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Abstract: Recently a Delaunay refinement algorithm has been proposed that can mesh
piecewise smooth complexes which include polyhedra, smooth and piecewise smooth
surfaces, and non-manifolds. However, this algorithm employs domain dependent numerical
predicates, some of which could be computationally expensive and hard to implement.
In this paper we develop a refinement strategy that eliminates these complicated domain
dependent predicates. As a result we obtain a meshing algorithm that is practical and
implementation-friendly.
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1. Introduction

Delaunay mesh generation of non-smooth domains such as piecewise smooth surfaces and complexes
is a difficult challenge. Aided by recent developments in sampling theory and computational topology,
Chew’s furthest point strategy [1, 2] (Delaunay refinement) has been applied to generate Delaunay
meshes for smooth surfaces with provable guarantees [3, 4]. The lack of global smoothness poses
two main difficulties in extending these methods to non-smooth domains. First, the sampling theory
developed for smooth surfaces breaks down for non-smooth surfaces. Secondly, small input angles
possibly present at non-smooth regions pose problems for the termination of Delaunay refinement [5].
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Boissonnat and Oudot [6] gave a provable algorithm for a class of non-smooth surfaces called
Lipschitz-surfaces. They showed that their algorithm for smooth surface meshing [3] extends to this
class only if input angles are sufficiently large. Unfortunately, this approach failed to admit small input
angles which limited the input class. Rineau and Yvinec [7] implemented an algorithm for meshing
volumes bounded by piecewise smooth surfaces; their approach also suffers from an angle constraint.
Recently Cheng, Dey and Ramos [8] proposed an approach that completely removed any constraint
on input angles. As a result their algorithm could accommodate large class of input domains called
piecewise smooth complexes (PSCs). This class includes polyhedral domains, smooth and piecewise
smooth surfaces, and even non-manifolds.

The algorithm of [8] uses the idea of protecting non-smooth curves and vertices in the input complex
with balls. This idea already gave good results in the polyhedral case [9–11]. A novelty introduced by
Cheng et al. is that they turn the balls into weighted points and then carry out the mesh refinement in the
weighted Delaunay triangulation [12, 13]. Notwithstanding its theoretical success, practical relevance of
this algorithm remains questionable. It employs some expensive numerical computations that are hard to
implement. Unless these computations are removed, one cannot expect a practical solution for Delaunay
mesh generation of PSCs. The goal of this paper is to design a refinement strategy without expensive
predicates so that it becomes implementation-friendly and practical.

Bottleneck. Consider a smooth surface given by an implicit equation. To generate a meaningful mesh
for this surface, one needs to sample it at a scale that captures its smallest local variations. One approach
would be to guess a scale and sample the surface with it. If the guess is right, sampling with the furthest
point strategy gives a mesh with provable guarantees as shown by Boissonnat and Oudot [3]. A second
approach would be to compute a version of the local length scales and mesh the surface with those scales.
The algorithm of Cheng et al. [8] works on this latter principle. It computes how a curve or a surface
varies normal-wise around a point. It also computes separation distances between different elements
(vertices, curves, and surfaces) to capture separation feature size (gap size) in the sense of [9, 14]. These
assumed powerful numerical primitives allow Cheng et al. to determine the size of the protecting balls
with certain desirable properties and allow them to sample surface patches at appropriate length scales.
Unfortunately, these computations are expensive and are hard to implement which makes the algorithm
impractical.

Solution. To circumvent the problem we follow the guessing approach. We would like to guarantee
that even if the guess is incorrect, the algorithm terminates and outputs a mesh which approximates the
input complex at a coarse level. A main difficulty in this approach is to formulate a unified refinement
strategy that captures the input topology correctly when the guessed scale is right and outputs a mesh
with some reasonable properties all the time. To reach this goal we formulate a disk condition that
says that the output mesh should have a topological disk formed by triangles around each vertex. This
disk condition drives the refinement, that is, we go on refining protecting balls or surface meshes if this
disk condition fails. If this refinement terminates, the disk condition necessarily holds for the output
mesh. Then, by PL topology, the output Delaunay mesh restricted to each manifold surface patch is a
manifold. Furthermore, the input incidence structure among different elements in the PSC is maintained.
The output may not be homeomorphic to the input since a small feature such as a small handle may not
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be detected at the length scale the algorithm is asked to operate. However, a homeomorphic meshing is
guaranteed when the supplied scale is sufficiently small. Actually, in practice, the disk condition usually
suffices to provide a homeomorphism.

One of our main tasks is to prove that the refinement always terminates. To this end we use the
following result. If the protecting balls are sufficiently small and satisfy some separation properties
(conditions C1-C3 in Section 2.), then the disk condition holds if the restricted Delaunay triangles are
sufficiently small. Therefore, the failure of the disk condition signals either balls do not satisfy separation
properties, or are large, or triangles are large. The way we compute the protecting balls, failure of
separation properties also implies that they are large. In essence, if the disk condition fails, either a ball
or a triangle is too large. The algorithm refines the larger of the two and hence guarantees that neither
a protecting ball nor a triangle gets arbitrarily small ensuring termination. One may observe that, this
strategy does not allow adaptive mesh sizing. However, one may regulate the input scale to produce
meshes at different levels of resolution.

Perhaps the most important ingredient in this approach is to maintain a set of protecting balls with the
separation properties. It turns out that it is difficult to ensure one of these properties exactly (condition
C3) when the balls are large. Instead we maintain a more relaxed condition which implies the desired
property when the balls are sufficiently small.

We have implemented our algorithm in this paper. In an earlier attempt we tried to mesh with the
disk condition but pre-computed the balls with a small radius chosen heuristically [15]. The code failed
in cases where the pre-selected size of the balls was wrong. The approach in this paper allows the
refinement algorithm to determine the balls automatically instead of pre-computing them. We report
experimental results for our protection algorithm and meshing in Section 5. The code and a video
explaining the experimental results have been released [16].

1.1. Domain

Throughout this paper, we assume a generic intersection property that a k-manifold σ ⊂ R3,
0 6 k 6 2, and a j-manifold σ′ ⊂ R3, 0 6 j 6 2, intersect (if at all) in a (k + j − 3)-manifold if
σ ̸⊂ σ′ and σ′ ̸⊂ σ. We will use both geometric and topological versions of closed balls. A geometric
closed ball centered at point x ∈ R3 with radius r > 0, is denoted as B(x, r). We use intX and bdX to
denote the interior and boundary of a topological space X, respectively.

The domain D is a piecewise smooth complex (PSC) where each element is a compact subset of a
smooth (C2) k-manifold, 0 6 k 6 2. Each element is closed and hence contains its boundaries. For
simplicity we assume that each element has a non-empty boundary (used in Lemma 8, this restriction
can be removed by some added complication in the initialization of the algorithm). We use Dk to denote
the subset of all k-dimensional elements, the kth stratum. D0 is a set of vertices; D1 is a set of curves
called 1-faces; D2 is a set of surface patches called 2-faces. For 1 6 k 6 2, we use D6 k to denote
D0 ∪ . . . ∪Dk.

