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Abstract: We consider grammar-based text compression withlongest first substitution(LFS),

where non-overlapping occurrences of a longest repeating factor of the input text are replaced

by a new non-terminal symbol. We present the first linear-time algorithm for LFS. Our al-

gorithm employs a new data structure calledsparse lazy suffix trees. We also deal with a

more sophisticated version of LFS, calledLFS2, that allows better compression. The first

linear-time algorithm for LFS2 is also presented.
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1. Introduction

Data compression is a task of reducing data description length. Not only does it enable us to save

space for data storage, but also it reduces time for data communication. This paper focuses on text

compression where the data to be compressed are texts (strings). Recent research developments show

that text compression has a wide range of applications, e.g., pattern matching [1, 2, 3], string similarity

computation [4, 5], detecting palindromic/repetitive structures [4, 6], inferring hierarchal structure of

natural language texts [7, 8], and analyses of biological sequences [9].
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Grammar-based compression [10] is a kind of text compression scheme in which a context-free gram-

mar (CFG) that generates only an input textw is output as a compressed form ofw. Since the problem

of computing the smallest CFG which generatesw is NP-hard [11], many attempts have been made to

develop practical algorithms that compute a small CFG which generatesw. Examples of grammar-based

compression algorithms are LZ78 [12], LZW [ 13], Sequitur [7], and Bisection [14]. Approximation

algorithms for optimal grammar-based compression have also been proposed [15, 16, 17]. The first

compression algorithm based on a subclass of context-sensitive grammars was introduced in [18].

Grammar-based compression based ongreedysubstitutions has been extensively studied. Wolff [19]

introduced a concept ofmost-frequent-first substitution(MFFS) such that a digram (a factor of length 2)

which occurs most frequently in the text is recursively replaced by a new non-terminal symbol. He also

presented anO(n2)-time algorithm for it, wheren is the input text length. A linear-time algorithm for

most-frequent-first substitution, called Re-pair, was later proposed by Larsson and Moffat [20]. Apos-

tolico and Lonardi [21] proposed a concept oflargest-area-first substitutionsuch that a factor of the

largest “area” is recursively replaced by a new non-terminal symbol. Here the area of a factor refers

to the product of the length of the factor by the number of its non-overlapping occurrences in the input

text. It was reported in [22] that compression by largest-area-first substitution outperforms gzip (based

on LZ77 [23]) and bzip2 (based on the Burrows-Wheeler Transform [24]) on DNA sequences. However,

to the best of our knowledge, no linear-time algorithm for this compression scheme is known.

This paper focuses on another greedy text compression scheme calledlongest-first substitution(LFS),

in which a longest repeating factor of an input text is recursively replaced by a new non-terminal symbol.

For example, for input textw = abaaabbababb$, the following grammar

S → BaaABA$;

A → abb;

B → ab,

which generates onlyw is the output of LFS.

In this paper, we propose thefirst linear-time algorithmfor text compression by LFS substitution.

A key idea is the use of a new data structure calledsparse lazy suffix trees. Moreover, this paper

deals with a more sophisticated version of longest-first text compression (namedLFS2), where we also

consider repeating factors of the right-hand of the existing production rules. For the same input text

w = abaaabbababb$ as above, we obtain the following grammar:

S → BaaABA$;

A → Bb;

B → ab.

This method allows better compression since the total grammar size becomes smaller. In this paper, we

present the first linear-time algorithm for text compression based on LFS2. Preliminary versions of our

paper appeared in [25] and [26].
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Related Work

It is true that several algorithms for LFS or LFS2 were already proposed, however, in fact none of

them runs in linear time in the worst case. Bentley and McIlroy [27] proposed an algorithm for LFS,

but Nevill-Manning and Witten [8] pointed out that the algorithm does not run in linear time. Nevill-

Manning and Witten also claimed that the algorithm can be improved so as to run in linear time, but

they only noted a too short sketch for how, which is unlikely to give a shape to the idea of the whole

algorithm. Lanctot et al. [28] proposed an algorithm for LFS2 and stated that it runs in linear time, but a

careful analysis reveals that it actually takesO(n2) time in the worst case for some input string of length

n. See Appendix for our detailed analysis.

2. Preliminaries

2.1. Notations

Let Σ be a finitealphabetof symbols. We assume thatΣ is fixed and|Σ| is constant. An element

of Σ∗ is called astring. Stringsx, y, andz are said to be aprefix, factor, andsuffixof stringw = xyz,

respectively.

The length of a stringw is denoted by|w|. The empty string is denoted byε, that is,|ε| = 0. Also, we

assume that all strings end with a unique symbol$ ∈ Σ that does not occur anywhere else in the strings.

Let Σ+ = Σ∗\{ε}. Thei-th symbol of a stringw is denoted byw[i] for 1 ≤ i ≤ |w|, and the factor of

a stringw that begins at positioni and ends at positionj is denoted byw[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, letw[i : j] = ε for j < i, andw[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. For any strings

x,w, let BPw(x) denote the set of the beginning positions of all the occurrences ofx in w. That is,

BPw(x) = {i | x = w[i : i + |x| − 1]}.
We say that stringsx, y overlap in w if there exist integersi, j such thatx = w[i : i + |x| − 1],

y = w[j : j + |y| − 1], andi ≤ j ≤ i + |x| − 1 or j ≤ i ≤ j + |y| − 1.

