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Abstract: We consider grammar-based text compression Mitgest first substitutioLFS),

where non-overlapping occurrences of a longest repeating factor of the input text are replaced
by a new non-terminal symbol. We present the first linear-time algorithm for LFS. Our al-
gorithm employs a new data structure calkgzhrse lazy suffix treesWe also deal with a

more sophisticated version of LFS, calleBS2 that allows better compression. The first
linear-time algorithm for LFS2 is also presented.

Keywords: grammar-based text compression, suffix trees, linear-time algorithms

1. Introduction

Data compression is a task of reducing data description length. Not only does it enable us to save
space for data storage, but also it reduces time for data communication. This paper focuses on text
compression where the data to be compressed are texts (strings). Recent research developments sha

that text compression has a wide range of applications, e.g., pattern matth§]| string similarity
computation 4, 5], detecting palindromic/repetitive structureg p], inferring hierarchal structure of
natural language text3[8], and analyses of biological sequencg |
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Grammar-based compressidi]is a kind of text compression scheme in which a context-free gram-
mar (CFG) that generates only an input texts output as a compressed formof Since the problem
of computing the smallest CFG which generaiess NP-hard [L1], many attempts have been made to
develop practical algorithms that compute a small CFG which generatésamples of grammar-based
compression algorithms are LZ787, LZW [13], Sequitur [/], and Bisection 14]. Approximation
algorithms for optimal grammar-based compression have also been prodésdd,[17]. The first
compression algorithm based on a subclass of context-sensitive grammars was introdiged in [

Grammar-based compression basedj@edysubstitutions has been extensively studied. WAl [
introduced a concept ohost-frequent-first substitutidMFFS) such that a digram (a factor of length 2)
which occurs most frequently in the text is recursively replaced by a new non-terminal symbol. He also
presented a(n?)-time algorithm for it, where: is the input text length. A linear-time algorithm for
most-frequent-first substitution, called Re-pair, was later proposed by Larsson and NMofffahpos-
tolico and Lonardi 21] proposed a concept dérgest-area-first substitutiosuch that a factor of the
largest “area” is recursively replaced by a new non-terminal symbol. Here the area of a factor refers
to the product of the length of the factor by the number of its non-overlapping occurrences in the input
text. It was reported inZ2] that compression by largest-area-first substitution outperforms gzip (based
on LZ77 [23]) and bzip2 (based on the Burrows-Wheeler Transfazdh)[on DNA sequences. However,
to the best of our knowledge, no linear-time algorithm for this compression scheme is known.

This paper focuses on another greedy text compression scheme@adiedt-first substitutio(LFS),
in which a longest repeating factor of an input text is recursively replaced by a new non-terminal symbol.
For example, for input text) = abaaabbababb$, the following grammar

S — BaaABAS;
A — abb;
B — ab,

which generates only is the output of LFS.

In this paper, we propose thist linear-time algorithmfor text compression by LFS substitution.
A key idea is the use of a new data structure cablpdrse lazy suffix treesMoreover, this paper
deals with a more sophisticated version of longest-first text compression (n#8&J where we also
consider repeating factors of the right-hand of the existing production rules. For the same input text
w = abaaabbababb$ as above, we obtain the following grammar:

S — BaaABAS;
A — Bb;
B — ab.

This method allows better compression since the total grammar size becomes smaller. In this paper, we
present the first linear-time algorithm for text compression based on LFS2. Preliminary versions of our
paper appeared i2f] and [26].
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Related Work

It is true that several algorithms for LFS or LFS2 were already proposed, however, in fact none of
them runs in linear time in the worst case. Bentley and Mclli@¥] proposed an algorithm for LFS,
but Nevill-Manning and Witten§] pointed out that the algorithm does not run in linear time. Nevill-
Manning and Witten also claimed that the algorithm can be improved so as to run in linear time, but
they only noted a too short sketch for how, which is unlikely to give a shape to the idea of the whole
algorithm. Lanctot et al.48] proposed an algorithm for LFS2 and stated that it runs in linear time, but a
careful analysis reveals that it actually tak&:?) time in the worst case for some input string of length
n. See Appendix for our detailed analysis.

2. Preliminaries
2.1. Notations

Let > be a finitealphabetof symbols. We assume thatis fixed and|X| is constant. An element
of ¥* is called astring. Stringsz, y, andz are said to be arefix factor, andsuffixof stringw = xyz,
respectively.

The length of a string is denoted byw|. The empty string is denoted bythat is,|¢| = 0. Also, we
assume that all strings end with a unique syntbel X that does not occur anywhere else in the strings.
Let £t = ¥*\{e}. Thei-th symbol of a stringv is denoted byw|[:] for 1 < i < |w]|, and the factor of
a stringw that begins at positionand ends at position is denoted byw[i : j] for 1 < i < j < |w|.
For convenience, leb|i : j| = e for j < i, andw[i ;] = w[i : |w|] for 1 < i < |w|. For any strings
x,w, let BP,,(z) denote the set of the beginning positions of all the occurrencesiofw. That is,
BP,(z)={i|z=wli:i+ |z] —1]}.

