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Abstract: Spatial registration of multidate or multisensorial images is required for many 

applications in remote sensing. Automatic image registration, which has been extensively 

studied in other areas of image processing, is still a complex problem in the framework of 

remote sensing. In this work we explore an alternative strategy for a fully automatic and 

operational registration system capable of registering multitemporal and multisensorial 

remote sensing satellite images with high accuracy and avoiding the use of ground control 

points, exploiting the maximum reliable information in both images (coastlines not occluded 

by clouds), which have been coarsely geometrically corrected only using an orbital 

prediction model. The automatic feature-based approach is summarized as follows: i) 

Reference image coastline extraction; ii) Sensed image gradient energy map estimation and 

iii) Contour matching, mapping function estimation and transformation of the sensed 

images. Several experimental results for single sensor imagery (AVHRR/3) and 

multisensorial imagery (AVHRR/3-SeaWiFS-MODIS-ATSR) from different viewpoints 

and dates have verified the robustness and accuracy of the proposed automatic registration 

algorithm, demonstrating its capability of registering satellite images of coastal areas within 

one pixel.  

Keywords: image registration; feature detection; contour matching; optimization approach; 

multitemporal and multisensorial images 
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1. Introduction 

Measurements over the oceans have been used extensively for weather forecasting, ship safety and 

global-scale studies of climate and sea conditions. The marine coastal environment is characterized by 

the interaction of a complex set of upper ocean and atmospheric boundary layer processes having 

spatial and temporal scales ranging from meters to hundred of kilometers and from seconds to several 

days. Mesoscale processes such as upwellings, eddies, thermal fronts or jet currents are very energetic 

and their knowledge is very important, not only to study the oceanic circulation, but also in other 

applications that include acoustic propagation anomalies, fisheries management and exploitation, 

coastal monitoring and offshore or ocean oil detection and exploitation. Infrared (IR) and visible (VIS) 

images soon came to play a major contribution in oceanographic observation, in particular, to study the 

ocean dynamics. However, all those studies involve analyzing large data sets of IR and VIS imagery. 

So, it is desirable to replace the labor-intensive time-consuming manual interpretation with automated 

analysis tools.  

So, in many remote sensing applications using satellite images and specifically in those related to 

oceanographic studies, it is necessary to compare multiple images of the same scene acquired by 

different sensors, or images taken by the same sensor but at different time instants. Typical 

applications include multi-temporal classification, recognition and tracking of specific patterns, 

multisensorial data fusion, change detection, integrating information into geographic information 

systems (GIS) and environment monitoring. Such a comparison of multiple images requires either their 

georeferencing or their spatial registration. Several techniques for the georeferencing of images from 

the same area have been proposed [1-2]. However, in the framework of oceanographic studies, the 

comparison of multi-temporal and multisensorial images is performed by the spatial registration.  

Image registration is the process that determines the best spatial fit between two or mores images 

(reference and sensed images) that overlap the same physical region of the scene being imaged, 

acquired at the same or at difference date, by identical or difference sensors. In general, its applications 

can be divided into three main groups according to the manner of the image acquisition [3-5]: 

 Different times (multitemporal analysis). Images of the same scene are acquired at different 

times, often on regular basis, and possibly under different conditions. The aim is to find and evaluate 

changes in the scene which appeared between the consecutive images acquisitions, i.e., tracking of 

specific oceanographic structures [6].  

 Different sensors (multimodal analysis). Images of the same scene are acquired by different 

sensors or by the same sensor at different resolutions. The aim is to integrate the information obtained 

from different source streams to gain more complex and detailed scene representation as described by 

[7,8] (i.e., fusion of information from sensors with different characteristics like panchromatic images, 

offering better spatial resolution, color/multispectral images with better spectral resolution, or radar 

images independent of cloud cover and solar illumination).  

 Scene to model registration. Images of a scene and a model of the scene are registered. The 

model can be a computer representation of the scene, for instance, maps or digital elevation models in 

GIS. The aim is to localize the acquired image in the scene/model and/or to compare them. (i.e., 

registration of satellite data into maps or other GIS layers). 
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Due to the diversity of images to be registered and due to various types of degradations, it is 

impossible to design a universal method applicable to all registration tasks. To solve image registration 

problem for various types of data, over the years, several methods and techniques have been proposed 

in the scientific literature [5,9]. As analyzed by different authors, there is a critical need to develop 

automated techniques requiring little or no operator intervention to register multi-temporal and/or 

multisensorial images when higher accuracy is desired. Towards this goal, based on the nature of 

features used, automated registration techniques can be broadly grouped into area-based and feature-

based methods.  

