Algorithms201Q 3, 76-91; doi:10.3390/a3010076

algorithms

ISSN 1999-4893
www.mdpi.com/journal/algorithms

Article

InfoVis Interaction Techniques in Animation of Recusive
Programs

J. Angel Velazquez-lturbide * and Antonio Pérez-Carasco

Departamento de Lenguajes y Sistemas Informatjddeiversidad Rey Juan Carlos, 28933 Madrid,
Spain; E-Mail: antonio.perez.carrasco@urjc.es

* Author to whom correspondence should be addregsédail: angel.velazquez@urjc.es
Tel.: +34-91-664-7454; Fax: +34-91-488-8530.

Received: 8 December 2009; in revised form: 18 dan@010 / Accepted: 25 January 2010 /
Published: 10 February 2010

Abstract: Algorithm animations typically assist in educatibriasks aimed simply at
achieving understanding. Potentially, animationsld@@ssist in higher levels of cognition,
such as the analysis level, but they usually faipioviding this support because they are
not flexible or comprehensive enough. In particurimations of recursion provided by
educational systems hardly support the analysisaifrsive algorithms. Here we show how
to provide full support to the analysis of recuesadgorithms. From a technical point of
view, animations are enriched with interaction teghes inspired by the information
visualization (InfoVis) field. Interaction taskseapresented in seven categories, and deal
with both static visualizations and dynamic animas. All of these features are
implemented in the SRec system, and visualizatigeserated by SRec are used to
illustrate the article.

Keywords: program animation; program visualization; inforroati visualization;
recursion; human-computer interaction

1. Introduction

Recursion is a fundamental concept in Computern8eieeducation, especially in programming
courses. Its role varies from course to coursie.dne of the concepts learnt in introductory cesr®
programming, but it is a programming construct sgapin algorithm courses. For example, dynamic

Algorithms201Q 3 77

programming algorithms are usually stated reculgivea first phase and transformed into a tabudlate
iterative version in a second phase. As a conseguen animation system of recursion may be a
valuable tool for any course where recursion pysmportant role, in particular in algorithm coess

Teaching and learning algorithms are often assiBfednimations. Animations typically assist in
understanding algorithms, but they could also &ssigheir analysis. We are not using the word
“analysis” in any restricting sense (e.g., “comjjgxanalysis”), but in the more general sense used
Bloomet al.[1]:

“The student is able to distinguish, classify aalhte hypothesis and evidences of the information
given, as well as decomposing a problem into itsspa

We are interested in using animations to assisinalyzing interactively the behavior of recursive
algorithms: in other words, we seek a kind of “s@iite oscilloscope” [2] for recursion. Support foet
analysis of algorithms is typically provided by dggers, which are very flexible, complex systems.
Therefore, animations for the analysis of recursilgorithms must exhibit as powerful visualization
features as debuggers do. We show that such anglgsver can be feasibly achieved by using
interaction techniques inspired by the informatitsualization (InfoVis) field.

In this article, we discuss and illustrate intei@ct techniques aimed at giving flexible,
comprehensive support to recursion analysis in atidm systems. Section 2 shows common, effective
visualizations of recursion, in general and alss@gported by different systems, especially by the
SRec system [3]. Section 3 shows interaction tephes tailored to the interactive analysis of rewers
algorithms. These techniques are classified inteersecategories, and they deal with both static
visualizations and dynamic animations. Finally,suenmarize our conclusions in Section 4.

2. Visualization of Recursion

In this section, we first present different vismations of recursion. We then present the
visualizations supported by the SRec system. Finale survey different visualization systems of
recursion, and show the very limited facilitiesytipeovide to the user to interact with visualizagoIn
order to keep the discussion short, we restrictsamvey to the imperative paradigm.

2.1. Visualizations of Recursion

There is no single visualization of recursion. Aainmumber of visualizations can be found in the
literature, for instance, traces, the control stack recursion trees (e.g., [4]). Another visuaiorg
used in visualization systems, is called “multiptpies” (e.g., [5]) and shows a different copy itfier
code or data for each recursive call.

