# Mixed Variational Formulations for Micro-cracked Continua in the Multifield Framework

^{*}

## Abstract

**:**

**2001**, 190, 5657–5677) and propose a few novel variational formulations of mixed type along with relevant mixed FEM discretizations. To this goal, suitably extended Hellinger-Reissner principles of primal and dual type are derived. A few numerical studies are presented that include an investigation on the interaction between a single cohesive macrocrack and diffuse microcracks (Mariano, P.M. and Stazi, F.L., Strain localization due to crack–microcrack interactions: X–FEM for a multifield approach, Comp. Methods Appl. Mech. Engrg.

**2004**, 193, 5035–5062).

## 1. Introduction and modeling

#### 1.1. Introductory remarks

#### 1.2. The constitutive model

t | = | specimen thickness |

$RV{E}^{M}$ | = | material reference volume element = ${\ell}_{M}^{2}t$ |

$RV{E}^{m}$ | = | micro-fracture reference volume element = ${\ell}_{m}^{2}t$ |

E | = | Young modulus of the bonds between macro-spheres |

${E}^{*}$ | = | Young modulus of the bonds between macro-spheres and micro-holes |

$\mathcal{W}$ | = | $EA/{\ell}_{M}$ = macro-lattice stiffness |

$\mathcal{Q}$ | = | $EA/(\pi {\ell}_{c})$ = mean stiffness of the ellipsoidal micro-holes |

$\mathcal{H}$ | = | $2EA/\left[\sqrt{2}({\ell}_{m}-{\ell}_{M})\right]$ = stiffness of the bonds between macro and meso lattices |

$\widehat{A}$ | = | cross section of rods between adjacent micro-cracks. |

## 2. Mixed variational formulations

#### 2.1. Primal Hellinger–Reissner formulation

#### 2.2. Dual Hellinger–Reissner formulation

#### 2.3. Implementation

## 3. Numerical studies

#### 3.1. A clamped square lamina

${\ell}_{m}$ $\left[mm\right]$ | ${\ell}_{M}$ $\left[mm\right]$ | δ $\left[mm\right]$ | E $[N/m{m}^{2}]$ | A $\left[m{m}^{2}\right]$ | $\widehat{A}$ $\left[m{m}^{2}\right]$ | ${\ell}_{C}$ $mm$ | $\chi $ |

200 | 1 | 0.1 | ${10}^{5}$ | 1 | 0.314 | 1 | 50 |

#### 3.2. Interaction between a macrocrack and diffuse microcracks

${\ell}_{m}$ $\left[mm\right]$ | ${\ell}_{M}$ $\left[mm\right]$ | E $[N/m{m}^{2}]$ | A $\left[m{m}^{2}\right]$ | $\widehat{A}$ $\left[m{m}^{2}\right]$ | ${\ell}_{C}$ $mm$ | χ |

75 | 5 | ${10}^{3}$ | 1 | 0.0314 | 1 | 50 |

## 4. Conclusions and future work

## Acknowledgements

## References and Notes

- Arnold, D.N.; Brezzi, F.; Douglas, J.D. PEERS: a new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics
**1984**, 1, 347–367. [Google Scholar] - Brezzi, F.; Fortin, M. Hybrid and Mixed Finite Element Methods; Springer: New york, 1991. [Google Scholar]
- Bruggi, M.; Venini, P. A Truly Mixed Approach for Cohesive–Crack Propagation in Functionally Graded Materials. Mechanics of Advanced Materials and Structures
**2007**, 14, 643–654. [Google Scholar] - Bruggi, M.; Venini, P. A mixed FEM approach to stress-constrained topology optimization. International Journal for Numerical Methods in Engineering
**2008**, 73, 1693–1714. [Google Scholar] - Capriz, G. Continua with microstructures; Springer Tracts in Natural Philosophy, 35; Springer: Berlin, 1989. [Google Scholar]
- Johnson., C.; Mercier, B. Some equilibrium finite elements methods for two dimensional elasticity problems. Numer: Math.
**1978**, 30, 103–116. [Google Scholar] - Krajcinovic, D. Damage mechanics; North-Holland: Amsterdam, 1996. [Google Scholar]
- Mariano, P.M. Multifield Theories in mechanics of solids. Adv. Appl. Mech.
**2002**, 38, 1–93. [Google Scholar] - Mariano, P.M.; Stazi, F.L. Strain localization in elastic microcracked bodies. Comp. Methods Appl. Mech. Engrg.
**2001**, 190, 5657–5677. [Google Scholar] - Mariano, P.M.; Stazi, F.L. Strain localization due to crack-microcrack interactions: X-FEM for a multifield approach. Comp. Methods Appl. Mech. Engrg.
**2004**, 193, 5035–5062. [Google Scholar] - Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics
**2002**, 69, 813–833. [Google Scholar] - Schenk, O.; Gärtner, K. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO. Journal of Future Generation Computer Systems
**2004**, 20, 475–487. [Google Scholar] - Schenk, O.; Gärtner, K. On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal.
**2006**, 23, 158–179. [Google Scholar] - Torquato, S. Random heterogeneous materials; Springer Verlag: Berlin, 2002. [Google Scholar]

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Bruggi, M.; Venini, P.
Mixed Variational Formulations for Micro-cracked Continua in the Multifield Framework. *Algorithms* **2009**, *2*, 606-622.
https://doi.org/10.3390/a2010606

**AMA Style**

Bruggi M, Venini P.
Mixed Variational Formulations for Micro-cracked Continua in the Multifield Framework. *Algorithms*. 2009; 2(1):606-622.
https://doi.org/10.3390/a2010606

**Chicago/Turabian Style**

Bruggi, Matteo, and Paolo Venini.
2009. "Mixed Variational Formulations for Micro-cracked Continua in the Multifield Framework" *Algorithms* 2, no. 1: 606-622.
https://doi.org/10.3390/a2010606