Let #occw(x) denote the possible maximum number ofnon-overlappingoccurrences ofx in w. If

#occw(x) ≥ 2, thenx is said to berepeatingin w. We abbreviate alongestrepeating factor ofw to an

LRF of w. Remark that there can exist more than one LRF forw.

Let Σ andΠ be the set of terminal and non-terminal symbols, respectively, such thatΣ ∩ Π = ∅.
A context-free grammarG is a formal grammar in which every production rule is of the formA → u,

whereA ∈ Π andu ∈ (Σ ∪ Π)∗. Let u = xBy andv = xβy with x, y, β ∈ (Σ ∪ Π)∗ andB ∈ Π. If

there exists a production ruleB → β in G, thenv = xβy is said to be directly derived fromu = xBy by

G, and it is denoted byu ⇒G v. If there exists a sequencew0, w1, . . . , wn such thatwi ∈ (Σ ∪ Π)∗ and

u = w0 ⇒G w1 ⇒G · · · ⇒G wn = v,

then we say thatv is derived fromu. Thelengthof a non-terminal symbolA, denoted|A|, is the length of

the stringz ∈ Σ∗ that is derived from the production ruleA → v. For convenience, we assume that any

non-terminal symbolA in G has|A| positions. Thesizeof the production rule is the number of terminal

and non-terminal symbolsv contains.
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Figure 1. STree(w) with w = ababa$. Solid arrows represent edges, and dotted arrows are

suffix links.
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2.2. Data Structures

Our text compression algorithm uses a data structure based on suffix trees [29]. The suffix tree of

stringw, denoted bySTree(w), is defined as follows:

Definition 1 (Suffix Trees) STree(w) is a tree structure such that: (1) every edge is labeled by a non-

empty factor ofw, (2) every internal node has at least two child nodes, (3) all out-going edge labels of

every node begin with mutually distinct symbols, and (4) every suffix ofw is spelled out in a path starting

from the root node.

Assuming any stringw terminates with the unique symbol$ not appearing elsewhere inw, there is

a one-to-one correspondence between a suffix ofw and a leaf node ofSTree(w). It is easy to see that

the numbers of the nodes and edges ofSTree(w) are linear in|w|. Moreover, by encoding every edge

labelx of STree(w) with an ordered pair(i, j) of integers such thatx = w[i : j], each edge only needs

constant space. Therefore,STree(w) can be implemented with total ofO(|w|) space. Also, it is well

known thatSTree(w) can be constructed inO(|w|) time (e.g. see [29]).

STree(w) for stringw = ababa$ is shown in Figure1. For any nodev of STree(w), str(v) denotes

the string obtained by concatenating the labels of the edges in the path from the root node to nodev.

The lengthof nodev, denotedlen(v), is defined to be|str(v)|. It is an easy application of the Ukkonen

algorithm [29] to compute the lengths of all nodes while constructingSTree(w). The leaf nodè such

thatstr(`) = w[i :] is denoted byleaf i, andi is said to be theid of the leaf. Every nodev of STree(w)

except for the root node has asuffix link, denoted bysuf (v), such thatsuf (v) = v′ wherestr(v′) is a

suffix of str(v) and len(v′) + 1 = len(v). Linear-time suffix tree construction algorithms (e.g., [29])

make extensive use of the suffix links.
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A sparse suffix tree[30] of w ∈ Σ∗ is a kind of suffix tree which represents only a subset of the

suffixes ofw. The sparse suffix tree ofw ∈ (Σ∪Π)∗ represents the subset{w[i :] | w[i] ∈ Σ} of suffixes

of w which begin with a terminal symbol. Let` be the length of the LRFs ofw. A reference nodeof the

sparse suffix tree ofw ∈ (Σ ∪ Π)∗ is any nodev such thatlen(v) ≥ ` + 1, and there is no nodeu such

thatstr(u) is a proper prefix ofstr(v) andlen(u) ≥ ` + 1.

Our algorithm uses the following data structure.

Definition 2 (Sparse Lazy Suffix Trees)A sparse lazy suffix tree(SLSTree) of stringw ∈ (Σ ∪ Π)∗,

denoted bySLSTree(w), is a kind of sparse suffix tree such that: (1) All paths from the root node to

the reference nodes coincide with those of the sparse suffix tree ofw, and (2) Every reference nodev

stores an ordered triple〈min(v), max(v), card(v)〉 such thatmin(v) = minBPw(str(v)), max(v) =

maxBPw(str(v)), andcard(v) =
∣∣BPw(str(v))

∣∣.

SLSTree(w) is called “lazy” since its subtrees that are located below the reference nodes may not

coincide with those of the corresponding sparse suffix tree ofw. Our algorithms of Section3. run in

linear time by “neglecting” updating these subtrees below the reference nodes.

Proposition 1 For any stringw ∈ Σ∗, SLSTree(w) can be obtained fromSTree(w) in O(|w|) time.

Proof. By a standard postorder traversal onSTree(w), propagating the id of each leaf node. ¤

SinceSTree(w) can be constructed inO(|w|) time [29], we can buildSLSTree(w) in total ofO(|w|)
time.

3. Off-Line Compression by Longest-First Substitution

Given a text stringw ∈ Σ∗, we here consider a greedy approach to construct a context-free grammar

which generates onlyw. The key is how to select a factor ofw to be replaced by a non-terminal symbol

from Π. Here, we consider thelongest-first-substitutionapproach where we recursively replace as many

LRFs as possible with non-terminal symbols.

