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Abstract: This paper designs and evaluates a variant of CoSaMP algorithm, for recovering 

the sparse signal s from the compressive measurement   (   )v Uw s   given a fixed low-

rank subspace spanned by U. Instead of firstly recovering the full vector  

then separating the sparse part from the structured dense part, the proposed algorithm  

directly works on the compressive measurement to do the separation. We investigate the 

performance of the algorithm on both simulated data and video compressive sensing. The 

results show that for a fixed low-rank subspace and truly sparse signal the proposed 

algorithm could successfully recover the signal only from a few compressive sensing (CS) 

measurements, and it performs better than ordinary CoSaMP when the sparse signal is 

corrupted by additional Gaussian noise.  
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1. Introduction 

In the last decade, from the pioneering theoretic foundation work [1–4], compressive sensing (CS) 

has been attracting many researchers’ interests from various fields, such as signal processing [5], 
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medical imaging [6], sensor network [7,8], machine learning [9,10], etc. Regarding the algorithmic 

aspect of CS, the main problem is to solve the underdetermined linear equation system   v x   

efficiently with the constraint that x is sparse. There are several well-known approaches to solve the 

sparse recovery problem, such as the greedy solver CoSaMP [11], the classic convex optimization 

approach [12], etc.  

In this paper, we consider a special noisy sparse recovery problem:  

( )v Uw s      (1)  

Here   is the Gaussian noise with small variance added into data itself, and  is the small Gaussian 

measurement noise. The sparse signal s is buried in structured dense signal l Uw  [13] generated by a 

fixed low dimensional subspace spanned by the column space of U. In the CS field, this special 

problem represents a large body of applications in which the measured object can be regarded as the 

superposition of a sparse part and a dense but structured part. For example, in video surveillance, each 

frame contains a slowly-changing background or the background is static, which can be faithfully 

modeled by a low-dimensional subspace; and the remaining part—foreground, which is always of 

interest, is sparse.  

From the highly compressive measurement can we exactly recover the sparse signal s? In statistics 

and optimization, this problem can be regarded as a compressive sensing version of the classic least 

absolute deviations (LAD) problem [14] or 
1
 regression problem. Instead of firstly recovering the full 

vector then separating the sparse part from the structured dense part, we propose a variant of CoSaMP 

approach named CoSaMP_subspace, which directly works on the compressive measurement to 

separate the sparse signal from low-rank background signal. 

This paper is organized as follows. Section 2 describes the model of the special sparse recovery 

problem, introduces the proposed CoSaMP_subspace algorithm, and discusses its relation to ordinary 

CS technique. In Section 3, we conduct extensive experiments on both simulated data and the real 

surveillance video. Section 4 concludes this paper and points out future work. 

2. Model and Algorithm 

2.1. The Model  

We denote the fixed d-dimensional subspace of n  as . In application of interest we always 

suppose d n , say  is a fixed low-rank subspace. Let the columns of an n d  matrix U be 

orthonormal and span . { | , }n m m n   is a linear compressive measurement operator which 

should satisfy the restricted isometry property (RIP) [2] with constant K  

2 2 2

2 2 2 0(1 ) ( ) (1 ) ,K Kx x x x K      ‖‖ ‖ ‖ ‖‖ ‖‖  (2)  

We want to recover the K-sparse signal 
ns  buried in the low-rank background signal l Uw  and 

small Gaussian noise corruption   from the compressive measurement v with small Gaussian 

measurement noise  as Equation (1), here, K-sparse means 0s K‖‖ .  
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2.2. Variant of CoSaMP for Fixed Subspace 

To tackle this special sparse recovery problem, we adopt the basic idea of CoSaMP [11]. Ordinary 

CoSaMP could efficiently solve the following underdetermined linear equation system if x is a  

K-sparse signal and the measurement operator satisfies RIP with constant 
K . 

( )y x   (3)  

Comparing the problems between Equations (1) and (3), for a fixed low-rank subspace, if we can 

remove the dense signal generated by the subspace, then problem Equation (1) will be converted to the 

classic sparse recovery problem Equation (3). We consider the greedy approach to iteratively remove 

the effect of the dense signal then estimate the sparse signal in the framework of CoSaMP. The main 

idea is as follows: we iteratively estimate the weights 
kw  which constructs the low-rank background 

signal 
kl Uw ; then form the signal proxy from the current residue ( )k k ku v Uw s   ; then 

identify the support of the sparse signal just as ordinary CoSaMP; finally estimate the signal by least 

squares over the identified support. 