We also find additional visualizations or varianfghe visualizations cited above for specific case
of recursion. For instance, Stern and Naish [6]ppse three visualizations for different recursive
operations; their main feature is that they comlgpatrol and data. The most important class of
recursive algorithms is divide-and-conquer. Vasanit either traces or recursion trees have alsa bee
used to better illustrate divide-and-conquer athams [7 (p.158),8]; at each step, they focus omara p
of the main data structure. It has also been rbtilkat some visualizations are effective both towsh

Algorithms201Q 3 78

the inductive definition and the run-time behawdrdivide-and-conquer algorithms, for instance, a
sequence of visualizations of the main data stradi.

No matter the quality of visualization, it will heawmerits and drawbacks and will be more useful for
some aims. For instance, traces are good for nevasthey can easily follow the sequential flow of
execution. Therefore, a system will probably be enaseful if it provides multiple views, so that the
user is able to choose the most adequate for $kestee wants to perform.

2.2. Visualizations of Recursion in SRec

In this article, we focus on the visualizations g@eted by the SRec animation system. SRec
supports visualization and animation of recursiorany Java algorithm, with the only restriction of
using primitive data types. Versions 1.0 and 1.5BEc provided three general views (namely, traces,
the control stack, and recursion trees) [3]. Versial enhanced substantially its interaction faesi
as shown here. Finally, version 1.2 of SRec supptintee additional visualizations, specific to
divide-and-conquer algorithms [8]; the system isrently capable of simultaneously showing two
views. This evolution is partially due to the reswf usability evaluations it has been subject to.

SRec is a program animation system that generat@satons (semi)automatically. The user
may load any file containing Java source code, ind preprocessed. If the file contains any
divide-and-conquer algorithms, the user must idiethiem in a dialog. Then, the user may launch any
method invocation, and during its execution a tohitelevant events is generated. After completion,
the user may freely interact with its visualizateomd animation, which is automatically generatednfr
the trail. The user has available five visualizasiofor divide-and-conquer algorithms and three
visualizations for general recursive algorithms. dfdenot describe here implementation details, eg th
can be found elsewhere [9].

In the rest of the article, we use the well-knowndtionfib for the Fibonacci series to illustrate
recursive algorithms in general, amegtrgesortor divide-and-conquer algorithms.

The three general visualizations are briefly déscti

» Recursion treeThis visualization allows display of the complétistory of a recursive process as
a tree. The root corresponds to the initial invimeatThe children of a node are the recursive
calls that it has invoked, from left to right inrohological order. Leaves represent calls
corresponding to base cases. Every node is displaith two areas, where the top area contains
input values of parameters and the bottom oneethdtrof the invocation (if the method does not
return any value, the output state of parametensbeadisplayed). For example, Figure 1(a)
displays the computation state fdy (5) where most recursive calls finished their exiecy but
the active calfib (1) and pending callgb (3) andfib (5). In SRec, two states are displayed for
every invocation: immediately after the invocatemtry, and immediately before the invocation
exit. The node framed in black in Figure 1(a) is Httive node, so its computation is close to
exit. Nodes framed in red correspond to pendin@dations. In the figure, input values have a
blue background and output values have a greergbawokd.

* The control stackThe control stack is an internal data structurehe virtual machine that
makes possible the execution of programs with subres. In SRec, records of the control stack

Algorithms201Q 3 79

only contain input and output values, so they hifngesame structure as the nodes of recursion
trees. The control stack initially contains thestfinvocation. On entry of a method invocation, a
new record is pushed at the top of the stack, bewprihe active record. This new record
contains input values, but the output area is entyexit of a method invocation, the output
area of the record at the top is filled with thdl casults and it is later popped. Figure 1(b)
displays the control stack at the same instantigré- 1(a). Visualizations of the control stack
can be quite complex [10]. Notice however that toatrol stack, as displayed by SRec, is
isomorphic to the rightmost branch of its assodiaezursion tree.