Example.Let w = abaaabbababb$. At the beginning, the grammar is of the following simple form

S → abaaabbababb$, where the right-hand of the production rule consists only of terminal symbols

from Σ. Now we focus on the right-hand ofS which has two LRFsaba andabb. Let us here chooseabb

to be replaced by non-terminalA ∈ Π. We obtain the following grammar:S → abaaAabA$; A → abb.

The other LRFaba of length3 is no longer present in the right-hand ofS. Thus we focus on an LRFab

of length2. Replacingab by non-terminalB ∈ Π results in the following grammar:S → BaaABA$;

A → abb; B → ab. Since the right-hand ofS has no repeating factor longer than1, we are done.

Let w0 = w, and letwk denote the string obtained by replacing an LRF ofwk−1 with a non-terminal

symbolAk. LRF (wk−1) denotes the LRF ofwk−1 that is replaced byAk, namely, we create a new

production ruleAk → LRF (wk−1). In the above example,w0 = w = abaaabbababb$, LRF (w0) =

abb, A1 = A, w1 = abaaAabA$, LRF (w1) = ab, A2 = B, andw2 = BaaABA$.

Due to the property of the longest first approach, we have the following observation.
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Observation 1 LetA1, . . . , Ak ∈ Π be the non-terminal symbols which replaceLRF (w0), . . . , LRF (wk−1),

respectively. For any1 ≤ i ≤ k, the right-hand of the production rule ofAi contains none ofA1, . . . , Ai−1.

In what follows, we will show our algorithm which outputs a context-free grammar which generates

a given string. Our algorithm heavily uses the SLSTree structure.

3.1. How to FindLRF (wk) UsingSLSTree(wk)

In this section, we show how to find an LRF ofwk from SLSTree(wk).

The next lemmas characterize an LRF ofwk that isnot represented by a node ofSLSTree(wk).

Lemma 1 If an LRF x of wk is not represented by a node ofSLSTree(wk), thenmaxBPwk
(x) =

minBPwk
(x) + |x|.

Proof. Let i = minBPwk
(x) andj = maxBPwk

(x). Sincex is a repeating factor ofwk, |BPwk
(x)| ≥ 2,

which means thati 6= j. If wk[i + |x|] 6= wk[j + |x|], then it contradicts the precondition thatx is not

represented by a node ofSLSTree(wk). Hence we havewk[i + |x|] = wk[j + |x|]. Moreover, since

x is an LRF ofwk, we havej ≥ i + |x|. However, if we assumej > i + |x|, this contradicts the

precondition thatx is an LRF ofwk, sincewk[i + |x|] = wk[j + |x|] and we obtain a longer LRF

wk[i : i + |x|] = wk[j : j + |x|]. Hence we havej = i + |x|. ¤

The above lemma implies that an LRFx is not represented by a node ofSLSTree(wk) only if the

first and the last occurrences ofx form a squarexx in wk. For example, see Figure1 that illustrates

SLSTree(w0) for w = ababa$. One can see thatab is an LRF ofw0 but it is not represented by a node

of SLSTree(w0).

However, the following lemma guarantees that it is indeed sufficient to consider the strings repre-

sented by nodes ofSLSTree(wk) as candidates forLRF (wk).

Lemma 2 Let x be an LRF ofwk that is not represented by a node ofSLSTree(wk). Then, there exists

another LRFy of wk that is represented by a node ofSLSTree(wk) such that|x| = |y|. Moreover,x is

no longer present inwk+1 after a substitution fory (see also Figure2).

Proof. Let i = minBPwk
(x) andj = maxBPwk

(x). It follows from Lemma1 thatj = i+ |x|. Suppose

thatx is represented on an edge from some nodes to some nodet of STree(w). Letu = str(t). Then we

haveBPwk
(x) = BPwk

(u). Lety be the suffix ofu of length|x|. It is clear thati+|u|−|y|, j+|u|−|y| ∈
BPwk

(y). Sincej = i + |x| = i + |y|, #occwk
(y) ≥ 2. Thusy is an LRF ofwk. Sinceu is represented

by nodet andi = minBPwk
(u) andj = maxBPwk

(u), we know thatwk[i + |u|] 6= wk[j + |u|]. Hence

y is represented by a node ofSLSTree(wk). Sincex occurs only within the regionwk[i : j + |u| − 1], x

does not occur inwk+1 after a substitution fory. ¤

In the running example of Figure1, ba is an LRF ofw0 that is represented by a node ofSLSTree(w0).

After its two occurrences are replaced by a non-terminal symbolA1, thenab, which is an LRF ofw0 not

represented by a node ofSLSTree(w0), is no more present inw1 = aA1A1$.

After constructingSLSTree(w0) = SLSTree(w), we create a bin-sorted list of the internal nodes

of SLSTree(w) in the decreasing order of their lengths. This can be done in linear time by a standard
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Figure 2. Illustration for proof of Lemma2. Since u is represented by a node of

SLSTree(wk), we know thatwk[i + |u|] 6= wk[j + |u|].
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traversal onSLSTree(w). We remark that a new internal nodev may appear inSLSTree(wk) for some

k ≥ 1, which did not exist inSLSTree(wk−1). However, we have thatlen(v) ≤ |LRF (wk−1)|. Thus, we

can maintain the bin-sorted list by inserting nodev in constant time.

Given a nodes in the bin-sorted list, we can determine whetherstr(s) is repeating or not by using

SLSTree(wk), as follows.

Lemma 3 Lets be any node ofSLSTree(wk) with len(s) ≤ |LRF (wk)| and lets1, . . . , s` be the children

of s. ThenBPwk
(str(s)) is a disjoint union ofBPwk

(str(s1)), . . . , BPwk
(str(s`)).