The domain D satisfies the usual proper requirements for being a complex: (i) interiors of the elements
are pairwise disjoint and for any σ ∈ D, bdσ ⊂ D; (ii) for any σ, σ′ ∈ D, either σ ∩ σ′ = ∅ or σ ∩ σ′ is
a union of elements in D. We use |D| to denote the underlying space of D. For 0 6 k 6 2, we also use
|Dk| to denote the underlying space of Dk.
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1.2. Complexes

We will be dealing with weighted points and their Delaunay and Voronoi diagrams. A weighted point
p with weight ωp is represented as a ball b = B(p, ωp). The squared weighted distance of any two points
p and q is d̂(p, q)2 = d(p, q)2 − ω2

p − ω2
q where ωp and ωq are the weights of p and q respectively. With

this definition, an unweighted point x ∈ R3 has a distance of d̂(x, p) =
√
d(x, p)2 − ω2

p from p. Under

the distance metric d̂(·, ·), one can define weighted versions of Delaunay and Voronoi diagrams. For a
weighted point set S ⊂ R3, let VorS and DelS denote the weighted Voronoi and Delaunay diagrams
of S respectively. Each diagram is a cell complex where each k-face is a k-polytope in VorS and is a
k-simplex in DelS. Each k-simplex ξ in DelS is dual to a (3− k)-face Vξ in VorS and vice versa.

Let S be a point set sampled from |D|. For any sub-collection X ⊂ D we define DelS|X to be the
Delaunay subcomplex restricted to X, i.e., each simplex ξ ∈ DelS|X, called a restricted simplex, is the
dual of a Voronoi face Vξ where Vξ|X = Vξ ∩ |X| ̸= ∅. By this definition, for any σ ∈ D, DelS|σ denotes
the Delaunay subcomplex restricted to σ, and DelS|Di

=
∪

σ∈Di
DelS|σ and DelS|D =

∪
σ∈D DelS|σ.

An i-face σ ∈ Di should be meshed with i-simplices. However, DelS|σ may have lower dimensional
simplices not incident to any restricted i-simplex. Therefore, we compute special sub-complexes of
restricted complexes. Define the following i-dimensional subcomplexes (see Figure 1):

Skli S|σ = {t | t ∈ DelS|σ

is an i-simplex or a sub-simplex of an i-simplexand

Skli S|Di
=

∪
σ∈Di

Skli S|σ.

Figure 1. (left) DelS|σ and (right) Skl2 S|σ There is one extra edge in DelS|σ which is not
in Skl2 S|σ.

2. Protection and Refinement

The meshing algorithm computes a set of balls protecting 1-faces. Unlike [8], the protecting balls
are adjusted on the fly as refinement proceeds. It inserts points in 2-faces to refine the triangulation.
The protecting balls and the triangulation are refined simultaneously either to satisfy a disk condition or
to achieve a refinement level dictated by an input scale parameter. In what follows all skipped proofs
appear in the appendix.
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2.1. Covering 1-faces

Let σ(x, y) denote the curve segment oriented from x to y on any 1-face σ. In this notation σ = σ(u, v)

where σ is oriented from the end point u to the other end point v. Let b = B(c, r) be a ball with
c ∈ σ(x, y). The intersection b∩σ is a set of curve segments. Among them the curve segment containing
c is called the segment of b in σ, segσ(b), see Figure 2. Two balls b and b′ with their centers c and c′

respectively on a 1-face σ are adjacent if σ(c, c′) does not contain any other ball center. In this case the
corresponding weighted vertices of b and b′ are also called adjacent. Any two balls or weighted vertices
that are not adjacent are called non-adjacent. We use d(x, y) to denote the Euclidean distance between
two points x, y and use dσ(x, y) to denote the length of a curve segment σ(x, y). Let b0, b1, ..., bk be a set
of balls that protect σ where bi = B(ci, ri) with ci ∈ σ. We require that the balls satisfy the following
conditions:

(C1) b0 and bk are centered at u and v respectively. These will be called the vertex balls.

(C2) σ is covered by the balls, that is, σ ⊆ ∪isegσ(bi) and any two adjacent balls b = B(c, r) and
b′ = B(c′, r′) intersect deeply, that is, d(c, c′) 6 r + 6r′

7
where r′ 6 r.

(C3) No point in segσ(bi) is contained in a ball non-adjacent to bi.

Notice that the choice of the constant 6
7

in C2 is a little arbitrary. We need only a factor of r′ in the
expression and a follow-up analysis with other constants are also possible.

Figure 2. Covering 1-faces : (left) A 1-face σ between u and v is being protected. The ball
b shown with solid boundary has segσ(b) as the curve segment between x1 and x2. The balls
satisfy C1 and C2 but intersect arbitrarily. (right) Balls are refined and they start satisfying
separation properties C1-C3.
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We will maintain a point set S ⊂ D with the following properties throughout the algorithm: all points
in S except those in D6 1 are unweighted and no unweighted point has a negative weighted distance to
any other point. This means each unweighted point p ∈ S has Vp non-empty. We call such a point set
admissible.

It is worthwhile to note that one of the consequences of conditions C1-C3 would be the following
result which would imply R2 in Lemma 2.

Lemma 1 Let S be an admissible point set satisfying conditions C1-C3. Let p and q be adjacent
weighted vertices on a 1-face σ. Vpq is the only Voronoi facet in VorS that intersects σ(p, q).
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Let z be any point in σ(p, q). Let bp and bq be the balls centered at p and q respectively. The point z is
contained in bp ∪ bq. Due to property C3, z being a point in σ(p, q) cannot lie inside any ball other than
bp and bq. We remark that bp and bq may have a common intersection with another ball, but z cannot be
contained in that ball. Therefore, z cannot lie on any Voronoi facet partly defined by a point other than
p and q. However, σ(p, q) has to intersect at least one Voronoi facet since p and q lie in two different
Voronoi cells. Therefore, the only Voronoi facet which intersects σ(p, q) is Vpq.

For any σ ∈ D2 and any triangle t ∈ Skl2 S|σ, define size(t, σ) to be the maximum weighted distance
between the vertices of t and points in Vt|σ. This is the maximum weighted distance between vertices of
t and the points where the dual Voronoi edge of t intersects σ.

λ-property: We say S has the λ-weight property if each point in S has a weight at most λ > 0. We say
S has the λ-size property if size(t, σ) 6 λ for each triangle t ∈ Skl2 S|σ and S has the λ-weight property.

The following observation is at the heart of our refinement algorithm (see Section 7. in appendix for
a proof sketch).

Lemma 2 Let S ⊂ D be an admissible point set and p ∈ S be a point on a 2-face σ. Let σp ⊂ σ be the
set of all connected components in Vp|σ that intersect a Voronoi edge. There exists a constant λ > 0 so
that hypotheses H1 and H2 imply results R1 and R2 where

(H1) S satisfies λ-size property.

(H2) Weighted points in S satisfy C1-C3.

(R1) σp is a 2-disk where any edge of Vp intersects σp at most once and any facet of Vp intersects σp in
an empty set or an open curve.

(R2) If p ∈ bd σ, at least two Voronoi facets of Vp intersect bd σ, each intersecting one of the curve
segments between p and its adjacent weighted points (possibly two) in bdσ.