In area-based methods, sometimes called correlation-like or template matching methods, images are 

registered by selecting a number of windows with high-variance areas in the reference image, locating 

the corresponding windows in the sensed images by cross correlation, using the windows centers as 

control points to determine the registration parameters [10,11]. The limitations of the area-based 

methods originate in their basic idea. Firstly, the rectangular window, which is most often used, suits 

the registration of images which locally differ only by a translation. If images are deformed by more 

complex transformations, this type of window is not able to cover the same parts of the scene in the 

reference and sensed images. Another disadvantage of the area-based methods refers to the image 

intensities of the window content. There is high probability that a window containing a smooth area 

without any prominent details will be matched incorrectly with other smooth areas in the images.  

Feature-based methods, usually rely on establishing feature correspondence between two 

images. They attempt to identify region boundaries, coastline, or other features that are common to 

the images. The number of common elements of the detected sets of features should be sufficiently 

high, regardless of the change of image geometry, radiometric conditions and of changes in the 

scanned scenes. Nevertheless, the majority of the feature-based registration methods consist of the 

following four steps [12-14]: 

  Feature detection: salient and distinctive objects (closed-boundary regions, capes, contours, 

etc.) are manually or automatically detected. For further processing, these features can be represented 

by their point representatives (centers of gravity, line endings, distinctive points), which are called 

control points (CPs) in the literature. The detected feature sets in the reference and sensed images must 

have enough common elements, even in situations when the images do not cover exactly the same 

scene or when there are object occlusions or other unexpected changes. 

  Feature matching. In this step, the correspondence between the features detected in the sensed 

image and those detected in the reference image is established. Various feature descriptors and 

similarity measures along with spatial relationships among the features are used for that purpose.  

 Transform model estimation. The type and parameters of the so-called mapping functions, 

aligning the sensed image with the reference image, are estimated. The parameters of the mapping 

functions are computed by means of the established feature correspondence.  

 Image resampling and transformation. The sensed image is transformed by means of the 

mapping functions. Image values in non-integer coordinates are computed by the appropriate 

interpolation technique.  

Aim at robust and reliable registration with high accuracy, in this paper we propose a new 

feature-based approach to automatic registration of remotely sensed images, according with the 

typical image registration procedure. Previously, to automatic satellite imagery registration, the 
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reference and sensed images are geometrically corrected. For this task, a simple Kepplerian orbital 

model is considered as a reference model, and mean orbital elements are given as input to the 

model from ephemeris data.  

As shown in Figure 1, the task of the proposed image registration approach can be divided into 

three major components: reference image coastline extraction, sensed image gradient energy map 

estimation and feature correspondence by optimization of the reference image contours on the 

sensed image. Finally, the sensed image is resampled by the coefficients of the mapping functions. 

The paper outlines the approach and reports on results from applying it to multitemporal imagery 

(AVHRR/3) and multisensorial imagery (AVHRR/3, SeaWiFS, MODIS, ATSR).  

The paper is organized as follows. Section 2 discusses aspects related with the systematic procedure 

to obtain the satellite sensor data and describes the hierarchy data processing steps for AVHRR/3, 

SeaWiFS, MODIS and ATSR. The feature-based approach for automatic satellite image registration is 

analysed in Section 3. In Section 4 some experimental results are presented and analyzed. Finally, the 

conclusions are included in Section 5. 

Figure 1. Schematic procedure of the proposed automatic satellite imagery registration. 

 
 

 

2. Satellite Sensor Data  

Several aspects have required the establishment of a hierarchy of processes that allow the 

generation of operational products (users level) and the development of processing algorithms 
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studies; iii) the growing request of accuracy and temporal resolution in the satellite measurements and, 

iv) the technical complexity of the present remote sensing systems, some having a significant off-nadir 

viewing capability (i.e. NOAA-AVHRR and SeaStar-SeaWiFS).  

Specifically, oceanographic satellites images are subjected to different geometric distortions due to 

the Earth’s curvature and rotation, the spacecraft’s speed, altitude and attitude, and the scan skew. 

