implements on its colonies in a realistic society. Meanwhile, some colonies are randomly

selected out and replaced with new randomly generated countries. This process is called “revolution”,

just like the mutation in the genetic algorithm, simulates the sudden change in the socio-political

characteristics of a colony in a realistic society. In the process of assimilation and revolution, if a

colony becomes better than the imperialist, the colony and the imperialist will exchange their roles.

Algorithms 2014, 7 231

The competitive behavior between the empires is the core of the ICA. In this stage, all empires try

to occupy colonies from others. Firstly, the total cost of every empire is calculated and normalized

according to the formulas (1) and (2) [27], in where the T.C.n and the N.T.C.n stand for the total cost

and the normalized total cost of the nth empire, respectively, and the ξ is a little positive number,

whose value determines the role of the colonies in determining the total cost of the empire.

() { ()}n n nT.C. = Cost imperialist + ξ mean Cost colonies of empire (1)

. max{ . . }n n i
i

N T C T C T C= -
 (2)

Then, the weakest colony of the weakest empire is picked out. Other empires try to obtain it through

competition. The success probability of each empire is given by the formula (3) [27] and form the

vector P as the formula (4) [27]. A vector R with the same size as P whose elements are uniformly

distributed random numbers is created as the formula (5) [27]. Then vector D is created by subtracting

R from P, as the formula (6) [27]. The empire whose relevant index in D is maximized will obtain the

mentioned colony at the end.

1

. . .
P

. . .n imp

n
P N

ii

N T C

N T C





(3)

P = []
1 2 3 Nimp

P P P Pp , p , p , , p (4)

R = [] where U(0,1) and 1
imp1 2 3 N i impr ,r ,r , ,r , r i N£ £  (5)

D = P R [] []
imp 1 2 3 N impimp

1 2 3 N P 1 P 2 P 3 P N= D ,D ,D , ,D = p r , p r , p r , , p r- - - - -  (6)

There is just one empire left or a preset maximum number of iterations is reached is usually utilized

as the termination condition of the algorithm. The competition proceeds until the termination condition

is met. The weak empire gradually loses its colonies and the mighty empire occupies more and more

colonies. The empire loses all its colonies will be collapsed. The final residual imperialist stands for

the solution.

The pseudo code of the basic ICA is shown in Figure 1.

Figure 1. The pseudo code of the basic imperialist competitive algorithm (ICA).

3. Approach to Discretize the ICA for TSP

Since the basic ICA is proposed for numerical function optimization, when it is utilized to solve

TSP, some detail rules in the algorithm should be modified.

Algorithms 2014, 7 232

3.1. Generate Initial Population and Initiate Empires

The discrete ICA we propose starts with a randomly generated initial population of size N also.

The only difference is that here a country represents a tour. We use a randomly arranged integer sequence

to represent a country. There are n integers from 1 to n in the sequence, each integer represents a city,

appears only once and the order of them represents the order of the visited cities. For example, in a

4-cities-TSP, the sequence (1, 4, 3, 2) implies that the tour starts from the city 1 to city 4, then goes

from city 4 to city 3, then goes to city 2, finally returning from city 2 to city 1. The cost of a country is

the total length of the tour it represents. Because of the aim is to find out the shortest tour, a country

which represents a shorter tour is better, so the power of a country can be directly defined as

the reciprocal of its cost.

At the process of forming initial empires, we are required to assign the colonies to the imperialists.

here we define that this assignment is according to the formula (7), in where the N denotes the size of

the initial population, the m denotes the number of imperialists, N and m can be set freely according to

the size of the TSP to be solved, the kj denotes the number of colonies assigned to the jth imperialist

and the fj denotes the cost of the jth imperialist.

1

1

= int () 1,2,... 1
)

j
j m

jj=1

m

m ii

1 / f
k N m j m

(1 / f

k N m k j m




 
   
 
 

   




 (7)

3.2. The Modified Assimilation Process

In the assimilation process, colonies obtain information from and adjust themselves to keep consistent

with the relevant imperialist. This process can be viewed as a learning process of the colonies from the

imperialist. Basing on the country encoding method, we redefine the detail rule of the assimilation

process as follows: A subsequence is randomly chosen from the relevant imperialist, and a position is

randomly chosen from the colony. Then, the mentioned subsequence is inserted to the mentioned

position. Finally, the cities which are included in the subsequence are deleted from the part coming

from the previous colony. This process is shown by Figure 2, in where the tour (3, 1, 5, 2, 4, 6) is

a hypothetical tour just used as an example. The subsequence (1 5 2) is chosen from the imperialist and

the position between city 5 and city 3 is chosen from the colony. The subsequence (1 5 2) which may

include effective information, is transferred from the imperialist to its colony after the assimilation process.