Interpreted in terms of the Delaunay triangulation, the conclusion of the above lemma implies that
the triangles incident to p and restricted with respect to σ form a topological disk around p. This disk
has p at the boundary if and only if p is in bd σ. Furthermore, if p is in bdσ, it is connected to its two
adjacent weighted points in bd σ on this disk. We will formulate a disk condition with these properties.
Our refinement algorithm is primarily driven by this disk condition. The conclusion of Lemma 2 fails
only if either there is a protecting ball with radius more than λ, or there is a triangle t ∈ Skl2 S|σ for
which size(t, σ) > λ for some λ > 0. However, since we do not know which of the above two cases has
happened, we take a conservative approach. We compute the maximum radius rmax of all protecting balls
and also compute the maximum dmax = size(t, σ) over all t and σ. Let x be the point of intersection
of a Voronoi edge with D which realizes dmax. If rmax > dmax we refine the largest protecting ball.
Otherwise, we insert x. In the first case we are ensured that we are refining balls of size larger than a
fixed positive constant. In the second case, we are inserting a point in a compact domain with a positive
lower bound on its distances to every other points. Termination by packing argument follows.
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For the above algorithm to work, it is important that the balls satisfy C1-C3 when balls are sufficiently
small. It turns out that it is difficult to maintain the condition C3 at early phases when the balls are
relatively large. We replace C3 by the following two conditions that are maintained by the ball refinement
algorithm. These conditions imply C3 when the balls are small enough. For a 1-face σ(u, v) covered by
balls b0, b1, .., bk these conditions are:

(C3.a) Let b = B(c, r) be any ball in {b0, b1, ..., bk}. For an adjacent ball b′ = B(c′, r′), if c′ is contained
in segσ(b), then dσ(c, c

′) > 7
6
r.

(C3.b) Any two balls centered in different 1-faces do not intersect and any two non-adjacent balls centered
on a common 1-face have a weighted distance larger than the radius of the smaller ball.

Lemma 3 There exists a λ > 0 so that, if all protecting balls are smaller than λ, C3.a and C3.b imply
C3.

Consider any two non-adjacent balls b = B(c, r) and b′ = B(c′, r′). If c and c′ are on different 1-faces,
b and b′ do not intersect by C3.b. Then C3 is satisfied trivially. So, assume that c and c′ belong to a
common 1-face σ.

We show that segσ(b) and segσ(b
′) do not intersect for sufficiently small λ. It follows from the

differentiability of σ that there exists a λ > 0 so that any ball of size smaller than λ intersects σ in
a single segment. Assuming that b and b′ have radii smaller than λ, we have b ∩ σ = segσ(b) and
b′ ∩ σ = segσ(b

′). We claim that no point in segσ(b
′) can lie in segσ(b) when λ is sufficiently small. If

there were such a point, there would exists a ball b′′ with one of the following properties: (i) either b′′ is
adjacent to b and its center c′′ lies in segσ(b), or (ii) b′′ is adjacent to b′ and c′′ lies in segσ(b

′). Without
loss of generality, assume that (i) holds since the other case can be argued exactly the same way.

We know that the length dσ(c, c
′′) is at least 7

6
r by property C3.a. Making λ sufficiently small, d(c, c′′)

can be set arbitrarily close to dσ(c, c
′′) which would imply that dσ(c, c′′) can be made arbitrarily close to

r. This would contradict that dσ(c, c′′) is at least 7
6
r. Therefore, we can claim that the curve segments of

two non-adjacent balls cannot intersect if they are centered on a same 1-face σ.

2.2. Ball refinement

The ball refinement routine simply removes a ball and covers the curve segment between the centers
of its adjacent balls with balls of smaller radii. Therefore, we encounter the generic situation where a
curve segment σ(x, y) needs to be covered by protecting balls whose radii are determined by a given
parameter α > 0. The points x and y are the right and left end points of some segments, say segσ(b0)

and segσ(bk) respectively, see Figure 3. We call this routine COVER(x, y, α).
We proceed from x toward y along the curve while computing the balls that satisfy conditions C1,

C2, and C3.a. Condition C3.b is taken care of by another routine called SEPARATE. As we walk from x

to y, each step places a new ball of radius α that intersects deeply with the previous ball while covering
a new piece of the curve. When we reach y, we place a ball that intersects deeply with both the endpoint
ball and the previous one in the walk.

More specifically, suppose that bi = B(ci, ri) is already computed. Let σ(xi, yi) = segσ(bi). We
compute a small ball βi+1 = B(yi, α/3) that aids the computation of bi+1, see Figure 3. The aiding ball
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helps compute the next ball so that its center is not contained in the segment of the previous ball. Among
the two end points of segment segσ(βi+1), we use the one which is further from x. Let this end point be
zi+1. The center of the next ball bi+1 is placed at zi+1.

Figure 3. Curve segment between x and y is being covered. Aiding balls are shown with
solid boundaries. Notice how the centers of b1 and b2 are placed with the aiding balls. The
end game with enlarged aiding ball is shown on left, the other case is shown on right.
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We will eventually encounter one of two situations near the end: either zi+1 extends past σ(x, y) or
segσ(bi+1) contains y. These situations are shown in the left and right images of Figure 3, respectively.
In the first case bk may violate C3.a and in the second case bi+1 may not intersect bk deeply violating C2.
In these cases we conduct an end game. If zi+1 ∈ segσ(bk), we throw away zi+1 and take bi+1 as βi+1

enlarged concentrically to a radius 2α
3

. In the other case when segσ(bi+1) contains y, we enlarge bi+1 to
a radius of 7α

6
. COVER terminates after the end game. Lemma 4 is proved in the appendix.

Lemma 4 Let b be a ball adjacent to b′ and b′′ in a set of balls that satisfy C1, C2, and C3.a. Suppose
we replace b with COVER(x, y, α) where σ(x, y) is the segment between segσ(b) and segσ(b

′′). Then, for
α less than the radii of the balls b, b′, and b′′, C1, C2, and C3.a remain satisfied after COVER(x, y, α)

terminates.

COVER does not necessarily satisfy C3.b. We use the routine SEPARATE to enforce C3.b on a set of balls
B. This routine calls REFINEBALL(b) which removes the ball b and replaces it with smaller balls.

SEPARATE(B)

1. while (∃ balls b, b′ ∈ B with r > r′ violating C3.b)
B := (B \ b) ∪ REFINEBALL(b)

endwhile.

2. return B.

Lemma 5 If SEPARATE issues a call to refine a ball b, its radius must be more than a fixed positive
constant δ > 0.

First assume that the two balls b = B(c, r) and b′ = B(c′, r′) considered by SEPARATE belong to the
same 1-face σ. By assumption r > r′. Let x be any point where the boundary spheres of b and b′ meet.
If θ is the angle between the normals to b and b′ at x, the squared weighted distance between b and b′ is
given by d(c, c′)2 − r2 − r′2 = −2rr′ cos θ. For π/2 < θ 6 π, this weighted distance is more than r′
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when r > −r′/2 cos θ which is satisfied for θ > 2π/3. The curve σ(c, c′) can be assumed to lie within
cones having apexes at c and c′ and arbitrarily small aperture angles if r and hence d(c, c′) is sufficiently
small. Since segσ(b) and segσ(b

′) do not intersect if r is small enough (Proof of Lemma 3), the curve
σ(c, c′) needs to avoid the common intersection of b and b′. These two constraints force the angle θ to be
close to π as r approaches zero. In other words, there is a fixed positive constant λ1 so that if r 6 λ1, the
weighted distance between b and b′ becomes larger than r′.

Next, assume that b and b′ have centers on different 1-faces. We need to consider the special case of
vertex balls before we argue about this case. A vertex ball b can intersect a ball whose center lies on a
different 1-face only if b’s radius is more than a fixed positive constant. This is true because we always
refine the larger of the two such intersecting balls and there is a positive distance between a vertex and
any 1-faces that do not contain it. This observation with the argument in the previous paragraph imply
that a vertex ball is refined by SEPARATE only if its size is more than a fixed positive constant. Since
no vertex balls can be smaller than a fixed positive constant, two balls centered on two different 1-faces
intersect only if the larger ball has a radius more than a fixed positive constant λ2 > 0.