We say that strings;, y overlapin w if there exist integers, j such thatr = wi : i + |z| — 1],
y=wlj:j+lyl—1,andi <j<i+|z|—1lorj<i<j+ |yl —1

Let #occ,,(z) denote the possible maximum numbemain-overlappingoccurrences of in w. If
#occ,(z) > 2, thenz is said to baepeatingin w. We abbreviate éongestrepeating factor ofv to an
LRF of w. Remark that there can exist more than one LRFRfor

Let > andII be the set of terminal and non-terminal symbols, respectively, sucttthall = 0.
A context-free grammag is a formal grammar in which every production rule is of the fodm— u,
whereA € [T andu € (X UII)*. Letu = 2By andv = zfy with z,y, 8 € (X UIl)*andB € II. If
there exists a production rulé — 5 in G, thenv = z3y is said to be directly derived from = = By by
g, and itis denoted by =g v. If there exists a sequene§, wy, . . ., w, such thaty; € (X UII)* and

U= Wy =g W1 =g+ =g Wy, =,

then we say that is derived fromu. Thelengthof a non-terminal symball, denoted A|, is the length of
the stringz € ¥* that is derived from the production rule — v. For convenience, we assume that any
non-terminal symboH in G has| A| positions. Thesizeof the production rule is the number of terminal
and non-terminal symbolscontains.
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Figure 1. STree(w) with w = ababa$. Solid arrows represent edges, and dotted arrows are
suffix links.

2.2. Data Structures

Our text compression algorithm uses a data structure based on suffix28geJ e suffix tree of
stringw, denoted by5Tree(w), is defined as follows:

Definition 1 (Suffix Trees) STree(w) is a tree structure such that: (1) every edge is labeled by a non-
empty factor ofw, (2) every internal node has at least two child nodes, (3) all out-going edge labels of
every node begin with mutually distinct symbols, and (4) every sufibio$pelled out in a path starting
from the root node.

Assuming any stringv terminates with the unique symb®Inot appearing elsewhere in, there is
a one-to-one correspondence between a suffix ahd a leaf node of7ree(w). It is easy to see that
the numbers of the nodes and edges @fee(w) are linear injw|. Moreover, by encoding every edge
labelz of STree(w) with an ordered paifi, j) of integers such that = w[i : j], each edge only needs
constant space. Therefor&7ree(w) can be implemented with total @?(|w|) space. Also, it is well
known thatSTree(w) can be constructed i@ (Jw|) time (e.g. seed9)).

STree(w) for stringw = ababa$ is shown in Figurel. For any node of STree(w), str(v) denotes
the string obtained by concatenating the labels of the edges in the path from the root node 0 node
Thelengthof nodew, denoteden(v), is defined to béstr(v)|. It is an easy application of the Ukkonen
algorithm R9] to compute the lengths of all nodes while constructifijee(w). The leaf node such
thatstr(¢) = w[i :] is denoted byeaf,, andi is said to be théd of the leaf. Every node of STree(w)
except for the root node hassaffix link denoted bysuf (v), such thatsuf (v) = v" wherestr(v') is a
suffix of str(v) andlen(v') + 1 = len(v). Linear-time suffix tree construction algorithms (e.@9])
make extensive use of the suffix links.
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A sparse suffix tre¢30] of w € X* is a kind of suffix tree which represents only a subset of the
suffixes ofw. The sparse suffix tree af € (X UII)* represents the subsgb[i:] | w[i] € £} of suffixes
of w which begin with a terminal symbol. Létbe the length of the LRFs af. A reference nodef the
sparse suffix tree ab € (3 U II)* is any nodev such thaten(v) > ¢ + 1, and there is no node such
thatstr(u) is a proper prefix oktr(v) andlen(u) > ¢ + 1.

Our algorithm uses the following data structure.

Definition 2 (Sparse Lazy Suffix Trees)A sparse lazy suffix tre€SLSTre@ of stringw € (X U IT)*,
denoted bySLSTree(w), is a kind of sparse suffix tree such that: (1) All paths from the root node to
the reference nodes coincide with those of the sparse suffix tree arid (2) Every reference node
stores an ordered triplémin(v), max(v), card(v)) such thatmin(v) = min BP,,(str(v)), max(v) =

max BP,,(str(v)), andcard(v) = |BP,(str(v))|.

SLSTree(w) is called “lazy” since its subtrees that are located below the reference nodes may not
coincide with those of the corresponding sparse suffix tree.oOur algorithms of SectioB3. run in
linear time by “neglecting” updating these subtrees below the reference nodes.

Proposition 1 For any stringw € ¥*, SLSTree(w) can be obtained from§Tree(w) in O(|w|) time.
Proof. By a standard postorder traversal $free(w), propagating the id of each leaf node. OJ

SinceSTree(w) can be constructed iR (|w|) time [29], we can buildSLSTree(w) in total of O(|w|)
time.