» Trace A trace is a textual description of the sequeat@vents that take place during the
execution of an algorithm, here entry or exit oégvmethod invocation. Each entry (or exit) is
represented as a text line that contains an indicébat it is an entry (or exit), the method name
and its actual parameters (or results). Using araadnvention allows differentiating entry and
exit invocations. In addition, indentation is commhoused to represent the level of nesting of
invocations. Figure 1(c) contains a trace of theesaomputation ofib (5). Notice that the trace
is isomorphic to a traversal of the recursion trelggre input values are printed inorder and ouput
values are printed postorder.

Figure 1. Three visualizations dfb (5): (a) recursion tree, (b) control stack, andi(@ge.

in fib1: n==5
in fib1:n==4
in fib1:n==3
in fib1:n==2
in fib1: n==1

in fib1: n==0

B EE 6 KE EA A

in fib1: n==1

@ in fib1:n==3
in fib1: n==2
in fib1: n==1

in fib1: n==0

in fib1: n==1

(©)

(b)

Three additional representations, specific forakvand-conquer algorithms, are supported by SRec.
We briefly explain them below:

Algorithms201Q 3 80

» Divide-and-conquer recursion tre®ivide-and-conquer algorithms typically manipelat large
data structure, but in most recursive calls, thmugoof interest is limited to a part of ite{ a
substructure). An effective variant of recursioges for divide-and-conquer algorithms consists
of displaying the whole structure with the relevaobstructure highlighted. SRec supports this
additional display for vectors and matrices. Fig@@) shows this representation when
mergesorting the array {0,4,9,6,8,3}.

» Sequence of visualizations of the data structilités representation consists of a sequence of
visualizations of the state of the data structdigplayed top-down. It can be considered a variant
of the trace visualization, which differs in thgdat and in the amount of information displayed.
Every time a recursive call is invoked, the arrtesis displayed. In order to better illustrate th
algorithm behavior, each line only shows the swyadelimited in the recursive call. Every time
a recursive call exits, the output state of itoemged subarray is displayed adjacent to its input
state. Again, the relative placement and the ussoluirs allow differentiating input and output
states of subarrays. Figure 2(b) shows this vietheasame state as Figure 2(a).

» Colored data structureThis is a mixed view that displays both the stdtéhe data structure to
manipulate and hints about the recursive procesgsatticular, if the data structure is a vector, a
set of bars is displayed below the vector. The barsor the recursive process by underlining the
subarray delimited in each recursive call. A calgrscheme that distinguishes input and output
is also applied here. For each underlying bar, ¢bring scheme indicates whether the
corresponding recursive call is pending or finishEdr each subarray, the scheme indicates
whether the last update of its state by a recursivecation was made with input or output
values. Tones are also used to represent the désianthe activation tree to the active call.
Figure 2(c) shows this representation at the sasstant as Figure 2(a).

2.3. Systems for Recursion Animation

Programming environments fully support the analgéiexecution, but they hardly support specific
analysis of recursion. These are the most promisygiems to analyze recursion, as they have
available all the information on program executi@rhich should be rendered and interacted with
adequate user interfaces. We point out ETV [11pchthat allows visualizing the execution of a C++
program from the trace generated in execution time.

Some systems were specifically designed to leanurseon. Most of them are based on the “copies
model” of recursion, that is, they show a differenpy of either code or data for each recursive cal
We may cite Recursion Animator [5], SImRECUR [1E}nction Visualizer [13] and EROSI [14].
Flopex 2 [15] is an Excel extension for visual peogming. EROSI, Recursion Animator and
SIMRECUR have been successfully evaluated.

We have compared SRec to these systems with respesgveral issues: generality, effort to
construct animations, visualization and animatieatdres, and interaction features. We used two
features to characterize system generality, namelhods to visualize, and range of types and input
data supported. With respect to the methods visehliFunction Visualizer and Recursion Animator
only visualize the first written method, while ETAhd SRec are more flexible as they allow selecting

Algorithms201Q 3 81

any method. Only SRec allows changing interactitieé/set of visualizable methods. With respect to
the range of types and input data supported, theature reports that EROSI and SImMRECUR are
(again) very restrictive, SRec supports primitietadtypes, and the rest of the systems “seem’ldwal
any Java data type.