It follows that the lemma holds with δ = min{λ1, λ2}.

REFINEBALL(b)
If b covers σ ∈ D1, let rσ be the minimum of the radii of balls adjacent to b on σ and b itself.

1. If b = B(v, r) is a vertex ball, shrink b to b′ = B(v, r/2). For each σ covered by
b let bσ be the adjacent ball to b on σ. Compute Bσ := REFINEBALL(bσ). Return
SEPARATE(∪σBσ).

2. If b is not a vertex ball, let σ(x, y) be the segment between segσ(b1) and segσ(b2) where
b1 and b2 are adjacent to b. Remove b and return COVER(x, y, α) where α = rσ/4.

Lemma 6 (i) REFINEBALL terminates and (ii) maintains C1, C2, C3.a, and C3.b.

(i) : Observe that REFINEBALL makes recursive calls to itself and through SEPARATE. Consider the
trees of ball refinements made by these recursive calls. An internal node b in the trees represents a ball b
that is refined into smaller balls (children).

We observe that every internal node except the roots is refined by SEPARATE. The only way
REFINEBALL can call itself is when a ball bσ is to be refined in step 1. But, then bσ becomes a root. All
other calls to REFINEBALL are generated by SEPARATE.

By Lemma 5, SEPARATE calls REFINEBALL on a ball b only if the size of b is larger than a fixed
positive constant δ > 0. The children of a node b are created by COVER which, by construction, creates
only finitely many balls with radius at most (1/4 × 7/6) = 7/24th the radius of b. The height of any
refinement tree is finite since any path from the root to a leaf has internal nodes with radius larger than
δ > 0 and each level decreases the radius by a factor 7/24 or less. Also, each node has finitely many
children. Therefore, each refinement tree is finite. Now we argue that the number of roots and hence the
entire set of refinement trees is finite implying that REFINEBALL terminates.

Except for the first ball b, REFINEBALL(b) creates a root for each bσ in step 1. If such a root is created,
the ball b must be a vertex ball. Later in recursion, a call to REFINEBALL on a vertex ball can only be
given by SEPARATE. Therefore, each root except b can be associated with a call to REFINEBALL by
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SEPARATE on a vertex ball. Observe the following: only a fixed number of roots are created per vertex
ball; a vertex ball is shrunk by a factor of two between two successive calls to refine it; SEPARATE

calls for refining a vertex ball only if its size is larger than a fixed positive constant (Lemma 5). These
observations mean that only finitely many roots are created.

(ii): Almost immediate: assume that C1, C2, and C3.a hold before calling REFINEBALL. It
creates new balls by calling COVER which satisfies C1, C2, and C3.a (Lemma 4). If a ball does not
satisfy C3.b (may happen only after a vertex ball is refined), it refines it by calling SEPARATE. The
claim follows.

3. Meshing Algorithm

The algorithm for meshing D first protects the 1-faces with PROTECT(D,λ) where λ is a user defined
parameter. It acts as an input scale parameter which becomes an upper limit for the radii of the protecting
balls.

PROTECT(D,λ)

1. Protect each vertex v ∈ D0 with a ball Bv = B(v, rv) where rv is 1/3rd the distance
of v to any other vertex in D0. Let B be the set of vertex balls.

2. For each σ ∈ D1 do the following. Let u and v be the end points of σ where
segσ(Bu) = ux and segσ(Bv) = yv. Let α = min{ru, rv}. B := B ∪ COVER(x, y, α).

3. Find a ball b ∈ B with radius larger than λ. If found, compute B := {B \ b} ∪
REFINEBALL(b) and repeat step 3.

4. return SEPARATE(B).

Lemma 7 PROTECT terminates with balls satisfying C1, C2, C3.a, and C3.b.

Observe that at the end of step 2, PROTECT creates a set B of finitely many balls (most likely quite large).
Each call to REFINEBALL on a ball b creates only finitely many balls as output (Lemma 6). Since a ball
is refined only if its radius is more than λ > 0, and since each refine shrinks the radii by at least a factor
of 2, there are only finitely many balls created in step 3.

Termination of step 4 follows from Lemma 5. Hence PROTECT terminates. At termination it must
satisfy C1, C2, C3.a, and C3.b since it refines balls with COVER and calls SEPARATE to enforce C3.b.

After the initial protection of D1, refinement of D2 begins. In this phase Delaunay refinement is run
with a disk condition which can be seen as a generalization of a similar condition used in [3, 4]. See
Figure 4 for more explanations. Let p be a point on a 2-face σ and let Umbσ(p) be the set of triangles in
Skl2 S|σ that are incident to p.

DiskCondition(p) : (D1) For each σ ∈ D2 containing p, the underlying space of Umbσ(p) is a 2-disk,
(D2) point p is in the interior of this 2-disk if and only if p ∈ intσ, (D3) in Umbσ(p), p is not connected
to any other point on D1 which is not adjacent to it, (D4) all vertices of Umbσ(p) are in σ.

Once the restricted Delaunay triangles are collected, the above checks are only combinatorial. One
may notice that D1 and D2 are dual to R1 and R2 of Lemma 2. We assume that as we insert points,
weighted or unweighted, VorS and DelS get updated appropriately.
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Figure 4. Disk condition: (left) Triangles incident to point p ∈ σ are assumed to be restricted
to σ; they do not form a disk since they form two disks pinched at p violating condition D1.
(middle) The point p ∈ σ has a topological disk but some of its vertices (lightly shaded)
belong to τ violating condition D4. (right) Points p and q satisfy the disk condition. Point p,
an interior point in σ, lies in the interior of its disk in σ. The point q, a boundary point, has
three disks for each of the three 2-faces.

p

p

q

p

DelPSC (D, λ)

1. Protection. Let B:= PROTECT(D, λ). Let S be the current weighted point set.

2. Mesh2Complex. Let (p, σ) be any tuple where p ∈ σ. Let t ∈ Skl2 S|σ be the triangle
that maximizes size(t, σ) over all t and σ. Let x ∈ Vt|σ realize this maximum, say d1.
Let d2 be the maximum radius of all vertices realized by ball, say b.

(a) If condition D1 or D2 in DiskCondition(p) is violated
if d1 > d2 insert x into S

else compute B := {B \ b} ∪ REFINEBALL(b).

(b) Else if D3 or D4 in DiskCondition(p) is violated
insert x into S

(c) Else if size(t, σ) > λ for some tuple (t, σ) where t ∈ Skl2 S|σ
insert x ∈ Vt|D that realizes size(t, σ) into S.

3. If S has grown in the last execution of step 2, repeat step 2.

4. Return
∪

i Skl
i S|D.

Notice that in step 2(a) we refine either a ball or a triangle if either D1 or D2 is violated. However,
for D3 or D4 violations in step 2(b), we only refine a triangle. This is important because D3 and D4 are
not covered by Lemma 2 and may be violated no matter how small the balls are. We argue separately for
D3 and D4 in the termination proof. In step 2(c) we refine triangles to reach the refinement level of the
input scale.