These distortions, if not properly accounted for, will prevent meaningful comparison among images. In 

this work, a Kepplerian correction model, based on the satellites trajectories, have been previously 

used to compensate the systematic errors. The accuracy obtained from the application of these models 

is variable. Failures in the satellite’s internal clock, inaccuracies in Kepplerian orbital elements and 

lack of knowledge concerning the attitude angles, lead to that even the most complex models do not 

offer the desired accuracy of errors of less than one pixel [15]. Table 1 shows the main characteristics 

of sensors used in this work (altitude, orbit inclination, nadir resolution and viewing swath width). 

Table 1. Main parameters of the satellites/sensors used with the registration algorithm. 

Parameter 
NOAA 

AVHRR/3
SEASTAR 
SEAWIFS 

AQUA 
MODIS

ERS 
ATSR 

Altitude (km) 833 705 705 785 

Orbit Inclination (º) 98.7 99.2 98.2 98.5 

Nadir Resolution (km) 1.1 1.1 1.0 1.0 

 Viewing Swath Width (km) 2399 2800 2330 512 

 

The following sections briefly describe the data processing steps to generate Sea Surface 

Temperature (SST) and Ocean Colour imagery, using AVHRR/3, SeaWiFS, MODIS and ATSR data, 

which are conveniently used in various fields, such as oceanography, meteorology or fishery. 

2.1. NOAA-AVHRR/3 and SeaStar-SeaWiFS 

The HRPT Data Acquisition System (Remote Sensing Center, University of Las Palmas of Gran 

Canaria) automatically tracks the NOAA and SeaStar satellites and archives and pre-processes the 

raw data to Level-1B [15]. 

For AVHRR, the subsequent processing steps (radiometric, atmospheric and geometric corrections) 

are carried out automatically, obtaining sea surface temperature maps that are optimized for the 

science applications following the requirements recognized in the World Climate Research Program. 

 On the other hand, the reception and processing of SeaWiFS images is carried out within the 

framework of the SeaWiFS Project, managed at a world wide scale by NASA for the scientific 

utilization of the data. Unlike the NOAA-AVHRR image processing, for which the corresponding ad-

hoc algorithms have been developed, the different processing levels applied to the SeaWiFS data are 

included in the SeaDAS (SeaWiFS Data Analysis System) software package, developed under the 

NASA ocean biochemistry program [16]. The processing up to higher levels (1A and 2) is done 

automatically and the resulting level 2 files are processed to eliminate unnecessary data. Atmospheric 

correction algorithms use external data such as ozone concentrations and surface pressure fields.  
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In summary, for AVHRR and SeaWiFS data, all the daily acquisition and processing activities 

are performed in an unmanned way. Figures 2 (a) and (b) show the flowchart of the processing 

hierarchy levels applied to NOAA/AVHRR-3 and SeaStar-SeaWiFS data.  

Figure 2. Processing levels hierarchy. (a) NOAA-AVHRR data and, (b) SeaStar-SeaWiFS 

data. 

 
(a)       (b) 

 

2.2. TERRA/AQUA-MODIS  

The Moderate Resolution Imaging Spectrometer (MODIS) is a satellite based visible/infrared 

radiometer for the sensing of terrestrial and oceanic phenomena. It is operating on both the Terra and 

Aqua spacecraft with a viewing swath width of 2330 km. Its detectors measure 36 spectral bands 
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between 0.405 and 14.385 µm, and it acquires data at three spatial resolutions (250 m, 500 m, and 

1000 m). 

MODIS bands 20, 22 and 23 in mid-infrared (3.7–4.1 μm) and bands 31 and 32 in thermal-infrared 

(11.0–12.0 μm) were placed to optimize their use for SST determination [17]. The mid-infrared bands, 

whilst situated where the influence of column water vapour is minimal, suffer from a decrease in the 

availability of the Earth radiance and solar radiance reflection during daylight. The thermal-infrared 

bands are near the maximum of the Earth's emission and have larger bandwidth, but they are more 

affected by atmospheric water vapour absorption. 

Through the Distributed Active Archive Center run by the Earth Sciences Department of NASA's 

Goddard Space Flight Center (GSFC), sea surface temperature products are available at 1-km 

resolution (Level 2) and at 4.6 km, 36 km, and 1° resolutions (Level 3). In our work we have used the 

Level 2 SST product which is produced daily using two different algorithms, from the thermal or the 

mid-infrared bands. The corresponding coefficients of the non-linear algorithms are tuned on a 

monthly basis to avoid a seasonal bias [18]. 