Figure 2. An example of the redefined assimilation.

25 4 613

63 2 154

25 3 614

The imperialist:

The colony before:

The colony after:

Algorithms 2014, 7 233

3.3. The Modified Revolution Process

Obviously, we can achieve the revolution process by replacing the randomly selected colonies with

an equal number of new randomly generated countries, like the method in the basic ICA. However,

here, in order to enhance the ability of the proposed algorithm further, we introduce the 2-opt

algorithm [37] into the revolution process.

Due to its simplicity and effectiveness, the 2-opt algorithm is probably the most widely used local

search approach for solving TSP. It can be applied to an arbitrary initial tour, and searches the shortest

tour by changing the visiting order of cities, but the 2-opt algorithm often takes a very long time,

especially when it is applied in a larger number of candidate tours.

Figure 3 shows an illustration of the 2-opt algorithm. Here, the tour (A-B-F-E-C-D-H-I-G-A)

presents an example tour before using 2-opt algorithm. Firstly, the length of this tour is calculated.

Then a link A-B and another link C-D are selected out. A new tour is generated by linking A and C, B

and D, respectively. If the new tour (A-C-E-F-B-D-H-I-G-A) is shorter than the old tour, then,

the new tour is accepted. The above procedure is replicated for all links between each two cities until

there is no more decrease of the total tour length.

Figure 3. An illustration of the 2-opt algorithm.

Our way goes as follows: for every empire, take out a part of colonies randomly from its colonies,

apply the 2-opt algorithm to them, and replace them with the improved. Because the revolution process

is applied to a few countries, introducing the 2-opt algorithm into it will not take a very long time.

The pseudo code of the proposed algorithm is shown in Figure 4. It is similar to the pseudo code of

the basic ICA, but is different on the specific operations of the step 1, step 2 and step 3.

Figure 4. The pseudo code of the proposed algorithm.

Algorithms 2014, 7 234

4. Numerical Experiments, Results and Discussions

4.1. Experiments Settings

In order to verify its effectiveness, we test the proposed algorithm on 12 standard benchmark

instances (listed in the Table 1) from the TSPLIB [38]. The first 10 instances are small-scale problems,

with sizes ranging from 51 to 150 cities, and the last two are large-scale problems, whose size is 1323 and

1400 respectively. To avoid the effects caused by the randomness of the algorithm, the experiments for

the former eight instances are repeated 20 times independently, the experiments for KroA150 and

KroB150 are repeated 10 times independently, and the experiments for the last two instances are

repeated 5 times independently, considering the consumption of time. As the calculation method of the

TSPLIB, the distance between two cities is computed using Euclidean distance equation and rounded

to an integer.

Table 1. The parameters set for every instance.

Instance Num.C Num.E Num.Ite Instance Num.C Num.E Num.Ite

eil51 100 6 200 berlin52 100 6 200
st70 100 6 200 eil76 100 6 200
pr76 100 6 200 kroA100 100 6 200

kroB100 100 6 200 eil101 100 6 300
kroA150 150 6 300 kroB150 150 8 350
rl1323 200 10 400 fl1400 200 10 400

The proposed algorithm is coded in MATLAB R2010b. All the experiments are finished on a PC

with Core 2 Duo at 2.2 GHZ, 2 GB RAM and Windows Vista Home Basic Operating system. In our

tests, the revolution rate is set to 0.3 and the ξ is set to 0.1. We specify a maximum number of

iterations for each test. The algorithm stopped after getting to the iterations number. The number of

initial countries, initial empires and iterations set for every instance are shown in Table 1, represented

by “Num.C”, “Num.E” and “Num.Ite” respectively. Larger scale TSP means higher solving difficulty,

so we set more population size, more empire numbers and more iterations numbers for the larger

scale TSP. Note that the parameters we listed here may be not the best. Actually, in our previous

experiments, we found that the proposed algorithm is not very sensitive to the initial parameters.