We observe that DelPSC never inserts unweighted points inside any protecting ball. If the inserted
point x in step 2(a) lies in a protecting ball b = B(q, r), its weighted distance to q would be non-positive.
Its weighted distance to its nearest Voronoi neighbor in S would even be smaller. Since the largest ball
has a positive radius, x would not be inserted (we would call REFINEBALL(b) instead). If x is inserted
in step 2(b), the point p is connected to a point q where either q ̸∈ σ or p and q are non-adjacent weighted
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points on a 1-face. In both cases p and q have a positive weighted distance ensured by C3.b. Therefore,
a restricted triangle t incident to pq has size(t, σ) positive. It follows that the point x which realizes the
maximum of size(t, σ) over all t and σ has a positive weighted distance to its nearest Voronoi neighbor
in S. Hence x cannot lie in a protecting ball. Finally, since λ > 0, any point x inserted in step 2(c) has a
positive distance to its Voronoi neighbors, and thus outside of every protecting ball. Therefore, point x
has a positive weighted distance from p and hence cannot be inside a ball.

Guarantees: The analysis of the algorithm establishes two main facts: (i) the algorithm terminates, and
(ii) at termination the output mesh has guarantees G1 and G2:

(G1) For each σ ∈ D2, Skl2 S|σ is a 2-manifold with vertices only in σ. Further, bd (Skl2 S|σ) is
homeomorphic to bdσ with vertices only in bd σ.

(G2) There exists a λc > 0 so that if λ 6 λc, the output mesh of DelPSC(D,λ) is homeomorphic to |D|.
Further, this homeomorphism respects stratification with vertex restrictions, that is, for 0 6 i 6 2,
Skli S|σ is homeomorphic to σ ∈ Di where bd Skli S|σ = Skli−1 S|bdσ and vertices of Skli S|σ lie
in σ.

Theorem 1 DelPSC terminates.

First, we argue that if the algorithm refines a ball, its radius is larger than a fixed positive constant.
Assume that d1 and d2 have been defined as in the algorithm.

Consider a vertex p on a 2-face σ. The conclusion of Lemma 2 implies disk conditions D1 and D2.
Therefore, if it does not hold for p, at least one of the premises of Lemma 2 does not hold. (H1) S
does not satisfy the λ1-property for some λ1 > 0. (H2) Protecting balls do not satisfy C1-C3. But,
when the disk condition is checked, the protecting balls satisfy condition C1, C2, C3.a, and C3.b due to
Lemma 6(ii). Therefore, if H2 has failed, at least one ball has a radius more than λ2 where λ2 satisfies
Lemma 3. The argument implies max{d1, d2} > δ = min{λ1, λ2}. Therefore, if a ball is refined its
radius is more than δ.

The entire ball refinement can be represented with trees as in the proof of Lemma 7 where a ball is
refined only if its radius is at least a fixed positive constant. The argument for Lemma 7 still holds to
claim that only finitely many balls are refined altogether. Therefore, the algorithm cannot refine balls
forever. This also implies that the minimum size of the balls remains larger than a fixed positive constant,
say ξ > 0.

Now we argue that each point inserted by the algorithm maintains a lower bound on its distance to all
other points. Then, a standard packing argument implies termination. In step 2(a), each inserted point x
maintains a weighted distance at least δ > 0 if it is inserted because of violation of either D1 or D2. If
D3 or D4 is violated in step 2(b), the weighted distance of x from p is at least half the weighted distance
between p and a point q where either p and q are non-adjacent points in D1 or q lies on a different 2-face.
Since protecting balls have a minimum size ξ > 0 and any two intersecting non-adjacent balls maintain
a weighted distance larger than the of the radius of the smaller ball, the weighted distance between p

and q is larger than a fixed positive constant. Hence, x has a distance more than a fixed positive constant
from all other points. The only remaining case is step 2(c) where a point is inserted only if its weighted
distance is at least λ > 0 from all other points.
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4. Proof of Guarantees

Let M denote the output mesh of DelPSC.

Theorem 2 M has guarantee G1.

At the end of Mesh2Complex the disk condition ensures that Skl2 S|σ is a simplicial complex where
each vertex v belongs to σ and has a 2-disk as its star. It follows from a result in PL topology that
Skl2 S|σ is a 2-manifold when DelPSC terminates.

The boundary of Skl2 S|σ has all weighted vertices in bd σ. Each such point p is connected to its
adjacent vertices in bdσ by the disk condition. Therefore, the boundary of Skl2 S|σ consists of edges
that connect adjacent vertices in bdσ and hence this boundary is homeomorphic to bd σ.

To prove G2 we use a result of Edelsbrunner and Shah [17] about the extended topological ball
property (TBP). It can be shown that the following two properties P1 and P2 imply the extended
TBP [8]. Therefore, according to the Edelsbrunner-Shah [17] result, the underlying space of DelS|D
is homeomorphic to the |D| if P1 and P2 hold. Let F be a k-face of VorS where S is the output vertex
set.

(P1) If F intersects an element σ ∈ Dj ⊆ D, the intersection is a closed (k + j − 3)-ball.

(P2) There is a unique lowest dimensional element σF ∈ D so that F intersects σF and only
elements that are incident to σF .

Lemma 2 almost provides condition P1 except for the case that Vp may intersect a patch τ where p ̸∈ τ

(Figure 7 (middle, right)). Lemma 8 establishes that this is not possible. Lemma 9 gives P2. Proofs of
both of them appear in the appendix.

Lemma 8 There exists a constant λc > 0 so that following holds. Let S be the point set output by
DELPSC(D, λ) for some λ 6 λc. Then for each point p ∈ S, Vp|D =

∪
σ∋p σp.

Lemma 9 Let S be the point set as defined in Lemma 8. Let F be a k-face in VorS. There is an element
σF ∈ D so that F intersects σF and only elements in D that have σF on their boundary.

Theorem 3 M satisfies G2.

For a sufficiently small λ > 0, DELPSC satisfies the conditions of Lemma 8 and Lemma 9. This
means that properties P1 and P2 are satisfied when λ is sufficiently small. Also when P1 and P2 are
satisfied

∪
i Skl

i S|D = DelS|D. It follows that the Edelsbrunner-Shah conditions are satisfied for the
output M of DelPSC. Thus, M has an underlying space homeomorphic to |D|. The homeomorphism
constructed by Edelsbrunner and Shah actually respects the stratification, that is, for each σ ∈ Di,
Skli S|σ is homeomorphic to σ. Also, Skl1 S|σ consists of only edges that connect adjacent vertices on
σ. Furthermore, property G1 holds for any output of DelPSC. This means, bd (Skl2 S|σ) = Skl1 S|bdσ.
Because of the vertex balls, we also have bd (Skl1 S|σ) = Skl0 S|bdσ trivially. Therefore, for 0 6 i 6 2,
bd (Skli S|σ) = Skli−1 S|bdσ and Skli S|σ has vertices only in σ.
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5. Experimental Results

The input to our software is a polygonal model which we assume approximates a PSC. A user
specified threshold for dihedral angles is used to select edges of the input as sharp features (elements
of D1) which we protect. Non-manifold and boundary edges are also included as elements of D1. In
Figure 5 we show how our protection algorithm works on four different sets of curves.

Figure 5. Protection: (left) A 2d example of curve protection. (middle) 2 different 3d
examples of curve complexes where we have run PROTECT. (right) The final set of protecting
balls returned by Mesh2Complex on the WEDGE model.

In Table 1 we show both the time to protect curves as well as the time to generate the surface mesh for
twelve different datasets. All experiments were run on a PC with a 2.8 GHz CPU and 2 GB RAM. We set
the parameter λ to 5% of the minimum dimension of the bounding box for each model. Those datasets
which took no time for protection had no sharp features in their input; the PSC they approximate was
assumed to be a single smooth patch. The majority of the datasets were meshed in under one minute,
only those with complicated topologies took longer.