Finally, to properly select the reliable areas in our registration algorithm we have used the MODIS 

Cloud Mask product and the Quality-Assessment parameter included for each SST pixel. 

2.3. ERS/ENVISAT-ATSR 

The Along-Track Scanning Radiometer, flying on-board ESA's ERS and ENVISAT satellites, is an 

advanced imaging radiometer, operating in the thermal and reflected infrared wavelengths (3.7, 11, 12 

and 1.6 m). The instrument views the Earth's surface over a swath-width of about 500 km and with a 

spatial resolution of 1 km. It has been designed for exceptional sensitivity and stability of calibration to 

enable the accurate measurement of sea surface temperature using a dual view (nadir and 56 degrees 

off to nadir) design to estimate and correct for atmospheric effects. 

The sea-surface temperature products have been implemented at the Rutherford Appleton 

Laboratory (UK) and they are computed for regional and global studies which require the highest 

levels of accuracy. To check our registration methodology we used the gridded sea-surface 

temperature product (GSST) containing 512x512 pixels and where nadir and forward-view pixels are 

collocated, and have been mapped onto a 1 km grid. The GSST product, as described by [19], provides 

temperature images using both nadir-only and dual view retrieval algorithms and, optionally, includes 

pixel latitude/longitude positions, X/Y offsets (sub-pixel across-track/along-track) co-ordinates, and 

the results of cloud-clearing/land flagging. Particularly, to identify the clear pixels in any given ATSR 

image, a cloud screening process [20] is applied to all the channels and it is mainly based on the 

brightness tests originally developed by [21] but optimised for use over the ocean. 

3. Automatic Feature-Based Approach 

3.1. Feature Detection 

Reference Image Coastline Extraction 

Starting with the image obtained after the geometric correction procedure (Kepplerian model) 

and towards the goal of optimal feature matching of coastline satellite images, we extract the 
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reference image coastline with the largest possible accuracy, while suppressing any unnecessary 

details. So, the coastline extraction is carried out in two steps. First, the reference image is 

convoluted with a Sobel operator so edges are estimated [22]. In the second step, a cloud overlay 

is obtained, i.e., for AVHRR data by a variation of a multi-band threshold method [23]. Reliable 

areas (non-occluded coastline), which are used as reference contours in the contour matching 

process, are obtained using this cloud overlay. Accepted contours are thinned up to one pixel width 

to allow precise matching. Figure 3(a) shows the reference image whereas the respective cloud 

overlay and extracted coastline (blue contours) are presented in Figures 3(c) and (e), respectively.  

Sensed Image Gradients Energy Map Estimation 

In this case, estimated edges are used to define a gradient energy map as follows, 

 2y)I(x, |-y)S(x,                                                                     (1) 

where I is the sensed image gradient intensity normalized to [0,1]. 

Once the sensed image cloud areas have been obtained, the reliable gradient energy map is 

computed by masking the gradients energy map, applying a morphological gradient, as described by 

[22], to the cloud-sea and the cloud-land contours (non-reliable areas). To facilitate the convergence of 

the contour-based algorithm, the estimated sensed image gradient energy map is smoothed by means 

of a Gaussian filter as, 

{ ( , )·[ ( , ) ( , )]} ( , )   edgeE S x y M x y B x y G x y                                       (2) 

where G(x,y) is a 2-D Gaussian function, M(x,y) is the binary cloud overlay and B(x,y) is a binary 

mask known as structuring element. The 2-D Gaussian function is defined by, 
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and it is used as a filter to smooth the gradient map. The specific parameters of the Gaussian 

function are adjusted iteratively to improve the contour optimization approach. 

Figures 3(b) and (d) present the sensed image and the cloud overlay, respectively. Smoothed 

gradients energy map of reliable areas is presented in Figure 3(f). 
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Figure 3. (a), (b) Multitemporal NOAA-AVHRR images; (c), (d) cloud overlays; (e) 

coastline extracted from reference image (blue contour) and, (f) smoothed gradient energy 

map of reliable areas extracted from sensed image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Feature Matching 

The proposed minimization algorithm allows a contour to converge, in an iterative way, on an area 

of high magnitude image energy; in this case, edges. Convergence is performed separately for each 

object and so is the initialization strategy. Contours are initialized by aligning the gravity centers of 

each validated region in the reference image and of the corresponding object in the sensed image. The 
center of gravity of a given object F

k
(i,j) (k-th object of a binary image F) is estimated using objects 

moments [22], 
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where m00 represents the binary object area (zero-order moment). 