In order to examine the role of 2-opt algorithm in the proposed algorithm (abbreviated as DICA1 in

the following), another discrete ICA (abbreviated as DICA2 in the following) is also tested on

the mentioned instances for making a comparison. In the DICA2, the assimilation process is the same

as that in the DICA1, but the revolution process is achieved by replacing the randomly selected

colonies with an equal number of new randomly generated countries. For fairness, the parameters set

in the DICA2 are same as those in the DICA1.

Table 2 shows the experimental results. The column “opt” represents the length of the known

optimal solution of every instance. The columns “Best”, “Worst”, “Ave” and “StD” represent the best,

the worst found result, the average and the stand deviation of the results for every instance,

respectively. The column “N1%” denotes the number of the found results that are within 1% deviation

Algorithms 2014, 7 235

of the optimality over the experiments for every instance. The last column “Ave.time” represents the

average running time for every instance. The bold data in the table are better.

Table 2. The results of the experiments.

Instance Opt Algorithm Best Worst Average StD N1% Ave.time (s)

eil51 426
DICA1 426 432 427.25 1.3717 19 15.49

DICA2 590 770 700.6 43.9167 0 14.77

berlin52 7542
DICA1 7542 7542 7542 0.00 20 19.69
DICA2 11,034 14,074 12,229.55 736.6680 0 16.87

st70 675
DICA1 675 683 676.7 2.5976 19 15.05
DICA2 1300 1702 1518.2 93.2386 0 14.54

eil76 538
DICA1 538 546 540.75 2.5521 18 16.65
DICA2 972 1298 1180 70.0669 0 15.86

pr76 10,8159
DICA1 108,159 109,085 108,350.65 316.9696 20 15.36
DICA2 228,851 280,746 258,438.5 1333.2 0 15.12

kroA100 21,282
DICA1 21,282 21,433 21,306. 5 43.0893 20 18.31
DICA2 66,573 84,480 73,032.3 4561.7 0 18.28

kroB100 22,141
DICA1 22,141 22,376 22,194.45 67.5539 19 18.16
DICA2 65,905 88,172 73,587.9 5113.6 0 17.98

eil101 629
DICA1 629 643 635.35 4.8153 10 29.46
DICA2 1426 1751 1574.3 82.1956 0 25.49

kroA150 26,524
DICA1 26,524 26,857 26,657.5 110.5805 8 54.28
DICA2 102,953 118,004 109,867.7 4397.2 0 44.67

kroB150 26,130
DICA1 26,141 26,290 26,230.1 47.8944 10 64.20
DICA2 97,697 109,665 105,396.8 4432.1 0 53.17

rl1323 270,199
DICA1 272,985 283,357 277,965.4 3895.7 0 6151.8
DICA2 7,311,486 7,491,391 7,398,724.4 74,062 0 179.71

fl1400 20,127
DICA1 20,621 20,707 20,669.4 38.24 0 5607.6
DICA2 1,196,412 1,226,156 1,208,172.6 13,065 0 184.39

Figure 5. Trend lines of the two algorithms on rl1323.

Figures 5 and 6 show the trend lines of the DICA1 and the DICA2 on rl1323 and fl1400. They are

utilized to compare the convergence process of the two algorithms. Limited by the length of the article,

Algorithms 2014, 7 236

the trend lines of the two algorithms on other instances are not given here. Figures 5 and 6 are utilized

as a representative.

Figure 6. Trend lines of the two algorithms on fl1400.

4.2. Discussions of the Results Obtained by the Proposed Algorithm

It can be seen from Table 2, for the former nine instances, the proposed algorithm (DICA1) found

the known optimal solution, and for last three instances, though the known optimal solutions are not

found, the best result found by the proposed algorithm are very close to the known optimal solutions.

Their deviations with the corresponding known optimal solution are only 0.0421%, 1.0311% and

2.4544%, respectively. The average of the results for every instance is also quite close to the known

optimal solution. Only for eil101, pr1323 and fl1400, the deviation with the known optimal solution

exceeds 1%. For all the former ten instances except eil101, the probability of finding a solution which

is within 1% deviation with the known optimal solution can reach more than 80%, especially, for

berlin52, pr76, kroA100 and kroB150, it reaches 100%. In addition, for berlin52, the proposed

algorithm found the known optimal solution in every test.