Proof. Clear from the definition ofSLSTree(wk). ¤

Lemma 4 For any nodes of SLSTree(wk−1) such that|LRF (wk)| ≤ len(s) ≤ |LRF (wk−1)|, it takes

amortized constant time to check whether or notstr(s) is an LRF ofwk.

Proof. Let s1, . . . , s` be the children ofs. Then,str(s) is repeating if and only if

max{maxBPwk−1
(si) | 1 ≤ i ≤ `} −min{minBPwk−1

(sj) | 1 ≤ j ≤ `} ≥ len(s).

Remark that the values ofminBPwk−1
(si) andmaxBPwk−1

(si) are stored in nodesi and can be referred

to in constant time. Since the above inequality is checked at most once for each nodes, it takes amortized

constant time. ¤

Suppose we have found an LRF ofwk as mentioned above. In the sequel, we show our greedy strategy

to select occurrences of the LRF inwk to be replaced with a new non-terminal symbol.

The next lemma is essentially the same as Lemma 2 of Kida et al. [1].

Lemma 5 For any non-repeating factorx of wk, BPwk
(x) forms a single arithmetic progression.

Therefore, for any non-repeating factorx of wk, BPwk
(x) can be expressed by an ordered triple con-

sisting of minimum elementminBPwk
(x), maximum elementmaxBPwk

(x), and cardinality
∣∣BPwk

(x)
∣∣,

which takes constant space.

Lemma 6 Let s be any node ofSLSTree(wk) such thatstr(s) is an LRF ofwk, ands′ be any child of

s. Then,BPwk
(str(s′)) contains at most two positions corresponding to non-overlapping occurrences

of str(s) in wk.
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Proof. Assume for contrary thatBPwk
(str(s′)) contains three non-overlapping occurrences ofstr(s),

and let them bei1, i2, i3 in the increasing order. Then we have

i3 − (i1 + len(s)− 1) ≥ i3 − i2 ≥ len(s) ≥ 1,

which implies thatwk[i1 : i1 + len(s)] andwk[i3 : i3 + len(s)] are non-overlapping. Moreover, since

len(s′) > len(s), we havewk[i1 : i1 + len(s)] = wk[i3 : i3 + len(s)]. However, this contradicts the

precondition thatstr(s) is an LRF ofwk. ¤

From Lemma6, each childs′ of nodes such thatstr(s) is an LRF, corresponds to at most two non-

overlapping occurrences ofstr(s). Due to Lemma3, we can greedily select occurrences ofstr(s) to

be replaced by a new non-terminal symbol, by checking all childrens1, . . . , s` of nodes. According to

Lemma5, it takes amortized constant time to select such occurrences for each nodes.

Note that we have to select occurrences ofstr(s) so that no occurrences ofstr(s) remain in the text

string, and at least two occurrences ofstr(s) are selected. We remark that we can greedily choose at

leastmax{2, #occ(str(s))/2} occurrences.

3.2. How to UpdateSLSTree(wi−1
k ) to SLSTree(wi

k)

Let L be the set of the greedily selected occurrences ofLRF (wk) in wk. For any0 ≤ i ≤ |L|, let wi
k

denote the string obtained after replacing the firsti occurrences ofLRF (wk) with non-terminal symbol

Ak+1. Namely,w0
k = wk andw

|L|
k = wk+1.

In this section we show how to updateSLSTree(wi−1
k ) to SLSTree(wi

k). Let p be the beginning

position of thei-th occurrence inL. Assume that we haveSLSTree(wi−1
k ), and that we have replaced

wi−1
k [p : p + |LRF (wk)| − 1] with non-terminal symbolAk+1 such that|Ak+1| = |LRF (wk)|. We now

havewi
k, and we have to updateSLSTree(wi−1

k ) to SLSTree(wi
k).

A naive way to obtainSLSTree(wi
k) is to remove all the suffixes ofwi−1

k from SLSTree(wi−1
k ) and

insert all the suffixes ofwi
k into it. However, since only the nodes not longer thanLRF (wk) are important

for our longest-first strategy, only the suffixeswi−1
k [p−t :] such that1 ≤ t ≤ |LRF (wk)| andwi−1

k [r] ∈ Σ

for anyp − t ≤ r < p have to be removed fromSLSTree(wi−1
k ), and only the suffixeswi

k[p − t :] have

to be inserted into the tree (see the light-shaded suffixes of Figure3).

Lemma 7 For anyt, let r be the shortest node ofSLSTree(wi−1
k ) such thatwi

k[p− t : p− 1] is a prefix

of str(r). Assumep− t = minBPwi−1
k

(str(r)).

1. If len(r) > |LRF (wk)| + t − 1, then there exists an edge inSLSTree(wi
k) from the root node to

leaf p−t labeled withwi
k[p− t :].

2. If len(r) ≤ |LRF (wk)| + t − 1, then there exists a nodes in SLSTree(wi
k) such thatstr(s) =

wi
k[p− t : p−1] ands has an edge labeled withwi

k[p :] = Akw
i
k[p+ |Ak| :] and leading toleaf p−t.