3. Off-Line Compression by Longest-First Substitution

Given a text stringv € ¥*, we here consider a greedy approach to construct a context-free grammar
which generates onhy. The key is how to select a factor ofto be replaced by a non-terminal symbol
fromII. Here, we consider tHengest-first-substitutioapproach where we recursively replace as many
LRFs as possible with non-terminal symbols.

Example.Let w = abaaabbababb$. At the beginning, the grammar is of the following simple form
S — abaaabbababb$, where the right-hand of the production rule consists only of terminal symbols
from 3. Now we focus on the right-hand 6fwhich has two LRFaba andabb. Let us here choossb

to be replaced by non-termindl € I1. We obtain the following grammas — abaaAabA$; A — abb.

The other LRFaba of length3 is no longer present in the right-hand®f Thus we focus on an LR&b

of length2. Replacingab by non-terminalB € II results in the following grammars — BaaABAS;

A — abb; B — ab. Since the right-hand & has no repeating factor longer thanwe are done.

Let wy = w, and letw,, denote the string obtained by replacing an LRFkuvpf; with a non-terminal
symbol A,. LRF(wj_,) denotes the LRF ofv,_; that is replaced by, namely, we create a new
production ruled, — LRF(wy_1). In the above exampley, = w = abaaabbababb$, LRF (wg) =
abb, A; = A, w; = abaaAabAS$, LRF(w;) = ab, Ay = B, andw, = BaaABAS.

Due to the property of the longest first approach, we have the following observation.
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Observation 1 LetAy,. .., A, € Il be the non-terminal symbols which replacBF' (wy), . . ., LRF (wy—1),
respectively. Forany < i < k, the right-hand of the production rule &f, containsnone ofi, ..., A;_;.

In what follows, we will show our algorithm which outputs a context-free grammar which generates
a given string. Our algorithm heavily uses the SLSTree structure.

3.1. How to FindLRF (wy) Using SLSTree(wy,)

In this section, we show how to find an LRF®©f from SLSTree(wy,).
The next lemmas characterize an LRFR@fthat isnotrepresented by a node SL.5 Tree(wy,).

Lemma 1 If an LRF z of wy, is not represented by a node 8L.5Tree(wy), thenmax BP,,, (x) =
min BP,, (x) + |z|.

Proof. Leti = min BP,, (z) andj = max BP,, (z). Sincex is a repeating factor aby, | BP,, (z)| > 2,
which means that # j. If wi[i + |z|] # wk[j + |z|], then it contradicts the precondition thats not
represented by a node 6.5Tree(wy). Hence we haveu,|i + |z|] = wg[j + |z|]. Moreover, since
x is an LRF ofwy, we havej > i + |z|. However, if we assumg > i + |z|, this contradicts the
precondition thatr is an LRF ofwy, sincew[i + |z|] = wi[j + |z|] and we obtain a longer LRF
wili i+ |z|] = wil[j : j + |z|]. Hence we havg = i + |x|. O

The above lemma implies that an LRHs not represented by a node 8L.S5 Tree(wy,) only if the
first and the last occurrences ofform asquarexx in w,. For example, see Figurethat illustrates
SLSTree(wy) for w = ababa$. One can see thab is an LRF ofw, but it is not represented by a node
of SLSTree(wy).

However, the following lemma guarantees that it is indeed sufficient to consider the strings repre-
sented by nodes &fLSTree(wy) as candidates fab RF (wy,).

Lemma 2 Letx be an LRF ofw; that is not represented by a node $%S7Tree(wy). Then, there exists
another LRFy of wy, that is represented by a node 8.5 Tree(wy,) such thatz| = |y|. Moreover,z is
no longer present im; after a substitution foy (see also Figure).

Proof. Leti = min BP,,, (x) andj = max BP,, (x). It follows from Lemmal thatj = i+ |z|. Suppose
thatz is represented on an edge from some nottesome node of STree(w). Letu = str(t). Then we
haveBP,, () = BP,, (u). Lety be the suffix ofu of length|x|. Itis clear that + |u|—|y|, j+|u|—|y| €
BPy,(y). Sincej =i + |x| =i + |y|, #occ,, (y) > 2. Thusy is an LRF ofw,. Sinceu is represented
by nodet andi = min BP,, (v) andj = max BP,,, (u), we know thatw[i + |u|] # wi[j + |u|]. Hence
y is represented by a node 8£5Tree(wy). Sincex occurs only within the regiony[i : j + |u| — 1],
does not occur i, ; after a substitution foy. O

In the running example of Figurk ba is an LRF ofw, that is represented by a nodeSi.S Tree (wy).
After its two occurrences are replaced by a non-terminal symbgoihenab, which is an LRF ofw, not
represented by a node 81.5Tree(wy), is no more present im; = aA; A;$.

After constructingSLS Tree(wy) = SLSTree(w), we create a bin-sorted list of the internal nodes
of SLSTree(w) in the decreasing order of their lengths. This can be done in linear time by a standard
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Figure 2. lllustration for proof of Lemma2. Sincewu is represented by a node of
SLSTree(wy,), we know thatwy[i + |u|] # wi[j + |ul].