4.3. Discussions of the Role of 2-opt Algorithm

From Table 2, Figures 5 and 6, it can be seen that, compared with the DICA1, the convergence

rate of the DICA2 is slower, and the results it obtained are also worse. In the earlier stage of iterations,

the convergence rate of the DICA2 is acceptable, but in the later stage of iterations, it stagnated at

a solution which is very poor. The cause of this phenomenon is that in the earlier stage of the iterations,

the individuals in the population are diverse and generally bad, it is very easy to find a solution which

is better than the current best solution in the assimilation process, in the revolution process and in

the competition process; but with the increase of the number of iterations, all the individuals in

the population become more and more similar with the imperialist, the diversity of population decline,

relying on the revolution process which using randomly generated countries to obtain a solution which

is better than the current best solution is very difficult, so the DICA2 very easily stagnates at a very

poor solution.

Algorithms 2014, 7 237

In DICA1, the revolution process is achieved by improved some randomly selected colonies by

the 2-opt algorithm. Due to its strong local search ability, the 2-opt algorithm can greatly improve

the quality of a colony, using this mechanism can easily find a solution which is greatly better than

the current best solution. Meanwhile, the mechanism of the DICA1 can quickly replace the new find

best solution to the position of the imperialist, and then to guide the further evolution of the entire

population. So its convergence rate is very fast and the solutions it obtained are very good.

The revised assimilation makes it possible that utilizing the original ICA to solve TSP, and

the revised revolution combined with 2-opt algorithm ensures the algorithm to find a superior

solution quickly.

Furthermore, it can be seen from the last column “Ave.time”, when the scale of TSP is small, using

2-opt algorithm would not significantly increase the time consumption. When the scale of TSP is large,

the time consumption increases obviously. The main reason is that the 2-opt algorithm costs more time

when applied to solve large-scale TSP.

4.4. Compared with Other Two ICA-Based Algorithms

The results obtained by the DICA1 are compared with that obtained by other two ICA-based

algorithms for solving TSP. One is proposed in literature [34] (abbreviated as OICA in the following)

and another is proposed in literature [36], combined with tabu search (abbreviated as ICATS in the

following). The comparison is arranged in Table 3, in where the column “Best.Err” and “Ave.Err”

represent the percentage deviation of the best result and the average of the results over the known

optimal solution, respectively, calculated as the formula 8, the “NA” represents that the data is not

given in the corresponding literature. The bold data in the table are best.

 100%Err =(the result opt) / opt  (8)

Table 3. Compared with two other ICA-based algorithms.

Instance
DICA1 ICATS OICA

Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%) Best.Err (%) Ave.Err (%)

eil51 0 0.2934 0 2.5822 1.39 NA
berlin52 0 0 NA NA 0.09 NA

st70 0 0.2519 NA NA 0.44 NA
eil76 0 0.5112 NA NA 0.99 NA
pr76 0 0.1771 0 0.1072 NA NA

kroA100 0 0.1151 0 0.5451 0.10 NA
kroB100 0 0.2414 0 0.8356 0.38 NA

eil101 0 1.01 0 7.9491 NA NA
kroA150 0 0.5033 0 0.7917 NA NA

From Table 3, it can be seen that the performance of the OICA is the worst in the three algorithms.

On every instance, it cannot obtain the known optimal solution. The performance of the ICATS is

centered in the three algorithms, though it can obtain the known optimal solution for every instance,

but the average of the results obtained by it for every instance except pr76 is worse than that obtained

by the DICA1. The performance of the DICA1 is the best in the three algorithms.

Algorithms 2014, 7 238

4.5. Compared with Other Six Heuristic Algorithms

Meanwhile, the results are compared with that obtained by the particle swarm optimization (PSO) [19],

the bee colony optimization (BCO) [6], the self-organizing Neural Network (NN) [20], the improved

ACO with Pheromone Correction Strategy (ACO+SEE) [14], the generalized chromosome genetic

algorithm (GCGA) [25] and the genetic simulated annealing ant colony system with particle swarm

optimization techniques (GSAP) [22], shown in Tables 4 and 5. The meanings of the fields in Tables 4

and 5 are same as those in Table 3. More intuitive comparisons are shown in Figures 7 and 8.