Proof. Consider Case1 (see also Figure4). Sincet ≥ 1, len(r) > |LRF (wk)|. Hencestr(r) is a

non-repeating factor ofwi
k. By Lemma5, BPwi−1

k
(str(r)) forms a single arithmetic progression. Also,

sincelen(r) > |LRF (wk)|, maxBPwi−1
k

(str(r)) − minBPwi−1
k

(str(r)) ≤ |LRF (wk)|. Therefore, if
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Figure 3. LRF (wk) at positionp of wi−1
k is replaced by non-terminal symbolAk in wi

k.

Everywi−1
k [p − t :] is removed from the tree and everywi

k[p − t :] is inserted into the tree

(the light-shaded suffixes in the right figure). In addition, everywi−1
k [p + h :] for 1 ≤ h ≤

|LRF (wk)| − 1 is removed from the tree (the dark-shaded suffixes in the right figure).

w xk
p

k
i-1

p-t p+|LRF(wk)|-1

LRF(wk) Akw k
i

pp-t p+|LRF(wk)|-1

Figure 4. Illustration of Case1 of Lemma7.

r

leafp-t

wki-1[p-t:p-1]

|LRF(wk)|+t-1

leafp-t

wki[p-t:]

p − t = minBPwi−1
k

(str(r)), thenBPwi
k
(wi

k[p − t :]) = {p − t}. Hence there exists an edge from the

root node toleaf p−t labeled withwi
k[p− t :] in SLSTree(wi

k).

Consider Case2 (see also Figure5). Let u = wi−1
k [p − t : p − 1] = wi

k[p − t : p − 1]. Then

|u| = t− 1. Sincelen(r) ≤ |LRF (wk)|+ t− 1, and sincer is not longer than the reference node in the

path spelling outuLRF (wk) from the root node ofSLSTree(wi
k), there exists at least one integerm such

thatm ∈ BPwi
k
(str(r)) andm /∈ BPwi

k
(uAk). Hence there exists a nodes in SLSTree(wi

k) such that

str(s) = u and has an out-going edge labeled withwi
k[p :] = Akw

i
k[p + |Ak| :] and leading toleaf p−t.

¤

It is not difficult to see that the edge in each case of Lemma7 does not exist inSLSTree(wi−1
k ). Hence

we create the edge when we updateSLSTree(wi−1
k ) to SLSTree(wi

k).

The next lemma states how to locate nodes of Case2 of Lemma7.

Lemma 8 For eacht, we can locate nodes such thatstr(s) = wi
k[p− t : p− 1] in amortized constant

time.

Proof. Let xp−t be the longest node in the tree such thatstr(xp−t) is a prefix ofwi
k[p− t : p− 1].
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Figure 5. Illustration of Case2 of Lemma7.

r

leafp-t

r

s

wki-1[p-t:p-1] wki[p-t:p-1]

|LRF(wk)|+t-1

leafp-t

Akwki[p+|Ak|:]

leafy leafy

Consider the largest possiblet and denote it bytmax. Sincetmax ≤ |LRF (wk)|, the nodexp−tmax can

be found inO(|LRF (wk)|) time by going down the path that spells outwi
k[p− tmax : p−1] from the root

node (recall thatΣ is fixed). Letz ∈ Σ∗ be the string such thatstr(xp−tmax)z = wi
k[p− tmax : p− 1]. If

z 6= ε, then we create a new child nodesp−tmax of xp−tmax such thatstr(sp−tmax) = wi
k[p− tmax : p− 1].

Otherwise, we setsp−tmax = xp−tmax.

Now assume that we have located nodesxp−t andsp−t. We can then locatesp−t+1 as follows. Consider

nodexp−t+1. Remark thatstr(suf (xp−t)) is a prefix ofstr(xp−t+1), and thus we can detectxp−t+1 in

O(|str(xp−t+1)| − |str(suf (xp−t))|) time by using the suffix link. After findingxp−t+1, we can locate or

createsp−t+1 in constant time.

The total time cost for detectingxp−t for all 1 ≤ t ≤ tmax is linear in

tmax∑
t=2

(|str(xp−t+1)| − |str(suf (xp−t))|)

= |str(xp−1)| − |str(suf (xp−2))|
+ |str(xp−2)| − |str(suf (xp−3))|

· · · · · ·
+ |str(xp−tmax+1)| − |str(suf (xp−tmax))|
= |str(xp−1)| − |str(suf (xp−tmax))|+ tmax − 2

= |str(xp−1)| − |str(xp−tmax)|+ tmax − 1

≤ tmax ≤ |LRF (wk)|.

Hence we can locate eachsp−t in amortized constant time. ¤

Let v be the reference node in the path from the root to someleaf p−t. Assume thatleaf p−t is removed

from the subtree ofv, and redirected to nodes in the same path, such thatstr(s) = wi
k[p− t : p− 1]. In

order to updateSLSTree(wi−1
k ) to SLSTree(wi

k), we have to maintain triple〈min(v), max(v), card(v)〉
for nodev. One may be concerned that ifp − t is neithermin(v) or max(v) and card(v) ≥ 4 in



Algorithms2009, 2 1439

Figure 6. Illustration of proof for Lemma9.
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n
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m+|str(v)|-1

n+|str(v)|-1

w[a:b]

w[a': b']

w

SLSTree(wi−1
k ), the occurrences ofstr(v) in SLSTree(wi

k) do not form a single arithmetic progres-

sion any more. However, we have the following lemma. For any factory of wi
k, let Deadwi

k
(y) =

BPwi−1
k

(y)\BPwi
k
(y), namely,Deadwi

k
(y) denotes the occurrences ofy in wi−1

k that overlap with thei-th

greedily selected occurrence ofLRF (wk) in wk.