Table 1. Protection and Meshing times for our datasets.

Dataset Protection Time Meshing Time # of vertices
9 HOLES 0.0 s 105.6 s 8725
ARM 52.6 s 339.7 s 20692
COG 1.4 s 56.2 s 7697
GUIDE 2.6 s 22.9 s 4414
HORN 0.0 s 21.5 s 3192
LOCK 10.6 s 26.6 s 5314
OCTO 0.0 s 7.3 s 1410
PART 0.2 s 23.2 s 4261
PLATE 17.9 s 83.9 s 9773
PUMP 19.1 s 319.6 s 20301
SWIRL 0.0 s 61.1 s 6880
WEDGE 0.2 s 13.2 s 3080
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In Figure 6 we show output meshes for various input shapes. These meshes include four smooth
shapes (9 HOLES, HORN, OCTO, and SWIRL), two non-manifolds (HORN and WEDGE), and eight
piecewise-smooth shapes (PART, GUIDE, WEDGE, COG, ARM, LOCK, PUMP, and PLATE). DelPSC
has been used to mesh dozens of other models; further experimentation was presented in a recent
multimedia presentation [16].

Figure 6. DelPSC output meshes. Left to right, top to bottom: PART, GUIDE, WEDGE, 9
HOLES, COG, HORN, ARM, OCTO, LOCK, SWIRL, PUMP, and PLATE, models.

6. Conclusions

We have presented a new practical algorithm to mesh a wide variety of geometric domains with the
Delaunay refinement technique. Unlike previous approaches, this algorithm computes the protecting
balls on the fly and thus gets rid of expensive computations to fix them a priori. The only domain
dependent numerical computations are: (i) computing intersection points of the input curves with spheres
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(to determine the end points of segσ(b)) and (ii) computing intersection of Voronoi edges with surface
patches (to determine restricted triangles and their sizes; these computations are always necessary for
the restricted Delaunay mesh [3, 8]). These computations are much easier than normal variation and gap
size computations as proposed in [8].

The output mesh maintains a manifold property and with increasing level of refinement captures the
topology of the input. In practice, most of the time this level is achieved fast with only the disk condition.
An interesting aspect of the algorithm is that the input ‘non-smooth features’ are preserved in the output.
However, one requirement is that an explicit representation of these features must be available so that
we can sample them as a bootstrap step. For polygonal inputs, it is relatively easy to partition the space
into a PSC using the thresholding approach described for the experiments, but for implicitly represented
PSCs this may be more challenging.

Our experimental results, implemented in CGAL [18], further validate our claims of practicality
and implementability. Some additional implementation details were reported a recent video
presentation [16]. We note that this implementation of the algorithm uses a variation on the disk
condition. Condition D3 has been changed to only require that each point p sampled from a curve
σ ∈ D1 is not connected to any non-adjacent points on σ (as opposed to requiring global disconnection
from all non-adjacent samples in D1).

In applications, sometimes it is desired that the mesh elements have good aspect ratios and their size
adapts to the input feature size. Our algorithm can be easily extended to guarantee bounded aspect ratio
for most triangles except for the ones near non-smooth regions. However, it cannot produce meshes with
true adaptive sizing. Insertions to satisfy the disk condition can cause some varied sizing in the output
meshes creating a non-uniform appearance. Many of our output meshes exhibit this property; it is caused
by λ (which controls only the maximum triangle size) having a value larger than the triangle size needed
to fulfill the disk condition. We note that since adaptive meshing ultimately requires an estimate of the
input feature size, it may not be possible to produce such meshes without expensive computations. We
also note that it should be possible to extend our algorithm to volumes using an approach similar to [19].
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7. Proofs of lemmas in Section 2.

For proving Lemma 2 we need some standard results from sampling theory [20, 21]. Recall that
we have assumed each 2-face in the domain to be a compact subset of a smooth (C2) 2-manifold
without boundary. This helps us to carry forward a result on normal variation from smooth surfaces
straightforwardly to the surface patches with boundaries. If surface elements are not assumed to be a
subset of smooth surfaces without boundary, normal variation proof becomes more complicated with a
worse error bound.

Let σ be any 2-face which by assumption is a subset of a smooth 2-manifold σ∗ without boundary.
The surface normal nx to σ at x is the surface normal of σ∗ at x. Let M denote the medial axis of σ∗,
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that is, M is the closure of all points in R3 which have two or more closest points in σ∗. Borrowing
from [20], we define the local feature size lfsx = d(x,M). In the analysis, we use a global lower bound
on the lfs function. We define:

ρσ = inf
x∈σ

lfsx.

Recall that d̂(x, y) denotes the weighted distance between two weighted points x and y, that is,
d̂(x, y) =

√
d(x, y)2 − ω2

x − ω2
y where ωx and ωy are the weights of x and y respectively. For a triangle

t, consider the disk whose weighted distance to all of t’s vertices (possibly weighted) is zero. The radius
of this disk is called the orthoradius of t.

Lemma 10 Let ε ∈ (0, 1/3) be some constant.

(i) For any two points x and y in σ such that d(x, y) 6 ερσ,

(a) the angle between the surface normals nx at x and ny at y is at most 2ε;

(b) the angle between xy and the surface normal at x is at least arccos(ε/2).

(ii) Let pqr be a triangle with vertices on σ which are possibly weighted with a weight ωρσ for ω < 1.
Furthermore, let the orthoradius of pqr be no more than ερσ. Then, ∠a(npqr,np) 6 5

√
ε2 + ω2.

(i.a) Follows from the normal variation result in [22].

(i.b) Follows from the Edge Normal Lemma in [21].

(ii) Let R and R̂ be the circumradius and orthoradius of pqr respectively. For a sufficiently small ω, the
circumcenter x lies inside the orthocircle of pqr. Then, minimum weighted distance of x to any of three
vertices of pqr, is a lower bound on R̂, that is,

R2 − ω2ρ2σ 6 R̂2

R2 6 ε2ρ2σ + ω2ρ2σ

6 (ε2 + ω2)ρ2σ.

Without loss of generality, assume that p subtends the largest angle in pqr. Plugging Rpqr = R 6√
ε2 + ω2ρσ and using lfs(p) > ρσ in the Triangle Normal Lemma (Lemma 3.5 in [21]), we get that

∠a(np,npqr) 6 arcsin
√
ε2 + ω2 + arcsin

(
2√
3

(
2 arcsin

√
ε2 + ω2

))
6 5

√
ε2 + ω2.

Consider a weighted vertex p ∈ S on a 2-face σ. For any facet F of Vp, we use HF to denote the
plane of F . Let λ 6 1

32
ρσ. Let B = B(p, 2λ). By the Feature Ball Lemma in [21] B ∩ σ is a 2-disk.
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Lemma 11 For any facet F of Vp, if HF intersects B ∩ σ, then ∠(np, HF ) 6 arcsin(1/16) and both
HF ∩B ∩ σ and F ∩B ∩ σ contain no closed curve.