We summarize the proposed CoSaMP_subspace as Algorithm 1. Here
*
denotes the adjoint of the 

operator . The notation supp(y;K) denotes the largest K-term support of the vector y. Let 
|T

 denote 

the restriction of the operator to the support T. 

Algorithm 1. Given a fixed subspace  spanned by the column space of an   n d  orthonormal 

matrix U, the variant of CoSaMP solver for the sparse recovery problem Equation (1). 
* * *( , ) CoSaMP _subspace( , , , , , , )s w v U K maxIter . 

1: Initialize s,w,u: 
0 0 00, 0, 0s w u   . 

2: 
while 

ku

v


‖ ‖

‖‖
 and k < maxIter do 

3: Estimate weights w: 
1 1( ( )) ( ( ))k kw U v s    

4: Form signal proxy: 
*( )ky u  

5: Support identification: ( ;2 )supp y K   

6: Merge support: ( )kT supp s  

7: Signal estimation by least squares: 

|

1 11 | ( ))(T T

kks v Uw    , 
1 | 0C

k

T
s    

8: Update residue: 
1 1 1( )k k ku v Uw s      

9: 1k k   

10: end while 

11: 
* *( , ) ( , )k ks w s w  

It can be easily seen from Algorithm 1 that, compared with CoSaMP [11], the variant tries to 

estimate the weights of the dense signal in step 3 and remove its effects from the CS measurement in 

Step 8. The main framework follows CoSaMP. Thus, the proposed algorithm inherits the merits of 

CoSaMP, for example the total cost per iteration is O(nlogn) [11], and the total  storage is, at worst, 

O(nd) because of holding the fixed low-rank subspace. 
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2.3. Relation to Ordinary CS  

For this special form of sparse recovery problem Equation (1), it could be also tackled via ordinary 

CS algorithms. We discuss its relation to our proposed algorithm in this subsection. 

We rewrite problem Equation (1) as:  

 
w

v U I
s


  

    
    

(4)  

Here I is the   n n  identity matrix. Let  B U I  and  
T

x w s , so x is a ―K + d”-sparse signal. 

Then problem (1) converts to the classic CS model regardless of the effect of data noise  . 

      ( )  v Bx Bx      (5)  

As  is a CS operator satisfying RIP, for example, a random Gaussian matrix, and  B U I  is a 

fixed basis, it is well-known in CS theory that  is largely incoherent with B [2]. Then, x can be 

exactly recovered via CS techniques given enough linear measurements, for example CoSaMP, so does s. 

However, we want to point out that though ordinary CS could also estimate the sparse signal s if we 

make the proper linear algebraic transform as above, the proposed algorithm works better when the 

sparse signal is also corrupted by small noise   and not only the measurement noise . It is because in 

step 3 of Algorithm 1 we explicitly make the least square estimation to cancel the noise effect. We put 

the comparisons in the experiments section. 

3. Experiments Evaluation 

In this section, we evaluate the performance of Algorithm 1 extensively on both simulated data and 

video CS application. For simulated data, we use Equation (1) to generate a series of CS vectors v. 

Like most CS literature, we use the noiselet operator [15,16] as the measurement operator , which 

compresses an   1n   vector to a   1p   vector, and we denote 
cs

p

n
   as the CS measurement ratio. 

U is an   n d  matrix whose d columns are realizations of i.i.d. (0, )nI  random variables that are 

then orthornomalized. The weight vector w is a   1d   vector whose entries are realizations of i.i.d. 

(0, )nI  random variables, which are Gaussian distributed with mean zero and variance 1. The  

K-sparse signal s is an   1n   vector whose supports are chosen uniformly at random without 

replacement and we denote s

K

n
   as the sparsity of the signal. We use relative error to quantify the 

sparse recovery performance as follows: 

2

2

ŝ s
RelErr

s



‖ ‖

1+‖‖
 (6)  

Note that we manually add ―1‖ to the denominator of RelErr because s may be 0-sparse in our 

following experiments. 

In all the following experiments, we use Matlab R2010b on a Macbook Pro laptop with a 2.3 GHz 

Intel Core i5 CPU and 8 GB RAM. We always set the rank of the fixed subspace as d = 5, and the 

ambient dimension of signal is n = 512, unless otherwise noted. 
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3.1. Algorithm Behavior on Simulated Data 

As a special CS algorithm, given a fixed subspace the performance of Algorithm 1 mainly relates to 

the sparsity of the signal 
s  and the CS measurement ratio 

cs . We will also investigate how the rank 

of fixed subspace affects the performance of Algorithm 1. 