Wk | __a b

| y y

traversal onSLSTree(w). We remark that a new internal nodenay appear ir6LSTree(wy) for some
k > 1, which did not exist inSLSTree(wy—). However, we have thdtn(v) < |LRF (wg_1)|. Thus, we
can maintain the bin-sorted list by inserting nadi& constant time.

Given a nodes in the bin-sorted list, we can determine whethaf(s) is repeating or not by using
SLSTree(wy), as follows.

Lemma 3 Lets be any node af LS Tree(wy,) with len(s) < |LRF (wy)| and letsy, . . ., s, be the children
of s. ThenBP,, (str(s)) is a disjoint union ofBP,, (str(s1)), ..., BPy, (str(se)).

Proof. Clear from the definition obLS Tree(wy,). O]

Lemma 4 For any nodes of SLSTree(wy,_1) such thal LRF (wy,)| < len(s) < |LRF (wy,_1)], it takes
amortized constant time to check whether or tofs) is an LRF ofwy,.

Proof. Let sy, . . ., s, be the children of. Then,str(s) is repeating if and only if
max{max BP,, ,(s;) |1 <1i</{} —min{min BP,, ,(s;) |1 <j </} > len(s).

Remark that the values afin BP,, ,(s;) andmax BP,,, _,(s;) are stored in node; and can be referred
to in constant time. Since the above inequality is checked at most once for each ioalees amortized
constant time. O

Suppose we have found an LRFwof as mentioned above. In the sequel, we show our greedy strategy
to select occurrences of the LRFun, to be replaced with a new non-terminal symbol.
The next lemma is essentially the same as Lemma 2 of Kida f]al. [

Lemma 5 For any non-repeating factar of wy, BP,,, (x) forms a single arithmetic progression.

Therefore, for any non-repeating factoof wy, BP.,, (x) can be expressed by an ordered triple con-
sisting of minimum elementin BP,, (z), maximum elementhax BP,, (z), and cardinality BP,,, (z)|,
which takes constant space.

Lemma 6 Let s be any node o8LS Tree(wy) such thatstr(s) is an LRF ofwy, ands’ be any child of
s. Then,BP,, (str(s’)) contains at most two positions corresponding to non-overlapping occurrences
of str(s) in wg.



Algorithms2009 2 1436

Proof. Assume for contrary thaBP,,, (str(s")) contains three non-overlapping occurrencestofs),
and let them be, , i, i3 in the increasing order. Then we have

i3 — (i1 + len(s) — 1) > i3 — i > len(s) > 1,

which implies thatwy[i; : i + len(s)] andwy[is : i3 + len(s)] are non-overlapping. Moreover, since
len(s") > len(s), we havewy[i; : iy + len(s)] = wygliz : i3 + len(s)]. However, this contradicts the
precondition thattr(s) is an LRF ofwy,. O

From Lemmab, each childs’ of nodes such thatstr(s) is an LRF, corresponds to at most two non-
overlapping occurrences otr(s). Due to Lemma3, we can greedily select occurrencessof(s) to
be replaced by a new non-terminal symbol, by checking all children ., s, of nodes. According to
Lemmabs, it takes amortized constant time to select such occurrences for each.node

Note that we have to select occurrencesiofs) so that no occurrences efr(s) remain in the text
string, and at least two occurrencessof(s) are selected. We remark that we can greedily choose at
leastmax{2, #occ(str(s))/2} occurrences.

3.2. How to UpdateSLSTree(w} ') to SLSTree(w?)

Let L be the set of the greedily selected occurrencesif (wy) in wy,. Foranyd < ¢ < |L|, letw}
denote the string obtained after replacing the fistcurrences of. RF (wy) with non-terminal symbol
Apy1. Namely,w? = wy, andeL‘ = Wpp 1.

In this section we show how to updatd.STree(w; ') to SLSTree(w). Letp be the beginning
position of thei-th occurrence in.. Assume that we havBLSTree(w; '), and that we have replaced
wi p : p+ |LRF(wy)| — 1] with non-terminal symboH,,,; such thaf A, | = |LRF (w})|. We now
havew?, and we have to updatel.S Tree(w} ') to SLSTree(w?).

A naive way to obtainSLSTree(w?) is to remove all the suffixes ab;, ' from SLSTree(w] ') and
insert all the suffixes of, into it. However, since only the nodes not longer tHdt¥ (w;,) are important
for our longest-first strategy, only the suffixes ' [p—t :] suchthat < ¢ < |LRF (wy)| andw} '[r] €
for anyp — t < r < p have to be removed froiL.S Tree(w} '), and only the suffixes)i[p — ¢ :] have
to be inserted into the tree (see the light-shaded suffixes of Fijure

Lemma 7 For anyt, letr be the shortest node 6T.5Tree(w} ') such thatwi[p —t : p — 1] is a prefix
of str(r). Assume — t = min BP i1 (str(r)).