Table 4. Compared with the particle swarm optimization (PSO), the bee colony

optimization (BCO) and the Neural Network (NN).

Instance

DICA1 PSO BCO NN

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

eil51 0 0.2934 0.2347 2.5751 0.4695 0.85 0.2347 2.6925
berlin52 0 0 0 3.8458 NA NA 0 5.1777

st70 0 0.2519 0 3.3422 NA NA NA NA
eil76 0 0.5112 1.487 4.1673 0.1859 2.01 0.5576 3.4071
pr76 0 0.1771 0.1119 3.8176 NA NA NA NA

kroA100 0 0.1151 NA NA 2.2601 3.43 0.2396 1.1311
kroB100 0 0.2414 NA NA 2.2402 3.1 0.9123 2.3507

eil101 0 1.01 NA NA 0.9539 2.29 1.4308 3.1208
kroA150 0 0.5033 NA NA 5.0294 6.39 0.5806 3.1367
kroB150 0.0421 0.7658 NA NA 1.55 3.68 0.5128 1.9207
rl1323 1.0311 2.8743 NA NA NA NA 11.3143 12.9961
fl1400 2.4544 2.8817 NA NA NA NA 3.5972 4.8840

Table 5. Compared with the improved ACO with Pheromone Correction Strategy (ACO +

SEE), the generalized chromosome genetic algorithm (GCGA) and the genetic simulated

annealing ant colony system with particle swarm optimization techniques (GSAP).

Instance

DICA1 ACO + SEE GCGA GSAP

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

Best.Err
(%)

Ave.Err
(%)

eil51 0 0.2934 0.2347 0.23 0.2347 0.94 0.23 0.3
berlin52 0 0 0 0.13 NA NA 0 0

st70 0 0.2519 0 1.36 0 0.44 NA NA
eil76 0 0.5112 1.487 1.19 2.2305 2.42 0 0.41
pr76 0 0.1771 0.1119 2.62 0.1378 0.72 NA NA

kroA100 0 0.1151 0 0.72 0.047 1.23 0 0.42
kroB100 0 0.2414 NA NA 0.2439 1.81 0 0.64

eil101 0 1.01 NA NA 1.5898 2.7 0.16 0.99
kroA150 0 0.5033 NA NA 1.3987 2.92 0 1.41
kroB150 0.0421 0.7658 NA NA 1.6303 2.11 0 1.22
rl1323 1.0311 2.8743 NA NA NA NA 2.7546 3.6945
fl1400 2.4544 2.8817 NA NA NA NA 2.3153 6.0746

Algorithms 2014, 7 239

From Table 4, Table 5, Figure 7 and Figure 8, it can be seen that, when compared with the PSO, the

BCO, the ACO+SEE, the NN and the GCGA, the proposed algorithm not only found the known optimal

solution that others succeeded, but also found that the others failed. In addition, for kroB150, though

all the four algorithms (the PSO and the ACO + SEE have not been tested on kroB150 in the literatures)

failed to find the known optimal solution, the proposed algorithm obtained a best result. For rl1323 and

fl1400, the proposed algorithm shows greater performance than the NN (other four algorithms have not

been tested on rl1323 and fl1400 in the literatures). Furthermore, for every instance, the deviation

between the average of the results obtained by the proposed algorithm and the known optimal solution

is much lower. When compared with the GSAP, for eil76, all the two algorithms found the known

optimal solution while the average of the results obtained by the GSAP is slightly better. For eil101,

the proposed algorithm found the known optimal solution while the GSAP failed, but the average of

the results obtained by the GSAP is slightly better. For kroB150, the proposed algorithm failed to find

the known optimal solution while the GSAP succeeded, but the average of the results obtained by the

proposed algorithm is better. For fl1400, the best solution obtained by the GSAP is slightly better, but

the average of the results obtained by the GSAP is worse. For the remaining instances, the proposed

algorithm shows better performance on the best result and the average of the results than the GSAP.

Comprehensively speaking, the performance of the proposed algorithm is much better than the PSO,

the BCO, the NN and the GCGA, and slightly better than the GSAP. The proposed algorithm

is excellent.

Figure 7. Comparison between the best results obtained by several algorithms.

Figure 8. Comparison between the average results obtained by several algorithms.