3.1.1. Recovery on Signal Sparsity  

In the first experiment, we investigate how signal sparsity affects the success of recovery. Here we 

fix the CS measurement ratio 
cs  as 15%, 30%, and 50%, respectively, and manually tune the signal 

sparsity from 0% to 30%. Figure 1 shows the fact that for truly sparse signal s, even a very small ratio 

of CS measurements could recover s from the low-rank background signal. For example, a 25-sparse 

signal can be successfully recovered from only 150 CS measurements. 

Figure 1. Sparse recovery performance with respect to signal sparsity. 

 

3.1.2. Recovery on CS Measurements 

In the second experiment, we investigate how CS measurement ratio affects the success of recovery. 

Here we fix the signal sparsity s  as 5%, 10%, and 20%, respectively, and manually tune the CS 

measurement ratio from 10% to 80%. Figure 2 shows the fact that, given enough CS measurements, 

even a near sparse signal can be precisely estimated, for example a 100-sparse signal can be recovered 

with high quality from 350 CS measurements 

3.1.3. Recovery on the Rank of Fixed Subspace 

As the special sparse recovery problem depends on the fixed subspace, in the third simulated 

experiment we demonstrate how the rank of the fixed subspace affects recovery. To observe the 

algorithm behavior, we fix the signal sparsity s as 5% and generate a series of simulated signals 

with different rank setting from rank = 1 to rank = 100. Figure 3 shows the recovery results with 

CS measurement ratio cs  as 30%, 50%, and 70% respectively. It can be clearly seen that given 

moderate enough CS measurements the proposed algorithm can guarantee the recovery with up 
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to a relative high rank of the fixed subspace. For example, with the CS measurement 

50%cs  the sparse signal can be stably separated from the fixed subspace with up to rank = 40. 

Figure 2. Sparse recovery performance with respect to CS measurement ratio. 

 

Figure 3. Sparse recovery performance with respect to the rank of fixed subspace. 

 

3.2. Comparisons with Ordinary CS 

From the previous discussion we know that, if we transform the original problem Equation (1) to 

Equation (5), the sparse signal could also be recovered by ordinary CS. However, as we just pointed 

out above, if the noise not only occurs in measurement phase but also lies in data itself, Algorithm 1 

can give a better estimation. Here, we address this comparison by adding relative strong noise 

corruption to the data in which the variance of   in Equation (1) is 
310
. In addition to this noise 

setting, we fix the sparsity 5%s   and vary the CS measurement ratio cs  from 10% to 80% to 

observe the performance comparison between Algorithm 1 and ordinary CS. From Figure 4 it can be 

easily seen that Algorithm 1 outperforms ordinary CS (CoSaMP) when data itself is also corrupted by 

relative strong Gaussian noise, especially when the CS measurement ratio is small. 
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Figure 4. Performance comparison between CoSaMP_subspace and ordinary CS (CoSaMP) 

for noisy sparse recovery problem. 

 

We make a more clear comparison in Figure 5. Here, we simulate a sparse signal s with sparsity 

5%s   and take CS measurements with measurement ratio 20%cs  . The variance of additional 

Gaussian noise   and measurement noise  are all set as 
310

. From this noisy CS measurement 

setting, Figure 5 shows that the estimated sparse signal by our algorithm can exactly match the original 

signal at 
3  2.23  10RelErr    which is approaching the data noise level 

310
. However, ordinary 

CoSaMP makes a worse estimation, say 
1  5.06  10RelErr   , as relative strong data noise   would 

introduce more uncertainty when the algorithm tries to identify the sparse support  . 

Figure 5. Noisy sparse signal recovery comparison between CoSaMP_subspace and 

ordinary CS (CoSaMP). Top-left is the compressive measured signal v; top-right is the 

uncompressed signal—―dense structured signal + sparse signal‖; bottom-left is the 

recovered sparse signal by our algorithm; bottom-right is the recovered sparse signal by 

ordinary CoSaMP. 
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3.3. Video Compressive Sensing 

In video surveillance, background images are always modeled as a low-rank subspace and 

foreground moving objects are regarded as sparse signals. Then, the following ―Low-rank + Sparse‖ 

model [17,18] can well represent the video frame captured by stationary camera, which has been 

studied extensively in recent literature. 

I Uw s   (6)  

Here, we consider applying Algorithm 1 to video compressive sensing application [19], for example, 

the video frames are captured by single-pixel camera [20] in CS literature.  