1. If len(r) > |LRF (wy)| +t — 1, then there exists an edge #L.STree(w},) from the root node to
leaf ,_, labeled withw [p — ¢ -].

2. If len(r) < |LRF(wy)| +t — 1, then there exists a nodein SLSTree(w}) such thatstr(s) =
wj[p—t : p—1] ands has an edge labeled with; [p ;] = A,w}[p+|A,| :] and leading tdeaf ,_,.

Proof. Consider Casé (see also Figurd). Sincet > 1, len(r) > |LRF(wy)|. Hencestr(r) is a
non-repeating factor af;. By Lemmabs, BPwi—l(St’f’(T)) forms a single arithmetic progression. Also,
sincelen(r) > |LRF (wg)|, max B.Pw271<5t7"<7’)) — min BPwIiCA(str(r)) < |LRF(wy)|. Therefore, if
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Figure 3. LRF(wy) at positionp of wj ' is replaced by non-terminal symbdl, in w?.
Everyw; '[p — t :] is removed from the tree and every[p — ¢ :] is inserted into the tree
(the light-shaded suffixes in the right figure). In addition, evefy'[p + h :] for 1 < h <

|LRF (w;)| — 1 is removed from the tree (the dark-shaded suffixes in the right figure).

‘ p-t P PpFILRF(wi)|-1 ' p-t p pHILRF(wi)|-1
wi'l [ LRE(wh | | wi| [ A ] |
| = § [ : '

| L

| 5 L

| 5 |

L |
[ |
L]

Figure 4. lllustration of Casel of Lemmay.

ey
willp-tp-1]

|LRF(wi)[+2-1

p—t = min Bpwifl(StT(T)), thenBP,,; (wj[p —t :]) = {p — t}. Hence there exists an edge from the
root node tdeaf,_, labeled withwj [p — ¢ :] in SLSTree(w}).

Consider Cas@ (see also Figur®). Letu = w, '[p—t :p—1] = wi[p—t : p—1]. Then
lu| =t — 1. Sincelen(r) < |LRF(wg)| +t — 1, and since- is not longer than the reference node in the
path spelling out: LR F (wy,) from the root node of LS Tree(w? ), there exists at least one integeisuch
thatm € BP; (str(r)) andm ¢ BP,; (uAy). Hence there exists a noden SLSTree(w}) such that
str(s) = u and has an out-going edge labeled witfjp :| = A,wj[p + |Ax| :] and leading tdeaf,, ;.

0

Itis not difficult to see that the edge in each case of Lerdmlaes not exist if LS Tree(w) *). Hence
we create the edge when we upd&feS Tree(w; ') to SLSTree(w?,).
The next lemma states how to locate ned# Case2 of Lemmay.

Lemma 8 For eacht, we can locate node such thatstr(s) = wi[p —t : p — 1] in amortized constant
time.

Proof. Let z,,_; be the longest node in the tree such thatz, ;) is a prefix ofwi[p —t : p — 1].
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Figure 5. lllustration of Case of Lemmay.

| /f\ s
wi ' [p-t:p-1] . wilp-tp-1]

|LRF(wi)[+2-1 J
=) 2
‘f / Aowi[p+]4:]
Ci
/ *

Consider the largest possitl@nd denote it by,.x. SinCetyax < |LRF (wy)|, the noder,_;, .. can
be found inO(|LRF (w;,)|) time by going down the path that spells ajt{p — ¢ ... : p — 1] from the root
node (recall thak is fixed). Letz € X* be the string such thatr(x,_,.. )z = Wi[p — twmax : p — 1]. If
z # ¢, then we create a new child nodg ;.. of z, ... such thattr(s, ...) = Wi[p — tmax : p — 1].
Otherwise, weset, ; =z, . .

Now assume that we have located nodgs ands,_,. We can then locate,_,, as follows. Consider
nodex,_,.1. Remark thatstr(suf (z,_)) is a prefix ofstr(x,_,11), and thus we can detegt_;., in
O(|str(zp—i11)| — |str(suf (z,—.))|) time by using the suffix link. After finding,,_.,, we can locate or
creates,_.; in constant time.

The total time cost for detecting,_, for all 1 <t < ¢, is linear in

tmax

> (Istr(wyrea)| = [str(suf (zp-0)])

=2
— Jstr(zp)] — [str(suf (zp )
b Jstr(zya)| — [str(suf (zp5))
8t (@t 1) | — |5 (sUf (2p—tyn))]
— Jstr(epn)] — 35T 2y )| + s — 2
= |str(zp—1)| — |str(Tp—tmu)| + tmax — 1
< tmax < |LRF (wy)].