Algorithms 2014, 7 240

5. Conclusions and Further Works

A discrete imperialist competitive algorithm for TSP is proposed. It retains the basic flow of

the original, redefines the assimilation and the revolution and introduces the 2-opt algorithm into

the revolution process. The proposed algorithm is excellent, proved by the experiments on some

benchmark problems and the comparisons with other six algorithms. Future research should be focused

on enhancing its performance and applying it on larger-scale TSP and other combinational

optimization problems.

Acknowledgments

This research is supported by Specialized Research Fund for the Doctoral Program of Higher

Education (Grant No.20110131110042), China.

Author Contributions

The idea for this research work is proposed by Professor Yong Wang, the MATLAB code is

achieved by Shuhui Xu, and the paper writing is completed by Aiqin Huang.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hoffman, K.L.; Padberg, M.; Rinaldi, G. Traveling salesman problem. In Encyclopedia of

Operations Research and Management Science, 3rd ed.; Springer US: New York, NY, USA,

2013; pp. 1573–1578.

2. Gutin, G.; Punnen, A.P. The Traveling Salesman Problem and Its Variations; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2002; p. 830.

3. Applegate, D.L. The Traveling Salesman Problem: A Computational Study; Princeton University

Press: Princeton, NJ, USA, 2006; p. 593.

4. Papadimitriou, C.H. The euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci.

1977, 4, 237–244.

5. Laporte, G. The traveling salesman problem: An overview of exact and approximate algorithms.

Eur. J. Oper. Res. 1992, 59, 231–247.

6. Wong, L.-P.; Low, M.Y.H.; Chong, C.S. A Bee Colony Optimization Algorithm for Traveling

Salesman Problem, Proceedings of the 2nd Asia International Conference on Modelling and

Simulation, AMS 2008, Kuala Lumpur, Malaysia, 13–15 May 2008; IEEE Computer Society:

Kuala Lumpur, Malaysia, 2008; pp. 818–823.

7. Wong, L.-P.; Low, M.Y.H.; Chong, C.S. Bee colony optimization with local search for traveling

salesman problem. Int. J. Artif. Intell. Tools 2010, 19, 305–334.

8. Albayrak, M.; Allahverdi, N. Development a new mutation operator to solve the traveling

salesman problem by aid of genetic algorithms. Expert Syst. Appl. 2011, 38, 1313–1320.

Algorithms 2014, 7 241

9. Ouaarab, A.; Ahiod, B.; Yang, X.-S. Discrete cuckoo search algorithm for the travelling salesman

problem. Neural Comput. Appl. 2013, doi:10.1007/s00521-013-1402-2.

10. Pandey, S.; Kumar, S. Enhanced artificial bee colony algorithm and it’s application to travelling

salesman problem. HCTL Open Int. J. Technol. Innov. Res. 2013, 2, 137–146.

11. Roy, S. Genetic algorithm based approach to solve travelling salesman problem with one point

crossover operator. Int. J. Comput. Technol. 2013, 10, 1393–1400.

12. Ray, S.; Bandyopadhyay, S.; Pal, S. Genetic operators for combinatorial optimization in TSP and

microarray gene ordering. Appl. Intell. 2007, 26, 183–195.

13. Sun, K.; Wu, H.; Wang, H.; Ding, J. Hybrid ant colony and particle swarm algorithm for solving

TSP. Jisuanji Gongcheng yu Yingyong (Comput. Eng. Appl.) 2012, 48, 60–63.

14. Tuba, M.; Jovanovic, R. Improved ACO algorithm with pheromone correction strategy for the

traveling salesman problem. Int. J. Comput. Commun. Control 2013, 8, 477–485.

15. Chen, Y.-W.; Zhu, Y.-J.; Yang, G.-K.; Lu, Y.-Z. Improved extremal optimization for the

asymmetric traveling salesman problem. Phys. A: Stat. Mech. Appl. 2011, 390, 4459–4465.

16. Wang, Y.-T.; Li, J.-Q.; Gao, K.-Z.; Pan, Q.-K. Memetic algorithm based on improved

invercover operator and linckernighan local search for the euclidean traveling salesman problem.

Comput. Math. Appl. 2011, 62, 2743–2754.

17. Basu, S. Neighborhood reduction strategy for tabu search implementation in asymmetric traveling

salesman problem. OPSEARCH 2012, 49, 400–412.