We simulate video CS by performing noiselet operator  [15] on each normal surveillance video 

frame. Then recovering the foreground moving objects is just the problem Equation (1) in this paper. 

We test our simulation on the two well-known datasets (Dataset can be downloaded from 

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.) ―airport‖ and ―lobby‖ in which the image 

dimension of the two datasets is 144 × 176. In order to perform CS measurement on each video frame, 

conforming to the noiselet convention, we first manually resize each frame as 128 × 128, which is the 

power of 2, thus, the ambient dimension of each video frame tI  in our experiment is 128 × 128. Then, 

for each video frame tI , we take the CS measurement ( )t tv I  with CS measurement ratio cs . As 

the two surveillance videos are static, our fixed low-rank subspace assumption holds. We obtain the 

fixed low-rank orthonormal matrix U as follows. For each dataset, we choose 200 video frames and 

perform the Robust PCA algorithm Inexact ALM (IALM) [21] on those frames to get the clean 

background images, which can be regarded as lying in a low-rank subspace. Then, the rank d 

orthonormal matrix U is obtained by performing SVD on those background images and keeping the 

columns corresponding to the largest d singular values. In our experiments we set d = 5.  

In order to show how CS measurement ratio affects the recovery results, for the moderate sparse 

dataset ―airport‖ we set the sparsity 20%s   and take CS measurement with ratios 30%cs  , 

20%cs  , and 15%cs  , respectively; and for the truly sparse dataset ―lobby‖ we set the sparsity 

5%s   and take CS measurement with ratios 20%cs  , 5%cs  , and 1%cs  , respectively. For 

―airport‖, Figure 6 shows that the moving foreground objects can be well estimated though there are 

some ghost-effects in the recovery images, for example the first column. This effect is because IALM 

can not totally remove foreground from background due to the objects moving slowly in the scene 

which does not strictly follow the PCP recovery theorem [17]. The second row of Figure 6 shows the 

background estimated by IALM in which there does exist some slight shadows. The FPS (frame per 

second) regarding the first 200 frames of ―airport‖ is 2.16 fps at 15%cs   in our Matlab 

implementation. For ―lobby‖, from Figure 7, we can see that even if we just take 1%cs   CS measurement 

(the bottom row), the recovered results are comparable to taking much more measurement 

20%cs  (the third row). More promisingly, while separating the total 1546 frames the proposed 

algorithm only takes 72.16 s, say the FPS is 21.42 fps for ―lobby‖ at the extremely low CS measurement 

ratio 1%cs  . Note that though there is large illumination variation in this dataset the recovery 

performance is still stable. 
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Figure 6. Foreground recovery from video compressive sensing on ―airport‖ dataset.  

The 1
st
 row is the original video frames; the 2

nd
 row shows the estimated background 

images by IALM [21] that are used to train our fixed low-rank subspace; the 3
rd

 row shows 

the recovered foreground with CS measurement ratio 30%cs  ; the 4
th
 row shows the 

recovered foreground with 20%cs  ; and the last row shows the recovered foreground 

with 15%cs  . The sparsity is set as 20%s  . 

 

Figure 7. Foreground recovery from video compressive sensing on ―lobby‖ dataset. The 1
st
 

row is original video frames; the 2
nd

 row shows the estimated background images by 

IALM [21] that are used to train our fixed low-rank subspace; the 3
rd

 row shows the 

recovered foreground with CS measurement ratio 20%cs  ; the 4
th

 row shows the 

recovered foreground with 5%cs  ; and the last row shows the recovered foreground 

with 1%cs  . The sparsity is set as 5%s  . 
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4. Conclusions and Future Works 

This paper presents a variant of CoSaMP algorithm, which can tackle a special sparse signal 

recovery problem ( )v Uw s  . The algorithm could separate the sparse signal and low-rank 

background signal from their sum given very few CS measurements. From experiments we show that 

the recovery performance is similar to ordinary CoSaMP and performs better if the sparse signal also 

corrupted by Gaussian noise not only the measurement noise. 

This proposed algorithm assumes that the low-rank subspace is known as a prior. However, what if 

the subspace is not known or even the subspace is time-varying? It is a challenging problem, to 

simultaneously estimate the subspace and recover the sparse signal only from a few CS measurements, 

which is attracting the attention of CS community [22–24]. We are very interested in incorporating the 

recent online subspace learning technique [18,25] into this CS framework. We put this endeavor for 

future work.  
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