Hence we can locate easgfy, in amortized constant time. O

Letv be the reference node in the path from the root to sémfg_,. Assume thateaf, , is removed
from the subtree of, and redirected to nodein the same path, such that(s) = wi[p—¢:p—1]. In
order to updateSLS Tree(w) ') to SLSTree(w}), we have to maintain triplémin(v), max(v), card(v))
for nodev. One may be concerned thatzf— ¢ is neithermin(v) or max(v) andcard(v) > 4 in
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Figure 6. lllustration of proof for Lemma.

sty

w T e [ ]

m a b m|str(v)|-1

— str(v)

T e ]

n a' b' ntstr(v))-1

SLSTree(w; '), the occurrences oftr(v) in SLSTree(w:) do not form a single arithmetic progres-
sion any more. However, we have the following lemma. For any fagtof w;, let Dead (y) =
BP i-1(y)\BP.; (y), namely,Dead,; (y) denotes the occurrencesyoin w; ! that overlap with thé-th
greedily selected occurrence bRF (wy,) in wy.

Lemma 9 Letwv be any reference node 61.5Tree(w},) such that#occ,, (str(v)) = 1. For any integer
m,n, if m,n € BP,; (str(v)), then there is no integersuch thatn < r < n andr € Dead,; (str(v)).
(See Figured).

Proof. Assume for contrary that there exists integesuch that- € Dead,,; (str(v)) andm < r < n.
Sincer € Dead,; (str(v)), there exist integers, b such thate < r < b, andb — a + 1 = 2|LRF (wy)|.
For any integerj such thats < ;7 < bandj € BPwF(str(v)), we havej € Dead,; (str(v)). Since
m,n ¢ Dead,; (str(v)), m < a < b < n. As str(v) is non-repeatingp < m + len(v) — 1. Since
m<a<b<m+len(v)—1,wla : b is afactor ofstr(v). Therefore, there exist two integerst’ such
thatwla' : b'] = wla : b]. Sincem <a <b<n <d <V <n+len(v) — 1, wla : b] is repeating and
lwla : b]| =b—a+1=2|LRF(wy)| > |LRF(wy)|. It contradicts thal.RF'(wy) is an LRF ofw,. O

Recall thatp is the beginning position of theth largest greedily selected occurrenceldtF (wy)
in wy. Also, for anyl < t < |LRF(wy)| such thatw] '[r] € ¥ for everyp — ¢ < r < p, we have
removedieaf, , from the subtree rooted at the reference nod@d have reconnected it to nogisuch
thatstr(s) = wj[p — t : p — 1]. According to the above lemma,ifin(v) < p — ¢ < max(v), leaf; for
everyp —t < j < max(v) is removed from the subtree of After processindeaf, ;, thenmax(v) is
updated tg — t — d whered = (min(v) + max(v))/card(v) is the step of the progression, andd(v)
is updated tqmax(v) — (p —t))/d + 1.

Notice thatleaf, , for every0 < h < |LRF(w;)| — 1 has to be removed from the tree, since
wi[p + h] ¢ ¥ and therefore this leaf node should not existSihS Tree(w}) (see the dark-shaded
suffixes of Figure3). Removing each leaf can be done in constant time. Maintaining the information
about the triple for the arithmetic progression of the reference nodes can be done in the same way as
mentioned above.

The following lemma states how to locate each reference node.

Lemma 10 Let p be thei-th greedily selected occurrence bRF (wy) in wy. For any integer/ such
thatw! '[¢] € %, letv(¢) denote the reference node $.S Tree(w) ') in the path from the root spelling
out suffixw!'[¢ :]. For each; such thatp — |LRF(w)| < j < p+ |LRF(w;)| — 1, we can locate the
reference node(;) in amortized constant time.
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Figure 7. The left figure illustrates how to find(j) from v(j — 1). The right one illustrates
a special case whetgj) = leaf ;. Oncev(j) = leaf ;, it stands thav (k) = leaf, for any
J<k<p-1

O/ gg“?”m*

\
feaf

Proof. Let ¢ = |LRF (wy)|. We findv(p — ¢) by spelling outw; '[p — ¢ :] from the root inO(¢) time,
since there can be at mast- 1 nodes in the path from the root tgp — /).

Suppose we have foundj — 1). We findv(j) as follows. Letu(; — 1) be the parent node of
v(j —1). We havelen(u(j — 1)) < ¢ andlen(v(j — 1)) < £+ 1. We go tosuf (u(j — 1)). Since
len(suf(u(j — 1)) + 1 = len(u(y — 1)), we havelen(suf (u(j — 1))) < ¢+ 1. Thus, we can find
v(j) by going down the path starting frosaf (u(j — 1)) and spelling outs} '[j — 1 + len(u(j — 1)) :
j—1+len(v(j — 1)) = wy '[j + len(suf(u(j — 1)) : j — 1+ len(v(j — 1))]. (See also the left
illustration of Figure?).

A special case happens when there exists a notethe path from the root tdeaf;, such that
len(s) = ¢ and the edge from in the path starts with some non-terminal symbigl with h < k.
Namely,wi[j + ¢] = A,. Due to the property of the longest first approach, we Hhae > ¢. Thus
v; = leaf ;. Moreover, foranyj < k <p — 1, v(k) = leaf,. (See also the right illustration of Figure
7). Itis thus clear that eaci(k) can be found in constant time. Sinc#,| > ¢ = LRF (wy), the leaves
corresponding ta} '[p + = — 1 :] with 1 < 2 < ¢ do not exist iNSLS Tree(w}, ). O

From the above discussions, we conclude that:

Theorem 1 For any stringw € >*, the proposed algorithm for text compression by longest first substi-
tution runs inO(|w|) time usingO(|w|) space.