Figure 2. Three visualizations ahergesori{0,4,9,6,8,3}): (a) divide-and-conquer recursion
tree, (b) sequence of visualizations of a datattra, and (c) colored data structure.

(©

The second feature we compared was the effort niedjd@or constructing animations. EROSI and
SIMRECUR only visualize predefined examples, Floperquires user construction of the recursion
visualization, and the other four systems (inclgdiSRec) are automatic, which is the most
comfortable method to construct animations.

The comparison with respect to visualization andation features can be found in Table 1. Notice
that SRec is the system that offers more viewshaisdthe most complete set of animation controls.

Algorithms201Q 3 82

Finally, we found very few interaction facilities imost systems (with the exception of SRec).
According to the system descriptions availablehia literature, these systems do not have interactio
facilities except for animation. The exception iBVE which allows expanding/contracting nodes in the
recursion tree, and transferring control to theyeot a function call.

Table 1. Comparison of visualization and animation featumresseveral animation
systems of recursion.

System Visualizations Animation controls
Step forwards
EROSI Copies model (variables) Automatic play
Exit
Step/complete
Copies model (code) Forwards/backwards
ETV Traces Manual
Recursion tree Restart/finish
Exit
Step forwards

Control stack

Flopex 2 Recursion tree Automatic play
Restart
Step forwards
Function Visualizer Copies model (code and varigble Automatic play
Exit
Step by step
Recursion Animator Copies model (variables) Forwards/backw.ards
Manual/automatic
Exit
Copies model (code) Step forwards
SIMRECUR Control stack Manual/automatic
Recursion tree Exit
Traces Step/step over/complete
Control stack Forwards/backwards
SRec Recursion tree (general and divide-and-conqubtanual/automatic
Colored data structure Restart/finish

Sequence of visualizations of the data structurexit

3. Interacting with Visualizations and Animations d Recursion

Effective algorithm analysis demands more thancstasualizations, but advanced interaction to
give the user the capability to enquire flexiblys Ahere are many ways of interacting with
visualizations, we need a framework to analyzerau®on support. Consequently, we adopt a
comprehensive framework [16] from information vikzation, a very demanding field in this regard.
The authors classify different kinds of interactioto seven categories, namely encode, connetet, fil
abstract/elaborate, explore, reconfigure, and selec

Algorithms201Q 3 83

However, we must bring attention to an importasué Program visualization can be considered a
subfield of information visualization, but it albas some specific features. In particular, prograrag
be visualized statically “in spacel’d., their declaration or their state), but also dyreaiy “in time”

(i.e., evolution of its state during execution). Thisttea is called program animation, and the most
common interaction techniques are animation cositrdé we are dealing with program visualizations,
we take this duality space-time into account.

In the following, we show how the categories canelfectively used to interact with recursion.
Each category is first introduced by quoting a esec¢ from [16] that summarizes its meaning.
Then, we present techniques of that category theivanteracting with recursion visualizations,
both static and dynamic.

3.1. Encode

“Encode interaction technigues enable users to #iee fundamental visual representation of the
data including visual appearance (e.g., color, sind shape) [16].”

According to this definition, the most straightf@sd alteration consists of changing visual
appearance. For example, Figure 3(a) displays dhge scomputation state as Figure 1(a), close to
execution termination. Changing colors and line bowdler styles leads to Figure 3(b).

More drastic variations lead to different graphicapresentations of the same informatioa,,
multiple views. We identified alternative views i@cursion in Sections 2.1 and 2.2. Figure 4 shows
two views, as displayed by the SRec system, of mpcoation state ofib (11). The views are
contained in the central and right panels; corredpm to a recursion tree and control stack,
respectively. The left panel contains the algorigource code.

3.2. Connect

“Connect refers to interaction techniques thatused to (1) highlight associations and relatiorship
between data items that are already representdd2arshow hidden data items that are relevant to a
specified item [16].”