Let pq be the dual Delaunay edge of F where HF intersects pq at x. We have d̂(p, x) = d̂(q, x) 6√
4λ2 − w2

p from which we can derive that d(q, x) 6
√
4λ2 − w2

p + w2
q 6

√
5λ. It follows that

d(p, q) 6 d(p, x) + d(q, x) 6 (2 +
√
5)λ 6 5λ.

which is less than 1
8
ρσ. By Lemma 10(ib), ∠(np, HF ) = π/2 − ∠(np, pq) 6 arcsin(1/16). There is

no closed curve in HF ∩ B ∩ σ because such a closed curve would bound a 2-disk in B ∩ σ, which
would contain a point x such that ∠(nx, HF ) = π/2. This is a contradiction because ∠(nx, HF ) 6
∠(nx,np)+∠(np, HF ) 6 1/8+ arcsin(1/16) < π/2 by Lemma 10(i.a). Since HF ∩B ∩ σ contains no
closed curve, neither does F ∩B ∩ σ. This proves the claim.

Lemma 12 For any facet F of Vp, if d(p, F ) 6 λ and conditions C1-C3 hold, then F ∩ B ∩ σ is either
empty or a single open curve.

We assume that HF intersects B ∩ σ since otherwise F ∩ B ∩ σ is empty and there is nothing to prove.
First, we show that if HF is within a distance of λ from p, HF ∩B ∩ σ is a single open curve. Consider
the disk HF ∩ B. Let d⃗ be the projection of np onto HF . Let L ⊂ HF be the line through the center of
HF ∩B orthogonal to d⃗. Let x be any point in HF ∩B ∩ σ. The angle between px and the tangent plane
at p is at most arcsin(1/32) by Lemma 10(i.b). We already proved that ∠(np, HF ) 6 arcsin(1/16). We
are interested in an upper bound on the distance d(x, L). Let x∗ be the orthogonal projection of x onto
L. Consider the triangle pxx∗. Observe that ∠xpx∗ is the angle between px and the tangent plane at p
and ∠px∗x is at least π/2− ∠(np, HF ). We obtain

d(x, x∗) 6 d(p, x)
sin arcsin(1/32)

cos arcsin(1/16)
6 (0.035)(2λ) 6 0.07λ.

Let L∗ ⊂ HF be the strip of points at distance 0.07λ or less from L. Since the radius of B is 2λ and
HF is at most λ distance from p, the radius of HF ∩ B is at least

√
3λ. It follows that the boundary of

HF ∩B intersects L∗ in two disjoint circular arcs, say A and A′.
We already proved that there is no closed curve in HF ∩ B ∩ σ (Lemma 11). Now we show that

HF ∩ B ∩ σ cannot contain two open curves. First, we eliminate the case where HF ∩ B ∩ σ are two
open curves each having an end point on bd σ. For this to happen, F has to intersect bd σ in more than
one point, which is impossible by Lemma 1 if the protecting balls satisfy condition C1-C3. Therefore,
we can assume that if HF ∩ B ∩ σ has two open curves, at least one, say C, has both end points on the
circular arcs A and/or A′. Consider the case where C has end points both in A and A′. The other curve,
say C ′, in HF ∩ B ∩ σ must have an end point in at least one of A and A′. It follows that either A or
A′ should have an end point of both C and C ′. Without loss of generality, assume that A has end points
of both C and C ′ and let s and t be these end points. We observe that the line segment st cannot make
an angle with L less than the least angle made between L and a tangent to A. This least angle is made
by the tangent to A at any of its end points. Since the width of L∗ is 0.07λ and the radius of HF ∩ B

is at least
√
3λ, this least angle is more than π

2
− arcsin(0.035/

√
3). Therefore, st makes an angle of at

least π
2
− arcsin(0.035/

√
3) with L, or equivalently of at most arcsin(0.035/

√
3) < 0.03 with d⃗. Since
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∠d⃗,ns 6 ∠d⃗,np + ∠np,ns 6 arcsin(1/16) + (1/8) 6 0.2, st makes an angle of at most 0.23 radians
with ns. The line of st intersects σ at two points, namely at s and t, where ∠st,ns 6 0.23. Here we
can use the Long Distance Lemma in [21] to obtain d(s, t) > 2ρσ cos 0.23 > 62λ which contradicts
d(s, t) 6 2× 0.07λ = 0.14λ.

Next, consider the case where C has both endpoints on a single arc, say A. Taking these end points
as s and t we can argue as in the previous paragraph to reach a contradiction.

Third, we claim that for any facet F of Vp, if F intersects B ∩ σ, F ∩ B ∩ σ is a single open curve
with endpoints in bdF or in bdσ. We already proved that there is no closed curve in F ∩ B ∩ σ. Since
F does not have any tangential contact with σ, F ∩ B ∩ σ is a set of open curves and the endpoints of
any open curve in F ∩ σ thus lie in bdF or in bd σ. Assume to the contrary that F ∩ B ∩ σ contains
two open curves, say ξ and ξ′. By our assumption, HF is within a distance of λ from p. We have shown
before that HF ∩ B ∩ σ is a single open curve. Follow HF ∩ B ∩ σ from ξ to ξ′. When we leave ξ,
we must leave F at a Voronoi edge e ⊂ bdF . Afterwards, we stay in the plane HF and we must cross
the support line of e again in order to reach ξ′. Therefore, some tangent to HF ∩ B ∩ σ is parallel to
e. However, the angle between the surface normal at some point on HF ∩ B ∩ σ and np would then
be at least π/2 − ∠np, e > π/2 − 5

√
2(λ/ρσ)2 by Lemma 10(ii) since ε, ω 6 λ/ρσ. This contradicts

Lemma 10(i.a) proving the claim.
Recall that σp denote the components of Vp|σ that intersect a Voronoi edge of Vp. We show that σp

intersect Vp and its faces in topological balls if S has the λ-size property for a sufficiently small λ. We
need the following result which says that when λ is sufficiently small, each Voronoi cell Vp contains at
least one Voronoi edge intersecting σ if p ∈ σ ∈ D2.

Lemma 13 There exists a λ > 0 so that if S satisfies the λ-size property, then σp is non-empty for any
p ∈ σ

Suppose that σp is empty, that is, no Voronoi edge of Vp intersects σ. By our assumption bdσ is
non-empty and let q ∈ σ be a weighted point in bdσ. Because of Lemma 1, an edge of Vq has to
intersect σ. Consider walking on a path in σ from p to q. Let p = p0, p1, .., pk = q be sequence of
vertices whose Voronoi cells are encountered along this walk. Since no edge of Vp intersects σ and some
edge of Vq intersects σ, there exists two consecutive vertices pi and pi+1 in this sequence so that no edge
of Vpi intersects σ whereas some edge of Vpi+1

does intersect σ. By Lemma 2 we can claim that σpi+1
is

a disk. A boundary cycle of σpi overlaps with the boundary of σpi+1
. This is impossible as the curves on

the boundary of σpi+1
intersect Voronoi edges whereas those on the boundary of σpi do not.

Now we are ready to prove the main claim of Lemma 2. Figure 7 explains more about its implications.
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Figure 7. (left) A 2-face σ has intersected Vp where σp is not topological disk, this is not
possible by R1. (middle) σp is a disk but another face τ where p ̸∈ τ intersects some edge
of Vp. It does not violate R1 but violates Lemma 8. (right) Within B, σ intersects Vp in a
topological disk. There is a different component (τ ) which does not intersect any Voronoi
edge and hence does not contribute any dual restricted triangle incident to p. R1 does not
prevent it though Lemma 8 does.
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Lemma 14 There is a λ > 0 so that if H1 and H2 of Lemma 2 are satisfied, then σp is a topological
disk. Furthermore, each Voronoi edge and facet that intersects σp does so in a single point and single
open curve respectively.