Pseudo-codes of our algorithms are shown in Algoritin and3.
3.3. Reducing Grammar Size

In the above sections we considered text compression by longest first substitution, where we construct
a context free grammar that generates only a given string By Observatiori, for any production rule
Ay — x, of G, x;, contains only terminal symbols froba. In this section, we take the factorsof into
consideration for candidates of LRFs, and also replace LRFs appearing This way we can reduce
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Algorithm 1: Recursively find longest repeating factors.

10

11

12

13

14

SLSTree := sparse lazy suffix tree af; bins := bin-sorted nodeden := |w
while true do

Input: Stringw ending with a unique symbol
Output: Set of grammar rules which produae greedily selected by substituting longest repeating

factors
rules :=

while (n = bins.getNextOfLength(len)) = null do
if len < 2then return rules;
foreach x € bins(len) do updatex.min, x.max, x.card from children;
len-- ;
updaten.min, n.max, n.card from children;
if n.max — n.min > n.pathlen/* n is repeating factor */ then
nonTerm := new non-terminal symbol,
rules := rules U {nonTerm — n.path };
gso := getGreedilySelectedOccurrences(n);
updateSLSTree(w, n.pathlen, nonTerm, gso, SLSTree, bins);

Algorithm 2 : updateSLSTree

Input: (w, LRFlen, nonTerm, gso, SLSTree, bins)

1 foreachoccpos € gso do

10

11

for pos = max{1, occpos — LRFlen} to min{|w|, occpos + LRFlen — 1} do
v := find first node on path to legdos such that.pathlen > LRFlen;
delete leapos; maintainv.card, v.min, v.max;
if pos < occpos && notDead(pos) then
s := find/create node on path to lgabs such thas.pathlen = occpos — pos;
if s was newly createthen bins(s.pathlen).addNode(s);
recreate leapos:(min, max, card) = (pos, pos, 1); add edgeg, nonTerm, pos);
if pos > occpos thenw pos|] = e; markDead(pos);
w| occpos] := nonTerm; markDead(occpos);

return
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Algorithm 3: getGreedilySelectedOccurrences
Input: LRFnode

Output: Set of greedily selected occurrenced. 8Fnode.path
1 gso := {;
2 foreach c € LRFnode.children do
3 occ :=0;
4 if notDead(c.min) then occ := c.min;
5 else occ := find first occurrence of RFnode.path afterc.min+endOfDeadArea[ c.min| ;
6 if occ # 0 &&notDead(occ+LRFnode.pathlen—1) then

7 gso := gso U {occ};

8 for pos = occ to occ+LRFnode.pathlen—1 do

9 \ markEndOfDeadArea(pos, occ+LRFnode.pathlen—1);

10 occ := occ + LRFnode.pathlen ;

11 if notDead(occ) &&notDead(occ+LRFnode.pathlen—1) then gso := gso U {occ};

12

13 return gso;

the total size of the grammar. In so doing, we consider an LRF of stfing w;$0z1$: - - - 1.8, where
2o = wy = w and eacl$; appears nowhere else ip.

Example. Let w = wy = zy; = abaaabbababb$,. We replace an LRRbb with A, and obtain the
following grammar: S — abaaAabA$,; A — abb. Then,w; = abaaAabA$, and LRF(z,) =

abb. Now, z; = abaaAabA$,abb$;. We replace an LRRb of z; with a non-terminalB, getting
S — BaaABAS$,; A — Bb; B — ab. Then,w, = BaaABAS$, and LRF(z;) = ab. Now, z, =

BaaABAS$,Bb$,ab$,. Since there is no LRF of length more than Linwe are done.

We call this method of text compressibRS2
Theorem 2 Given a stringw, the LFS2 strategy compressesn linear time and space.

Proof. We modify the algorithm proposed in the previous sections. If we have a generalized SLSTree
for set{wy, 2131, ..., 2x3; } of strings, we can find an LRF af, = wyx1$; - - - 2,8, It follows from the
property of the longest first substitution strategy that > |x;| for any: < j. Therefore, any new node
inserted into the generalized SLSTree {ar, 219;, ..., 2,131} is shorter than the reference nodes

of the tree. Thus, using the Ukkonen on-line algoritiz8][ we can obtain the generalized SLSTree

of {wy, =1%1,...,7,8:}, by inserting the suffixes of each.$; into the generalized SLSTree §fu;,

181, .. T 1$k 1} in O(|z;.$;|) time. It is easy to see that the total lengthagf,, ... ;8. ... is
Oful). O