The most important relationship in recursion commealler and called invocations. No special
interaction must be provided to the user since teiationship is explicitly shown in the different
views (see Figure 1). The control stack and reoarsiees encode it with arcs or arrows. Traces
suggest it with typographic means, especially iakon.

Another relationship connects input and output @slaf a given invocation. Again, this connection
is explicitly shown. The control stack and recunsicees encode it as the two halves of a given.node
Traces represent it with typographic means, esjheaiaentation.

Multiples views are not independent of each otbhat,they are coordinated. Coordination may be
shown in two ways. Firstly, by synchronizing thdommation displayed in the views during an
animation. Secondly, by having the views sharirguai conventions in the different representations
used for the same objects. The two views in Figurepresent the same state of computation. They
share color conventions and spatial orientation.

Algorithms201Q 3 84

Finally, relevant events in an animation are usuatinnected by means of the animation controls.
For instance, entry and exit of an invocation can dmimated adjacent in time by means of a
“step over” control.

Figure 3. Recursion tree fdiib (5): (a) basic visualization (b—e) variants.

(b)

(€)

= Tm
A um xf kn mf A
w7 P

(d) (e)

Algorithms201Q 3 85

Figure 4. The user interface of SRec, with the source codetao views of recursion fdib (11).

A SRec, System for recursion animation [Fib. java]

File Configuration Help
[EEETEEEEICE E IS ey
e |0 [0/ [E [Q00 00 0D B¥ [(X

(4
il

ub1i 1 Fih Tree view | Trace view : Stack view I
public class o ’
{

=l
public static int £fib1 (int n) {
if (n=0 || n—1)
return 1;
else
return fibi{n-1) + fibl{n-2);

}

public static int fibh2 (int n) {
il]
int[] fibs = mew int[n+1]:
fibs[0] = 1:
fibs[1] = 1:
for {int i=2; i<{=n: i++)
£ (f1,£2) = (£2,f1+£2);

fibs[i] = fibs[i-1]+fibs[i-2]; / '
return fibs[n]:
}
: G . : 4
public static int fih3 (int n) {

£ 12 5= 11

int f1 = 1;
int £2 = 1
for {imt i=2; i<{=n: i++) {
Ff E1,£2) = (£2,£f1+£2); n
£2 = f1+£2; n Ty .

f1 = £2-f1;

e R NA

public static int fib4 (int n) {
BB =T

int £1 = 1; __i__q:_—__——_j.:—_i—_/.ﬁq_
int £2 = 1; e —]
for (int i=1; i<=nf2: i++) { /-:;:' “‘“;-\ /-:: \7\ /"/\‘"!\ -"i-
£f (F1,£2) = {(£2,£1+£2); i S o T o O B oy
£1 = £1+£2; o e .(; o o g e {\. L R 0 1 A
£2 = £2+£1; o o e o b o i o ik WH iy Wb Py
} il e ' iy ol
return (nk2—0) 2£1: £2; v “i‘“ " B

3.3. Filter

“Filter interaction techniques enable users to geatte set of data items being presented based on
some specific conditions [16].”

Filtering can be applied to recursion trees in sveays. Firstly, we may omit input or output
values. By displaying input, we give informationoab the recursive structure of the algorithm, while
also showing output gives the computation resuksving visible only the output can be useful for
prediction exercises. For instance, Figure 3(@htained from Figure 3(a) by omitting input. Notice
that the two pending calls, squared in red, haveatge inside.

Secondly, past recursive calls that have finishext@tion can be filtered. Showing all the nodes in
the recursion tree displays the complete historthefalgorithm. Alternatively, showing only pending
nodes and the active one produces a display afuhrent state of execution. An intermediate display
consists of blurring finished nodes. Figure 3(dj &mgure 3(e) show the two latter possibilities.

A related kind of filter can be applied to recuesimvocations produced by a particular invocation.
In the recursion tree, they generate a subtree théhparticular invocation as the root. An anim@atio
control to “step over” can either display or ontitetresulting subtree; in any of these cases, its
result is displayed.

Finally, filtering can be applied to the parametemsturn values and methods to visualize.
For instance, the three recursion trees shown gurEi 5 were generated on mergesorting the
array {0,4,9,6,8,3}.