After contour initialization, each object is handled separately. Given a reference image with m 

objects, let us analyze the optimization of an object i (e.g. an island) whose contour has ni points. 
Let ( )k

i ={ ( )k
i j  | j=1,2,...,ni} be the contour of the i-th object after the k-th iteration. Its total 

energy is, 

                    ( ) ( ) ( )

1

( ) ( )
in

k k k
contour contour i edge i ji

j

E E E 


                                                (5) 

where Eedge(·) is the energy of one point of the contour evaluated over the gradients energy map 

(see equation 2). 

The algorithm allows uniform translations d = {dx, dy} in a neighborhood (typically, 55 pixels) 

centered at the current position. Every site in this neighborhood is a candidate point for updating. 
The algorithm moves ( )k

i to a new location ( 1)k
i   according to the following updating rule,  

                   ( 1) ( )

d ( )k k
i contour iarg min E                                                       (6) 

That is, at each iteration, an exhaustive search is carried out, looking for the reference contour 

position leading to the minimum energy. The process is iterated reducing, at each iteration, the 

search window size. When two successive iterations lead to the same minimum energy the process 

ends. This process is performed for all validated reference objects. The minimization algorithm 

steps are presented next. 
 

Algorithm: Local Energy Minimization 
 
Step 1 .- Based on the contours initialization, the m contours in the reference image are identified, sorted, divided (if required) and 

denoted as {C1, C2, …, Cm}. Additionally, the initialization label will be obtained.  

Step 2 .- Computation and saving of the initial energy of each of the contours using Equation (5).  

Step 3 .- Computation of the size of the initial search window W and smoothing the gradients energy map (Eq. 2). 

Step 4 .- For a given contour Ci,  
(a) Find a position of lower energy within the window W, applying the updating rule of Eq. (6).  
 
(b) If there is a position of lower energy:  
 

  1) Update the contour to its new position.  
 2) Save the new value of energy.  
 3) Reduce the size of the search window centered at the new position of the contour, the degree of  

      smoothing and the amplitude of the Gaussian function and return to step 4 (a).  
 
(c) If a position of lower energy is not found:  
 
 1) Determine the number of matched points.  
 2) Save the coordinates of all points of the contour obtained.  
 

Step 5 .- Repeat steps 3-4 for a new contour. 
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yes 

The implemented exhaustive search algorithm is based on dynamic programming techniques 

[24], showing its flowchart in Figure 4. 

 
Figure 4. Flowchart of the exhaustive search algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To improve the estimation robustness, all final reference contours must pass a local consistency 

test. A reference contour is accepted only if enough points from its final version overlap reliable 

edges. Typically, a contour is accepted if more than 10% of its points overlap reliable edges. 

3.3. Transform Model Estimation and Resampling 

The affine transformation parameters are estimated based on the final positions of the reference 

contours. It consists of computing a bilinear regression from the initial and final positions for each of 

the points of the accepted contours. We have assumed that the relationship between the reference and 

sensed images, obtained from an orbital prediction model, can be expressed by a 2-D affine 

transformation [1,15], since the systematic errors have been previously compensated by the Kepplerian 

model. The affine transformation can model six types of distortions, including translation, scaling 

and rotation. More complex transformations, as adaptative mapping functions or splines, are used 
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with non-linear geometric distortions or with local geometric distortions in high resolution images 

[12].  