4. Conclusions and Future Work

This paper introduced a linear-time algorithm to compress a given text by longest-first substitution
(LFS). We employed a new data structure called sparse lazy suffix trees in the core of the algorithm.
We also gave a linear-time algorithm for LFS2 that achieves better compression than LFS.
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A related open problem is the following: Does there exist a linear time algorithm for text compres-
sion by largest-area-first substitution (LAFS)? The algorithm presentédjiugesminimal augmented
suffix treegfMASTrees [31] which enable us to efficiently find a factor of the largest area. The size
of MASTrees is known to be linear in the input siZ2], but the state-of-the-art algorithm 08%] to
construct MASTrees take3(n log n) time, wheren is the input text length. Also, the algorithm &fJ]
for LAFS reconstructs the MASTree from scratch, every time a factor of the largest area is replaced by a
new non-terminal symbol. Would it be possible to update a MASTree or its relaxed version for following
substitutions?
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Appendix

In this appendix we show that the algorithm of Lanctot et 28] for LFS2 takesO(n?) time, where
n is the length of the input string.
Consider string

w = wy = Zy = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$

The Lanctot algorithm constructs a suffix treexafconstructs a bin-sorted list of internal nodes of the
tree, and updates the tree in a similar way to our algorithm in Se8titinHowever, a critical difference
is that any node of their tree structure doewt store an ordered triplémin(v), max(v), card(v)) such
thatmin(v) = min BP,,(str(v)), max(v) = max BP,,(str(v)), andcard(v) = BPw(str(v))|.

See Figure3 which illustrates the suffix tree a#.

A bin-sorted list of internal nodes &f7ree(w) in decreasing order of their length is as follows:

: aaaabbbbb

: aaabbbbb

: aabbbbb, aaaaaaa
: abbbbb, aaaaaa

: bbbbb, aaaaa

: bbbb, aaaa

: bbb, aaa

: bb, aa

:b,a

= N W ke Ot O 1 00 ©

In [28], Lanctot et al. do not mention how they find occurrences of each node in the sorted list. Since
they do not have an ordered trighein(v), max(v), card(v)) for each node, the best possible way is to
traverse the subtree ofchecking the leaves in the subtree. Now, for the first LRF-candidaigbbbbb,
we get positiond and13 and find out thatLRF'(w) = LRF(z,) = aaaabbbbb. Then we obtain

w, = aaaAAcaaaaaaaa$,

whereA is a new non-terminal symbol that replade8/'(z,) = aaaabbbbb.
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Figure 8. STree(w) with w = aaaaaaabbbbbaaaabbbbbcaaaaaaaa$.

Now see Figur® which illustrates a generalized sparse suffix tree for

21 = aaaAAcaaaaaaaa$aaaabbbbb.

To find LRF(z,), we check the nodes in the list as follows.

e Length 8. The generalized suffix tree has no node represemitgpbbb, and hence it is not an
LRF.

e Length 7. Since nodgaaaaaa exists in the generalized suffix tree, we traverse its subtree and find
2 occurrence83 and24 in z;. However, it is not an LRF of;. The other candidateabbbbb does
not have a corresponding node in the tree, so it is not an LRF, either.

e Length 6. Nodexaaaaa exists in the generalized suffix tree and we find 3 occurre®gest and
25 in z; by traversing the tree, but it is not an LRF. The tree has no node correspondistgptsb,
hence it is not an LRF.

e Length 5. Nodenaaaa exists in the generalized suffix tree and we find 4 occurreRge®4, 25
and26 in z; by traversing the tree, but it is not an LRF. There is no node in the tree corresponding
to bbbbb.
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Figure 9. Generalized sparse suffix treef= aaa A Acaaaaaaaa$aaaabbbbb#.

e Length 4. Nodexaaa exists in the generalized suffix tree and we find 5 occurred®est, 25, 26
and27. Now 23 and27 are non-overlapping occurrencesaaha, and hence it is an LRF af;.

Focus on the above operations where we examined factors of lengths from 7 to 5. The total time cost
to find the occurrences for the LRF-candidates of these lengths is proportional to 2 + 3 ndnbudf
them is an LRF of; in the end.

In general, for any input string of the form

w = a2k lpktlghph+l o 2kg

Y

the time cost of the Lanctot algorithm for findirdg? 7' (2, ) is proportional to

2434+ k= (k—1)2(k:+2)_

Sincek = O(Jw|) = O(n), the Lanctot algorithm take@(n?) time.

In his PhD thesis33], Lanctot modified the algorithm so that all the occurrences of each candidate
factor inw are stored in each element of the bin-sorted list (Section 3.1.3, page 55, line 1). However,
this clearly require$)(n?) space. Note that using a suffix array cannot immediately solve this, since the
lexicographical ordering of the suffixes can change due to substitution of LRFs, and no efficient methods
to edit suffix arrays for such a case are known.
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On the contrary, as shown in SectiBn each node of our data structure stores an ordered triple
(min(v), max(v), card(v)), and our algorithm properly maintains this information when the tree is up-
dated. Using this triple, we can check in amortized constant time whether or not each node in the
bin-sorted list is an LRF. Hence the total time cost remaifs).

(© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).
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