18. Yu, Y.; Chen, Y.; Li, T. A New Design of Genetic Algorithm for Solving TSP, Proceedings of the

4th International Joint Conference on Computational Sciences and Optimization, CSO 2011,

Kunming, Lijiang, Yunnan, China, 15–19 April 2011; IEEE Computer Society: Washington, DC,

USA, 2011; pp. 309–313.

19. Shi, X.H.; Liang, Y.C.; Lee, H.P.; Lu, C.; Wang, Q.X. Particle swarm optimization-based

algorithms for TSP and generalized TSP. Inf. Process. Lett. 2007, 103, 169–176.

20. Masutti, T.A.S.; de Castro, L.N. A self-organizing neural network using ideas from the immune

system to solve the traveling salesman problem. Inf. Sci. 2009, 179, 1454–1468.

21. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on

an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11,

3680–3689.

22. Chen, S.-M.; Chien, C.-Y. Solving the traveling salesman problem based on the genetic simulated

annealing ant colony system with particle swarm optimization techniques. Expert Syst. Appl. 2011,

38, 14439–14450.

23. Dong, G.; Guo, W.W.; Tickle, K. Solving the traveling salesman problem using cooperative

genetic ant systems. Expert Syst. Appl. 2012, 39, 5006–5011.

24. Alhamdy, S.; Ahmad, S.; Noudehi, A.N.; Majdara, M. Solving traveling salesman problem (TSP)

using ants colony (ACO) algorithm and comparing with tabu search, simulated annealing and

genetic algorithm. J. Appl. Sci. Res. 2012, 8, 434–440.

25. Yang, J.; Wu, C.; Lee, H.P.; Liang, Y. Solving traveling salesman problems using generalized

chromosome genetic algorithm. Prog. Natural Sci. 2008, 18, 887–892.

26. Shuang, B.; Chen, J.; Li, Z. Study on hybrid PS-ACO algorithm. Appl. Intell. 2011, 34, 64–73.

Algorithms 2014, 7 242

27. Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic Competition, Proceedings of the 2007 IEEE Congress on

Evolutionary Computation, CEC 2007, Singapore, 25–28 September 2007; IEEE Computer

Society: Singapore, 2007; pp. 4661–4667.

28. Behnamian, J.; Zandieh, M. A discrete colonial competitive algorithm for hybrid flowshop

scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl. 2011, 38,

14490–14498.

29. Kaveh, A.; Talatahari, S. Optimum design of skeletal structures using imperialist competitive

algorithm. Comput. Struct. 2010, 88, 1220–1229.

30. Nazari-Shirkouhi, S.; Eivazy, H.; Ghodsi, R.; Rezaie, K.; Atashpaz-Gargari, E. Solving the integrated

product mix-outsourcing problem using the imperialist competitive algorithm. Expert Syst. Appl.

2010, 37, 7615–7626.

31. Niknam, T.; Taherian Fard, E.; Pourjafarian, N.; Rousta, A. An efficient hybrid algorithm based on

modified imperialist competitive algorithm and k-means for data clustering. Eng. Appl. Artif. Intell.

2011, 24, 306–317.

32. Shokrollahpour, E.; Zandieh, M.; Dorri, B. A novel imperialist competitive algorithm for

bi-criteria scheduling of the assembly flowshop problem. Int. J. Prod. Res. 2010, 49, 3087–3103.

33. Shabani, H.; Vahidi, B.; Ebrahimpour, M. A robust PID controller based on imperialist

competitive algorithm for load-frequency control of power systems. ISA Trans. 2013, 52, 88–95.

34. Firoozkooh, I. Using imperial competitive algorithm for solving traveling salesman problem and

comparing the efficiency of the proposed algorithm with methods in use. Aust. J. Basic Appl. Sci.

2011, 5, 540–543.

35. Yousefikhoshbakht, M.; Sedighpour, M. New imperialist competitive algorithm to solve the

travelling salesman problem. Int. J. Comput. Math. 2012, 90, 1495–1505.

36. Ahmadvand, M.; Yousefikhoshbakht, M.; Darani, N.M. Solving the traveling salesman problem

by an efficient hybrid metaheuristic algorithm. J. Adv. Comput. Res. 2012, 3, 75–84.

37. Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791–812.

38. TSPLIB. Available online: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed on

6 August 2008).

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