Lemma 9 Let v be any reference node ofSLSTree(wi
k) such that#occwi

k
(str(v)) = 1. For any integer

m,n, if m, n ∈ BPwi
k
(str(v)), then there is no integerr such thatm < r < n andr ∈ Deadwi

k
(str(v)).

(See Figure6).

Proof. Assume for contrary that there exists integerr such thatr ∈ Deadwi
k
(str(v)) andm < r < n.

Sincer ∈ Deadwi
k
(str(v)), there exist integersa, b such thata ≤ r ≤ b, andb − a + 1 = 2|LRF (wk)|.

For any integerj such thata ≤ j ≤ b andj ∈ BPwi−1
k

(str(v)), we havej ∈ Deadwi
k
(str(v)). Since

m,n /∈ Deadwi
k
(str(v)), m < a < b < n. As str(v) is non-repeating,n < m + len(v) − 1. Since

m < a < b < m+ len(v)−1, w[a : b] is a factor ofstr(v). Therefore, there exist two integersa′, b′ such

thatw[a′ : b′] = w[a : b]. Sincem < a < b < n < a′ < b′ < n + len(v) − 1, w[a : b] is repeating and

|w[a : b]| = b− a + 1 = 2|LRF (wk)| > |LRF (wk)|. It contradicts thatLRF (wk) is an LRF ofwk. ¤

Recall thatp is the beginning position of thei-th largest greedily selected occurrence ofLRF (wk)

in wk. Also, for any1 ≤ t ≤ |LRF (wk)| such thatwi−1
k [r] ∈ Σ for everyp − t ≤ r < p, we have

removedleaf p−t from the subtree rooted at the reference nodev and have reconnected it to nodes such

thatstr(s) = wi
k[p− t : p− 1]. According to the above lemma, ifmin(v) < p− t < max(v), leaf j for

everyp − t ≤ j ≤ max(v) is removed from the subtree ofv. After processingleaf p−t, thenmax(v) is

updated top− t− d whered = (min(v) + max(v))/card(v) is the step of the progression, andcard(v)

is updated to(max(v)− (p− t))/d + 1.

Notice thatleaf p+h for every 0 ≤ h ≤ |LRF (wk)| − 1 has to be removed from the tree, since

wi
k[p + h] /∈ Σ and therefore this leaf node should not exist inSLSTree(wi

k) (see the dark-shaded

suffixes of Figure3). Removing each leaf can be done in constant time. Maintaining the information

about the triple for the arithmetic progression of the reference nodes can be done in the same way as

mentioned above.

The following lemma states how to locate each reference node.

Lemma 10 Let p be thei-th greedily selected occurrence ofLRF (wk) in wk. For any integer̀ such

thatwi−1
k [`] ∈ Σ, let v(`) denote the reference node ofSLSTree(wi−1

k ) in the path from the root spelling

out suffixwi−1
k [` :]. For eachj such thatp − |LRF (wk)| ≤ j ≤ p + |LRF (wk)| − 1, we can locate the

reference nodev(j) in amortized constant time.
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Figure 7. The left figure illustrates how to findv(j) from v(j − 1). The right one illustrates

a special case wherev(j) = leaf j. Oncev(j) = leaf j, it stands thatv(k) = leaf k for any

j ≤ k ≤ p− 1.

u(j-1)

v(j-1)

|LRF(wk)|

leafj-1 leafj

v(j)

|LRF(wk)|

leafj-1

leafj  = v(j)

leafp-1 = v(p-1)

Ah 

u(j-1)

v(j-1)

|LRF(wk)|

w[p-1]

Ah

Proof. Let ` = |LRF (wk)|. We findv(p − `) by spelling outwi−1
k [p − ` :] from the root inO(`) time,

since there can be at most` + 1 nodes in the path from the root tov(p− `).

Suppose we have foundv(j − 1). We find v(j) as follows. Letu(j − 1) be the parent node of

v(j − 1). We havelen(u(j − 1)) ≤ ` and len(v(j − 1)) ≤ ` + 1. We go tosuf (u(j − 1)). Since

len(suf (u(j − 1))) + 1 = len(u(j − 1)), we havelen(suf (u(j − 1))) ≤ ` + 1. Thus, we can find

v(j) by going down the path starting fromsuf (u(j − 1)) and spelling outwi−1
k [j − 1 + len(u(j − 1)) :

j − 1 + len(v(j − 1))] = wi−1
k [j + len(suf (u(j − 1))) : j − 1 + len(v(j − 1))]. (See also the left

illustration of Figure7).

A special case happens when there exists a nodes in the path from the root toleaf j, such that

len(s) = ` and the edge froms in the path starts with some non-terminal symbolAh with h < k.

Namely,wi
k[j + `] = Ah. Due to the property of the longest first approach, we have|Ah| ≥ `. Thus

vj = leaf j. Moreover, for anyj ≤ k ≤ p − 1, v(k) = leaf k. (See also the right illustration of Figure

7). It is thus clear that eachv(k) can be found in constant time. Since|Ah| ≥ ` = LRF (wk), the leaves

corresponding towi−1
k [p + x− 1 :] with 1 ≤ x ≤ ` do not exist inSLSTree(wi−1

k ). ¤

From the above discussions, we conclude that:

Theorem 1 For any stringw ∈ Σ∗, the proposed algorithm for text compression by longest first substi-

tution runs inO(|w|) time usingO(|w|) space.

Pseudo-codes of our algorithms are shown in Algorithms1, 2, and3.