Recall B = B(p, 2λ). Consider an edge of Vp that intersects B ∩ σ. By Lemma 10(ii), ∠np, e 6
5
√
2(λ/ρσ)2. Then, by Lemma 10(i.a), B ∩ σ is monotonic in the direction of e when λ is sufficiently

small. Therefore, e intersects B ∩ σ and hence σp at most once. Each facet of Vp that intersects B ∩ σ

intersects it in a single open curve by Lemma 12. This completes the proof of the second part of the
lemma.

We show that the argument of Lemma 4.12 in [4] can be used here to establish that σp is a topological
disk. Following the notation in the proof of this lemma, let us call a cycle in σp that intersects a Voronoi
edge a type 1 cycle. Let X denote the set of type 1 cycles. Each Voronoi facet containing a point in X

has a Voronoi edge intersecting σp. By H1, this intersection point is within λ distance of p. Therefore, B
intersects all Voronoi facets that contain a point in X . These Voronoi facets intersect B ∩ σ in a single
open curve which is in B. Also, if Vp intersects bdσ, the entire curve segment Vp ∩ bdσ is contained in
the protecting ball of p. This means each point of X is within λ distance of p. Since each cycle in X is a
piecewise smooth closed curve where each piece is either an open curve contained in a Voronoi facet or
a segment of Vp∩bdσ, it is contained completely in B. Therefore, each boundary of σp which intersects
a Voronoi edge lies in B.

Consider the arrangement of closed curves in X on B ∩ σ which is a topological disk according to
the Feature Ball Lemma [21]. Let C ∈ X be a closed curve which does not contain any other curve of
X inside. At least one such curve exists since X is not empty by Lemma 13. The closed curve C must
bound a disk, say D in σ. At this point we can invoke the proof of Lemma 4.12 in [4] to prove that
D = σp establishing our first claim. The boundary bdσp lies in X which has at most a single interval in
any Voronoi facet as we argued above. This establishes our second claim.

[Proof of Lemma 2.]
Proof of R1: Follows from Lemma 14.
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Proof of R2: Since conditions C1-C3 hold, Lemma 1 can be applied. The conclusion of this lemma
implies R2.

[Proof of Lemma 4.] Cover affects only the sequence of balls b0, b1, ..., bk as referred in its description.
By construction the new balls cover entire curve segment σ(x, y) and vertex balls are not changed. So,
C1 and the first part of C2 are satisfied. To prove the second part consider a ball bi = B(ci, ri). We have
following cases:

Case 1 (i = 0): We need to examine the effect of the new ball b1 onto b0. First notice that segσ(b0)
cannot contain c1 by construction. Therefore, C3.a holds trivially. If b1 is not created with the end game,
the radius of b1 is α and d(c0, c1) < r0 + α/3 < r0 + r1/3 where r1 = α < r0 by construction. This
satisfies C2. If b1 is created with the end game, then two cases occur. If b1 is the enlarged aiding ball β1,
its radius is 2α/3. Then, d(c0, c1) = r0 < r0 + r1/3. This satisfies C2. In the case where b1 is not the
enlarged aiding ball, its radius is 7

6
α. We can similarly argue that d(c0, c1) < r0 + α/3 = r0 +

2
7
r1. So,

b0 satisfies C2.
Case 2 (i = k): In this case the center ck−1 of bk−1 cannot lie in segσ(bk) by construction. So,

C3.a holds trivially. The ball bk−1 is necessarily created with the end game. If bk−1 is enlarged βk−1,
d(ck−1, ck) < rk + α/3 = rk + rk−1/2 satisfying C2. In the case where bk−1 is not the enlarged aiding
ball, its radius is 7

6
α. Then, d(ck, ck−1) < rk + α = rk +

6
7
rk−1 satisfying C2.

Case 3 (i ̸= 0 and i ̸= k): If bi is adjacent to b0 and bk, it satisfies C2 by arguments in previous two
cases. Also, bi is not large enough to contain c0 or ck. Hence C3.a also holds. Now consider the case
where bi is adjacent to another ball b where b ̸= b0 and b ̸= bk. If neither bi nor b is created by end
game, we have d(c, ci) 6 ri + α/3 = ri + ri/3 satisfying C2. Also, in this case dσ(c, ci) > 4

3
α = 4

3
ri

which satisfies C3.a. We are left with the case when either of b and bi is created with the end game. With
similar arguments, one can check that C2 and C3.a hold in these cases too.

8. Proofs of lemmas in Section 4.

[Proof of Lemma 8.] Recall that σp denotes the set of connected components in Vp|σ intersecting a
Voronoi edge. We are required to prove that Vp|D =

∪
σ∋p σp. Assume to the contrary that

∪
σp ⊂ Vp|D.

Let C be any connected component in Vp|D \
∪

σp. and C ⊂ σ′ where σ′ ̸= σ. Voronoi cells partition
σ′. A path on σ′ from bdC to a sample point q ∈ σ′ passes through the connected components of this
partition. We must encounter two adjacent components along this path, say C ′ and C ′′, where C ′ = σ′

s

for s ̸∈ σ′ and C ′′ = σ′
r for some r ∈ σ′. This holds because the first and last components satisfy this

property. Then, by PSC Lemma (Lemma 2), C ′′ = σ′
r is a topological disk intersecting Voronoi edges of

Vr. Since C ′ and C ′′ are adjacent, there is a Voronoi edge e incident to both Vr and Vs which is intersected
by σ′

r. This means Umbr has a triangle with a vertex s which is not in σ′, a condition forbidden by
DiskCondition. Since we are considering the point set output by DELPSC, the DiskCondition must
have been satisfied.

[Proof of Lemma 9.] Case 1: F is a Voronoi cell Vp. Let σF ∈ D be the lowest dimensional element
containing p. We claim all elements in D intersecting F have σF in their boundaries and thus σF is
unique. If not, let there be another σ′ ∈ D where σF ̸⊂ bdσ′. Notice that p ̸∈ σF ∩ σ′ since otherwise
σF ∩ σ′ is either an element of D whose dimension is lower than σF or σF ∩ σ′ = σF both of which are
impossible. It follows that p ̸∈ σ′. But we already argued above that Vp intersects only elements in D
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that contain p.
Case 2: F is a Voronoi facet Vpq. Let σF be a lowest dimensional element that F intersects. Assume

there is another σ′ intersecting F where σF ̸⊂ bdσ′. We go over different dimensions of σ′ each time
reaching a contradiction.

Assume σ′ ∈ D62; σ′ intersects F and does not contain σF on its boundary. Two cases can arise.
Either (i) σF and σ′ are disjoint within Vp or Vq, or (ii) σF and σ′ have a common boundary in Vp and
Vq. Case (i) cannot happen due to the claim in Case 1. For (ii) to happen, both p and q have to be on
the common boundaries of σF and σ′, which means that p and q have to be on some element in D6 1.
Observe that p and q are non-adjacent since otherwise Vpq has to intersect the common boundary of σF

and σ′ whose dimension is lower than that of σF . But this would contradict the disk condition that no
two non-adjacent vertices in D1 are connected by a restricted edge.

The above argument implies that all elements intersecting F have σF as a subset.
Case 3: F is a Voronoi edge. Certainly F cannot intersect a 2-face σF more than once due to Lemma 2

(R1). The other possibility is that F = Vt, t ∈ Skl2 S|σF
, and F intersects σ′ ̸= σF . But then a Voronoi

cell adjacent to F would intersect two 2-faces σF and σ′ and t is in both Skl2 S|σF
and Skl2 S|σ′ violating

the disk condition.
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