Algorithms201Q 3 86

Figure 5(a) is a comprehensive picture of the cdatmn actually performed. It displays an initial
call to the main method (in the figurefor sort) and calls to a recursive methadgqfor msor) and to
an auxiliary methodnie for mergg. In order to keep the visualization manageabidy some input
values are displayed, namely the original arrayhim main method and the indices that bound the
subarray in each call in the other two methods.

Figure 5. Recursion tree variants farergesor{0,4,9,6,8,3}).

{0.4,9,6,8,3},0,5

{0.4,9,6,8,3},0,2

(€)

{0.4,9,6,8,3},3,5

{0.4,96,83},3,4 {0.49,6,8,3},5,5

Figure 5(b) is similar, but focuses on the recwsstructure oimsort by filtering the other two
methods. As the resulting recursion tree is smallermay display more input values and also output
values. Thus, Figure 5(c) shows the resulting oartree, where each node contains two occurrences
of the array to sort: its input state and its otiggate.

A facility complementary to filtering is semantioam, which can be applied to obtain full
information of a given node. Positioning the moaser the node and pressing the left button results
popping-up a small window that contains the valoksll its parameter and result values. Figure 6
illustrates the effect of semantically zooming\aegi node of the recursion tree displayed in Figuio.

Algorithms201Q 3 87

Figure 6. Semantic zoom on a node of the recursion treengesor{0,4,9,6,8,3}).

mergesork
In: v=40,4,9,6,8,3} , low=3, high=5

T ;
AN A

3.4. Abstract/Elaborate

“Abstract/elaborate interaction techniques provigers with the ability to change the level of
abstraction of a data representation [16].”

The level of abstraction is always kept equal isuglizations of recursion. However, we may
achieve a higher level of abstraction by displaypsngdemand global information about the number of
several kinds of nodes in an animation (e.g., lesiodes, past nodes, highlighted nodss,).
Semantic zooming can also be used to give globalnration about a given node (e.g., its relative
number of invocation or the number of descendadesadhat descend from it).

3.5. Explore

“Explore interaction techniques enable users torgxa a different subset of data cases [16].”
This category is especially important to handlgéawvisualizations. SRec supports two ways of
selecting a subset of information in a visualizatd recursion:

* Panning+scrolling. Panning is another name for ggomzooming, which allows changing the
scale of the visualization and therefore the amadinhformation that fits the screen. When a
visualization does not fit its enclosing panel,ceof bar may be provided to allow the user to
select the part that she wishes to focus on.

* Overview+detail. Panning+scrolling allows navigagtirbut if the visualization is much larger
than the part visible in a panel, the user mayagtt An overview+detail interface provides two
complementary views: the “detail” view makes redda® part of the visualization and the
“overview” gives a sketch of the global view of thisualization, identifying the position of the
“detail” view.

Figure 4 contains visual cues of the first two loéde interaction techniques. Several icons for
zooming (that display a lens) can be identifiethatright of the icon bar. The panels for traces fam
recursion trees have their scrolling bars activatedavigate. Finally, the recursion tree panedght
into two parts, jointly providing an overview+ddtaterface.

Interaction techniques to explore time are typycptovided as animation controls. Figure 4 shows a
computation state close to its end. Program anamas controlled with the animation bar available a
the top right corner. As the animation advancesy mecursion nodes are generated. Nodes

Algorithms201Q 3 88

corresponding to finished calls may be kept or ghear from the visualization, depending on the
particular view or user settings.

3.6. Reconfigure

“Reconfigure interaction techniques provide useith wifferent perspectives onto the data set by
changing the spatial arrangement of representatidjs

The visualizations can be slightly reconfiguredhagiertain customization options, e.g., distances
between sibling nodes in a recursion tree. Howeneamgnfiguring can be produced by other criteria,
for example, where to place subarrays in the semuefvisualizations of the data structure. Figlire
shows two chronological sequences of subarray90af,9,6,8,3} on call entry and exit. Figuréa)
keeps entry and exit states of subarrays joine&émh call, while in Figuré(b) they are separated and
strict chronological order is used to display Sudgs.