3.3. Reducing Grammar Size

In the above sections we considered text compression by longest first substitution, where we construct

a context free grammarG that generates only a given stringw. By Observation1, for any production rule

Ak → xk of G, xk contains only terminal symbols fromΣ. In this section, we take the factors ofxk into

consideration for candidates of LRFs, and also replace LRFs appearing inxk. This way we can reduce
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Algorithm 1 : Recursively find longest repeating factors.
Input : Stringw ending with a unique symbol

Output : Set of grammar rules which producew, greedily selected by substituting longest repeating

factors

SLSTree := sparse lazy suffix tree ofw; bins := bin-sorted nodes;len := |w|; rules := ∅;1

while true do2

while (n = bins.getNextOfLength(len)) = null do3

if len ≤ 2 then return rules;4

foreachx ∈ bins(len) do updatex.min, x.max, x.card from children;5

len-- ;6

updaten.min, n.max, n.card from children;7

if n.max − n.min ≥ n.pathlen / * n is repeating factor * / then8

nonTerm := new non-terminal symbol;9

rules := rules ∪ {nonTerm → n.path };10

gso := getGreedilySelectedOccurrences(n);11

updateSLSTree(w, n.pathlen, nonTerm, gso, SLSTree, bins);12

13

14

Algorithm 2 : updateSLSTree
Input : (w, LRFlen, nonTerm, gso, SLSTree, bins)

foreachoccpos ∈ gso do1

for pos = max{1, occpos− LRFlen} to min{|w|, occpos + LRFlen− 1} do2

v := find first node on path to leafpos such thatv.pathlen > LRFlen;3

delete leafpos; maintainv.card, v.min, v.max;4

if pos < occpos &&notDead(pos) then5

s := find/create node on path to leafpos such thats.pathlen = occpos− pos;6

if s was newly createdthen bins(s.pathlen).addNode(s);7

recreate leafpos:〈min, max, card〉 = 〈pos, pos, 1〉; add edge (s, nonTerm, pos);8

if pos > occpos then w[ pos] = •; markDead(pos);9

w[ occpos] := nonTerm; markDead(occpos);10

return11
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Algorithm 3 : getGreedilySelectedOccurrences
Input : LRFnode
Output : Set of greedily selected occurrences ofLRFnode.path
gso := ∅;1

foreachc ∈ LRFnode.children do2

occ := 0;3

if notDead(c.min) then occ := c.min ;4

else occ := find first occurrence ofLRFnode.path afterc.min+endOfDeadArea[ c.min] ;5

if occ 6= 0 &&notDead(occ+LRFnode.pathlen−1) then6

gso := gso ∪ {occ};7

for pos = occ to occ+LRFnode.pathlen−1 do8

markEndOfDeadArea(pos, occ+LRFnode.pathlen−1);9

occ := occ + LRFnode.pathlen ;10

if notDead(occ) &&notDead(occ+LRFnode.pathlen−1) then gso := gso ∪ {occ};11

12

return gso;13

the total size of the grammar. In so doing, we consider an LRF of stringzk = wk$0x1$1 · · · xk$k, where

z0 = w0 = w and each$i appears nowhere else inzk.

Example. Let w = w0 = z0 = abaaabbababb$0. We replace an LRFabb with A, and obtain the

following grammar: S → abaaAabA$0; A → abb. Then, w1 = abaaAabA$0 and LRF (z0) =

abb. Now, z1 = abaaAabA$0abb$1. We replace an LRFab of z1 with a non-terminalB, getting

S → BaaABA$0; A → Bb; B → ab. Then,w2 = BaaABA$0 andLRF (z1) = ab. Now, z2 =

BaaABA$0Bb$1ab$2. Since there is no LRF of length more than 1 inz2, we are done.

We call this method of text compressionLFS2.

Theorem 2 Given a stringw, the LFS2 strategy compressesw in linear time and space.

Proof. We modify the algorithm proposed in the previous sections. If we have a generalized SLSTree

for set{wk, x1$1, . . . , xk$k} of strings, we can find an LRF ofzk = wkx1$1 · · · xk$k. It follows from the

property of the longest first substitution strategy that|xi| ≥ |xj| for anyi < j. Therefore, any new node

inserted into the generalized SLSTree for{wk, x1$1, . . . , xk−1$k−1} is shorter than the reference nodes

of the tree. Thus, using the Ukkonen on-line algorithm [29], we can obtain the generalized SLSTree

of {wk, x1$1, . . . , xk$k}, by inserting the suffixes of eachxk$k into the generalized SLSTree of{wk,

x1$1, . . . , xk−1$k−1} in O(|xk$k|) time. It is easy to see that the total length ofx1$1, . . . , xk$k, . . . is

O(|w|). ¤

4. Conclusions and Future Work

This paper introduced a linear-time algorithm to compress a given text by longest-first substitution

(LFS). We employed a new data structure called sparse lazy suffix trees in the core of the algorithm.

We also gave a linear-time algorithm for LFS2 that achieves better compression than LFS.
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A related open problem is the following: Does there exist a linear time algorithm for text compres-

sion by largest-area-first substitution (LAFS)? The algorithm presented in [21] usesminimal augmented

suffix trees(MASTrees) [31] which enable us to efficiently find a factor of the largest area. The size

of MASTrees is known to be linear in the input size [32], but the state-of-the-art algorithm of [32] to

construct MASTrees takesO(n log n) time, wheren is the input text length. Also, the algorithm of [21]

for LAFS reconstructs the MASTree from scratch, every time a factor of the largest area is replaced by a

new non-terminal symbol. Would it be possible to update a MASTree or its relaxed version for following

substitutions?
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30. Kärkkäinen, J.; Ukkonen, E. Sparse Suffix Trees. InProc. 2nd Annual International Computing

and Combinatorics Conference (COCOON’96). Springer-Verlag, 1996, Vol. 1090,Lecture Notes

in Computer Science, pp. 219–230.