 For the considered affine transformation model, we can write for each pair of related points, 
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where (XO,YO) , (XI,YI) are, respectively, the initial and final positions of a contour point and {a0, a1, 

a2}, {b0, b1, b2} are the transformation parameters. This allows to generate initial transformations with 

respect to rotation, scaling and translation. The six transformation parameters are estimated using all 

pairs of accepted points (N), through a minimum squares solution,  

X̂  = (W 
T W ) 

-1
 (W 

T
 RX );  Ŷ = (W 
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 RY )                                      (8) 
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and, 
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                                                                (10) 

Finally, the input image is transformed using the following correction function: 

oI

I o

XX
·

Y Y
X X X

Y Y Y

A B C

A B C

      
      

      
                                                   (11) 

3.4. Registration Accuracy Estimation Technique 

A common procedure to assess the quality of the registered image is to compute the error in the 

location of a few control points. As it has been commented, this procedure is subject to problems of 

availability and representativity of such points as well as uncertainty in their interactive location. To 

overcome these problems, a new method has been developed based on the use of all the image 

available information. The procedure has two parts:  

 Error field generation: A distance map is generated computing those pixels which are at a given 

distance from the reference contours. In this implementation, distances are computed by successive 

dilations of the reference contours. Figure 5 shows an example of an error field obtained from a 

reference image consisting on the coastlines extracted from a geographic database. Distance values 

greater than 3 are not computed because errors of such magnitude do not appear after the geometric 

correction of the residual errors. 
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 Extraction of sea-land contours: The reliable outer sea-land contours are extracted from sensed 

image and transformed by the obtained correction function, to superimpose them on the distance map. 

Contours are extracted from the gradient map of the relevant areas. In this application, we have used a 

thresholding approach given its simplicity. Since gradients are smooth, the resulting contours have to 

be thinned up to one pixel width.  

Finally, the distance map (DM(.)) is evaluated at all points (p) belonging to the binary 

representation of the transformed contours (C). The final RMS error is computed by adding up these 

values and normalizing them by the total number of contour points in C (N = |C|): 

 
p C

DM p

RMSE
N




                                                         (11) 

As it will be shown in the following section, this method enables the use of a large number of 

points in the RMS error computation, making the measure more robust. 

Figure 5. Registration Accuracy Estimation Technique: (a) Example of a reference 

image (coastlines) extracted from a geographic database (27-33º N, 8-19º W and, (b) 

error field generated for this reference image. 
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4. Results 

In this section, we present illustrative results of the operation of the registration algorithm with 

several types of remotely sensing data. Specifically, we provide experimental results for 

multitemporal and multisensorial image registration. So, the proposed algorithms have been tested 

in a large set of satellite images. Here we present a subset that illustrates some of their relevant 

features. The images have been obtained in the Canary Islands-Azores-Gibraltar area (39º15´N-

19º15´W; 26º15´N-6º15´W), known as CANIGO area [19]. 

Figure 6(a) shows the results obtained for the multitemporal NOAA-AVHRR images of Figures 

3(a) and (b), corresponding to sea surface temperature data. Qualitatively, the correspondence 

between the reference and sensed images obtained by the proposed algorithms is accurate to within 

a pixel error in average. Figure 6(b) presents the results of the proposed method in multisensorial 

images, corresponding to sea surface temperature and ocean colour data, acquired by the AVHRR 

and SeaWiFS sensors, respectively. Finally, Figure 6 (c) presents the results of the proposed 

method in multisensorial SST images, corresponding to AQUA-MODIS and ERS/2-ATSR images 

of the Canary Island area, respectively. The correspondence between the reference and input 

images shows that the registration obtained by the proposed algorithm is accurate to within a pixel 

error in average. 

Figure 6. Results of contour-based approach applied to multitemporal/multisensorial 

image registration: (a) Multitemporal SST images from NOAA-AVHRR sensor, (b) 

multisensorial SST and ocean color images from AVHRR and SeaWiFS sensors, and (c) 

multisensorial SST images from AQUA-MODIS and ERS/2-ATSR sensors. 

   

 

 

  

(a) (b) (c) 
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Table 2 shows the results obtained in a subset of multitemporal and multisensorial images. In it, 

the captured data and the initial/final energy obtained in the minimization process are presented for 

the proposed algorithm. From the perspective of the analysis and extraction of conclusions, a 

particular case is presented which gives an idea of the limits of the proposed technique. It 

corresponds to the comparison between the proposed optimization techniques with the area-based 

approaches, as implemented in [11]. Results are presented in Table 3 detailing the number of 

points used in the transformation parameters estimation (n) and the total RMS error in the 

horizontal (x) and vertical (y) directions. The proposed algorithm outperforms area-based 

techniques by over half a pixel on the average, even when a large number of control points are 

available. In consequence, this algorithm is adequate for automatic satellite imagery registration, 

even when they have partial or total occlusions and, thus, it is difficult to obtain a large number of 

well-distributed CPs. 