Reconfiguration also makes sense in relation tatiptelviews. The screen usually only provides
space for displaying a few views in an understaledalay. The user should be allowed to choose the
views to display and their relative position. Igiie 4, the user selected two views and to digplem
vertically. This layout allows optimizing the spatecessary to display the control stack, thus repvi
more space for the recursion tree.

Figure 7. Two rearrangements of a sequence of array statesdigesort({0,4,9,6,8,3}).

0 4 9 63 3 NI 0 4 9 6 8 3
[0 4 9|
0 4 9|
| 04|
(0 4 | [0 |
| 0 |
| 4
| 4 |
| 9 |
| 9 |
| 68 3|
(6 8 3|
(a) (b)

Algorithms201Q 3 89

3.7. Select

“Select interaction techniques provide users Wi ability to mark a data item of interest to keep
track of it [16].”

A user of a program visualization system may beradted in selecting information either in space
or in time. A case of selection in space consistdentifying multiple occurrences of a given nadea
redundant algorithm, such &bonacci A dialog is enough to enter the input or outpalues that
identify the target nodes. Figure 8 shows the goartree included in Figure 4, corresponding to
fib (11), after selecting nodes correspondinfilig3). The selected nodes are highlighted in orange.

With respect to time, the user may be interestethaning to a particular instant of the animation.
The interaction may consist in positioning the neaser a node of the recursion tree and pressig th
right bottom to make it the active node in the aation.

Figure 8. Recursion tree fdiib (11) with the nodes correspondingfito (3) highlighted.

-

\n
(W H &

/N Al L

e
e g " e =)
T e e o o e)
= m o T T A A S A

P AN e e R T T AT
I LT LRI S N WO W R A [P,

W oy i oy
iy

< 4

4. Conclusions

This article demonstrates techniques to supporiflle analysis of recursive algorithms by means of
enhanced interaction features. All of these featue implemented in the SRec system and were
illustrated in the paper. We have also shown thigraction facilities in other animation systems of
recursion are very limited. The SRec system anatedlinformation and documentation (including
user manual and the results of usability evalua)icere freely available at the following URL:
http://lite.etsii.urjc.es/srec.

Algorithms201Q 3 90

Much effort has been devoted in the two last dezadeeducational uses of algorithm animations.
Their main drawbacks for general adoption have leemntified elsewhere [17]:

» Lack of evidence of their educational efficiency.
» Heavy workload posed on animation constructors¢ally, the instructors).

Our current study dealt with both these problemsthWespect to the issue of educational
effectiveness, notice that educational effectiveresanimations requires student engagement [17,18]
Our proposal for enhanced interactivity providesaative visual tools to engage students in anglysi
tasks.

The issue of construction effort is also addredsgdur contribution. In effect, automation and
interaction are two of the four issues identifieda previous proposal [19] to identify “effortless”
systems. The issue of improving interaction is ye@addressed in our study. With respect to
automation, our approach to deliver program vigadilbns more easily supports flexible interactign b
using processing language techniques. Program gsince generates an annotated, intermediate
representation of the program that allows gatherglgvant information in run-time. Execution
information can be displayed by the animation syste the user by means of its interaction facsitie
User effort is then reduced to interacting with slystem.

Further studying how to enhance visualization antgraction in animation systems to assist
different user tasks is promising for programmirgyeation. We also plan to extend this work in
several directions. Firstly, the comparison betw&Bec and other systems included one general pnogra
animation system (namely ETV), but the comparisbaukl be extended to other general systems.
Secondly, SRec can benefit from some additionataation facilities; the work of Yet al.[16] provides
a good framework to identify such improvements.alin it would be very valuable for instructors to
design a more structured mapping between interatgichniques and learning tasks.

Acknowledgments

This work was supported by project TIN2008-04103 tbé Spanish Ministry of Science
and Innovation.