31. Apostolico, A.; Preparata, F. P. Data structures and algorithms for the string statistics problem.

Algorithmica1996, 15, 481–494.

32. Brødal, G. S.; Lyngsø, R. B.;̈Ostlin, A.; Pedersen, C. N. S. Solving the String Stastistics Problem

in Time O(n log n). In Proc. 29th International Colloquium on Automata,Languages, and Pro-

gramming (ICALP’02). Springer-Verlag, 2002, Vol. 2380,Lecture Notes in Computer Science, pp.

728–739.

33. Lanctot, J. K.Some String Problems in Computational Biology. PhD thesis, University of Waterloo,

2004.

Appendix

In this appendix we show that the algorithm of Lanctot et al. [28] for LFS2 takesO(n2) time, where

n is the length of the input string.

Consider string

w = w0 = z0 = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.

The Lanctot algorithm constructs a suffix tree ofw, constructs a bin-sorted list of internal nodes of the

tree, and updates the tree in a similar way to our algorithm in Section3.3.. However, a critical difference

is that any nodev of their tree structure doesnot store an ordered triple〈min(v), max(v), card(v)〉 such

thatmin(v) = minBPw(str(v)), max(v) = maxBPw(str(v)), andcard(v) =
∣∣BPw(str(v))

∣∣.
See Figure8 which illustrates the suffix tree ofw.

A bin-sorted list of internal nodes ofSTree(w) in decreasing order of their length is as follows:

9 : aaaabbbbb

8 : aaabbbbb

7 : aabbbbb, aaaaaaa

6 : abbbbb, aaaaaa

5 : bbbbb, aaaaa

4 : bbbb, aaaa

3 : bbb, aaa

2 : bb, aa

1 : b, a

In [28], Lanctot et al. do not mention how they find occurrences of each node in the sorted list. Since

they do not have an ordered triple〈min(v), max(v), card(v)〉 for each nodev, the best possible way is to

traverse the subtree ofv checking the leaves in the subtree. Now, for the first LRF-candidateaaaabbbbb,

we get positions4 and13 and find out thatLRF (w) = LRF (z0) = aaaabbbbb. Then we obtain

w1 = aaaAAcaaaaaaaa$,

whereA is a new non-terminal symbol that replacesLRF (z0) = aaaabbbbb.
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Figure 8. STree(w) with w = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.
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Now see Figure9 which illustrates a generalized sparse suffix tree for

z1 = aaaAAcaaaaaaaa$aaaabbbbb#.

To findLRF (z1), we check the nodes in the list as follows.

• Length 8. The generalized suffix tree has no node representingaaabbbbb, and hence it is not an

LRF.

• Length 7. Since nodeaaaaaaa exists in the generalized suffix tree, we traverse its subtree and find

2 occurrences23 and24 in z1. However, it is not an LRF ofz1. The other candidateaabbbbb does

not have a corresponding node in the tree, so it is not an LRF, either.

• Length 6. Nodeaaaaaa exists in the generalized suffix tree and we find 3 occurrences23, 24 and

25 in z1 by traversing the tree, but it is not an LRF. The tree has no node corresponding toabbbbb,

hence it is not an LRF.

• Length 5. Nodeaaaaa exists in the generalized suffix tree and we find 4 occurrences23, 24, 25

and26 in z1 by traversing the tree, but it is not an LRF. There is no node in the tree corresponding

to bbbbb.
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Figure 9. Generalized sparse suffix tree ofz1 = aaaAAcaaaaaaaa$aaaabbbbb#.
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• Length 4. Nodeaaaa exists in the generalized suffix tree and we find 5 occurrences23, 24, 25, 26

and27. Now 23 and27 are non-overlapping occurrences ofaaaa, and hence it is an LRF ofz1.

Focus on the above operations where we examined factors of lengths from 7 to 5. The total time cost

to find the occurrences for the LRF-candidates of these lengths is proportional to 2 + 3 + 4, butnone of

them is an LRF ofz1 in the end.

In general, for any input string of the form

w = a2k−1bk+1akbk+1ca2k$,

the time cost of the Lanctot algorithm for findingLRF (z1) is proportional to

2 + 3 + · · ·+ k =
(k − 1)(k + 2)

2
.

Sincek = O(|w|) = O(n), the Lanctot algorithm takesO(n2) time.

In his PhD thesis [33], Lanctot modified the algorithm so that all the occurrences of each candidate

factor inw are stored in each element of the bin-sorted list (Section 3.1.3, page 55, line 1). However,

this clearly requiresO(n2) space. Note that using a suffix array cannot immediately solve this, since the

lexicographical ordering of the suffixes can change due to substitution of LRFs, and no efficient methods

to edit suffix arrays for such a case are known.
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On the contrary, as shown in Section3., each nodev of our data structure stores an ordered triple

〈min(v), max(v), card(v)〉, and our algorithm properly maintains this information when the tree is up-

dated. Using this triple, we can check in amortized constant time whether or not each node in the

bin-sorted list is an LRF. Hence the total time cost remainsO(n).
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