Table 2. Results of satellite image registration for three test cases. 

Images 
Satellite 

Initial 
Energy 

Final 
Energy 

R.M.S. 

Reference: 18 January 1998 
Satellite: NOAA/AVHRR-3 

(517993) 
-0.0155 -0.0537 0.987 

Sensed: 3 July 1998 
Satellite: NOAA/AVHRR-3 

(237629) 
Reference: 24 April 1999 
Satellite: SeaStar/SeaWiFs 

(535950) 
- 0.0466 -0.0793 1.015 

Sensed: 24 April 1999 
Satellite: NOAA/AVHRR-3 

(535950) 
Reference: 15 August 2001 
Satellite: AQUA/MODIS 

(5001100) 
-0.0542 -0.0869 1.184 

Sensed: 15 August 2001 
Satellite: ERS/2-ATSR 

(500500) 

 

Table 3. Comparison between an area-based technique and the optimization technique. 

Images 
Area-based 
technique 

Optimization 
technique  

Multitemporal 
NOAA/AVHRR-3 

n 
x 
y 

10 
1.835     
2.442 

n 
x 
y 

1150 
1.093  
0.975 

Multisensorial 
AVHRR-3/SeaWiFS 

n 
x 
y 

15 
1.675        
1.487 

n 
x 
y 

1398 
0.662 
0.398 

Multitemporal 
Structures Tracking 
NOAA/AVHRR-3 

n 
x 
y    

8 
1.375        
1.653 

n 
x 
y     

1010 
0.853 
0.595 
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5. Conclusions 

This paper has dealt with automatic registration of remotely sensed imagery. This procedure 

appears often in the processing of multi-temporal and/or multisensorial image analysis, such as 

multisource data fusion, multitemporal change detection, structure recognition and tracking, etc. 

In this work, we have explored the critical elements for an automated image registration system 

using NOAA-AVHRR/3, SeaStar-SeaWiFS, AQUA-MODIS and ERS/2-ATSR imagery. These 

elements include reference image coastline extraction, sensed image gradient energy map 

estimation and feature correspondence.  

For this last process, we have developed a feature correspondence technique by optimization of the 

reference image contours on the sensed image contour matching techniques, based on a general affine 

transformation, which models directly the corrections in the image domain without an explicit 

identification of the distortion sources. Experimental results using optical and infrared images from 

different dates and sensors have verified the robustness and accuracy of the proposed algorithm, 

regardless the initial orbital prediction model, demonstrating that is capable of registering satellite 

images within one pixel. Furthermore, a new technique has been proposed to assess the accuracy of 

georeferencing approaches, which makes use of all reliable information in the image.  

In summary, the technique of automated image registration developed in this work is potentially 

powerful in terms of its registration accuracy, the degree of automation, and its significant value in an 

operational context. The approach is also robust, since it overcomes the difficulties of control-point 

correspondence caused by the problem of feature inconsistency and, consequently, improves the 

analysis and data interpretation accuracy and facilitates its update to future remote sensing sensors or 

other applications. We have, as well, demonstrated the excellent performance of our methodology 

when compared with area-based techniques, improving the registration accuracy by half a pixel. 

Especially, the favourable results from this study have spawned a follow-up project that consists in 

the tracking of mesoscale structures using multitemporal and multisensorial data [6,25]. This project 

estimates the motion of coastal upwelling in image sequences with different region matching and 

differential algorithms. The accuracy of the motion field has been computed using synthetic and real 

sequences, as well as in-situ measurements. To that respect it is important to emphasize the need of a 

precise registration methodology to achieve satisfactory results. In particular, this automated 

registration procedure has been used with great success in our work. Figure 7(a) shows the segmented 

upwelling for a multitemporal sequence while Figure 7(b) includes the contours for a multisensorial 

sequence along with the recovered motion field. 
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Figure 7. Results of satellite imagery registration technique applied to automatic 

structures tracking: (a) upwelling contours for AVHRR images of 15 (blue, 425x525), 

16 (red, 350x450) and 17 (yellow, 400x600) August 2001. (b) Motion estimation for a 

pair of images of Cape Ghir of 9 (yellow) and 10 (red) November 2002 (300x350). 

(a) (b) 
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