References

1. Bloom, B.; Furst, E.; Hill, W.; Krathwohl, D.R.axonomy of Educational Objectives: Handbook I,
The Cognitive DomairLongmans: New York, NY, USA, 1959.

2. Bocker, H.D.; Fisher, G.; Nieper, H. The enhameet of understanding through visual
representations. IrProceedings of the ACM SIGCHI Conference on Humattdfs in
Computing Boston, MA, USA, April 1986; pp. 44-50.

3. Velazquez-lturbide, J.A.; Pérez-Carrasco, Aquilza-Fuentes, J. SRec: An animation system of
recursion for algorithm courses. Rroceedings of th&3th Annual Conference Innovation and
Technology in Computer Science Educatidiadrid, Spain, June 2008; pp. 225-229.

4. Haynes, S.M. Explaining recursion to the unssiptated. ACM SIGCSE Bulletin1995 27,

3-6 and 14.

Algorithms201Q 3 91

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Wilcocks, D.; Sanders, I. Animating recursionaasaid to instructionComput. Educ1994 23,
221-226.

Stern, L.; Naish, L. Visual representations fecursive algorithms. IiProceedings of the 33rd
SIGCSE technical symposium on Computer scienceagdncCincinnati, KY, USA, February
2002; pp. 196-200.

Software VisualizatignStasko, J.T., Domingue, J., Brown, M.H., PriceABeds.; MIT Press:
Cambridge, MA, USA, 1997.

Velazquez-lturbide, J.A.; Pérez-Carrasco, A.;quira-Fuentes, J. A design of automatic
visualizations for divide-and-conquer algorithnslectr. N. Theor. Comput. ScR009 224
113-120.

Fernandez-Mufioz, L.; Pérez-Carrasco, A.; Velézdturbide, J.A.; Urquiza-Fuentes, J.
A framework for the automatic generation of aldumtanimations based on design techniques.
In Proceedings of the Second European Conference ohndkgy Enhanced Learningrete,
Greece, September 2007; pp. 475-480.

Velazquez-Iturbide, J.A. Formalization of thentol stack. ACM SIGPLAN Notice4989 24,
46-54.

Terada, M. ETV: A program trace player for swig. InProceedings of the 10th Annual
Conference Innovation and Technology in Computeertse Education Monte da Caparica,
Portugal, June 2005; pp. 118-122.

Wu, C.C.; Lin, J.M.C.; Hsu, L.Y.W. Closed lahtories using SimLIST and SimRECURomput.
Educat.1997, 28, 55-64.

Dershem, H.L.; Parker, D.E.; Weinhold, R. Aadunction visualizerJ. Comput. Small Coll.
1999 15, 220-230.

George, C.E. EROSIIVisualizing recursion andcdvering new errors. IRroceedings of the
SIGCSE’0Q Austin, TX, USA, March 2000; pp. 305-309.

Eskola, J.; Tarhio, J. On visualization of msgan with Excel. InProceedings of th&econd
Program Visualization WorkshoplornstrupCentret, Denmark, June 2002; pp. 45-51.

Yi, J.S.; Kang, Y.; Stasko, J.; Jacko, J.A. &mva deeper understanding of the role of intevacti
in information visualizationlEEE TransVisualiz. Comput. Grapt2007, 13, 1224-1231.

Naps, T.; Roessling, G.; Almstrum, V.; Dann,, Weischer, R.; Hundhausen, C.; Korhonen, A.;
Malmi, L.; McNally, M.; Rodger, S.; Velazquez-ltude, J.A. Exploring the role of visualization
and engagement in computer science educakGiM SIGCSE Bulletir2003 35, 131-152.
Hundhausen, C.; Douglas, S.; Stasko, J. A stetdy of algorithm visualization effectiveness.
J. Vis. Lang. Compu2002 13, 259-290.

Ihantola, P.; Karavirta, V.; Korhonen, A.; Nider, J. Taxonomy of effortless creation of
algorithm visualization. IrProceedings of the International Workshop on CoinmguEducation
ResearchSeattle, WA, USA, October 2005; pp. 123-133.

© 2010 by the authors; licensee Molecular Diver$itgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).

