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Abstract: An advanced operational semi-empirical algorithm for processing satellite 

remote sensing data in the visible region is described. Based on the Levenberg-Marquardt 

multivariate optimization procedure, the algorithm is developed for retrieving major water 

colour producing agents: chlorophyll-a, suspended minerals and dissolved organics. Two 

assurance units incorporated by the algorithm are intended to flag pixels with inaccurate 

atmospheric correction and specific hydro-optical properties not covered by the applied 

hydro-optical model. The hydro-optical model is a set of spectral cross-sections of 

absorption and backscattering of the colour producing agents. The combination of the 

optimization procedure and a replaceable hydro-optical model makes the developed 

algorithm not specific to a particular satellite sensor or a water body. The algorithm 

performance efficiency is amply illustrated for SeaWiFS, MODIS and MERIS images over 

a variety of water bodies. 
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1. Introduction 

 

Throughout the recent decades, satellite remote sensing of the world oceans became increasingly 

important in light of both the problem of global climate change and frequent deterioration of the 

aquatic ecology status, the latter being driven by ever increasing needs of growing populations for 

drinking water as well as for fish and other sea food. 

Satellite-based sensors operating in the visible are most suited for this mission as only the visible 

radiation penetrates appreciably into the water column and its backscattered component carries the 

desired information about the quality of water bodies under surveillance. 

Several satellite sensors, such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate 

Resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer 

(MERIS), operate in the visible and near infrared and provide global coverage. The main challenge 

resides in the retrieval of exact information about water quality parameters from the collected images. 

The approaches to the retrieval of water quality parameters from spaceborne data depend on the 

optical complexity of the target water body. According to Morel and Prieur [1], all natural waters are 

partitioned into case 1 and case 2 waters. In case 1 waters, variations of the aquatic medium optical 

properties (and hence water colour) are predominantly controlled by phytoplankton and co-varying 

products of their life cycle. Colour variations in case 2 waters are controlled not only by phytoplankton 

and their accompanying retinue, but also by other substances, notably terrigenous suspended minerals 

(sm) and allochthonous dissolved organic matter (doc) that vary independently of phytoplankton. 

In case 1 waters (mostly open ocean waters), algorithms for the retrieval of the desired water quality 

parameter, e.g. the phytoplankton abundance, are rather unsophisticated. For instance, the case 1 water 

OC4 algorithm currently used by the National Aeronautics and Space Administration (NASA) [2, 3] is 

based on a relationship between the concentration of phytoplankton chlorophyll, chl (a proxy of the 

phytoplankton abundance) and the emerging radiance at two or more wavelengths normalized to the 

incident irradiance at the same wavelengths. 

In case 2 waters, this approach is untenable as the radiation emerging from beneath the water 

surface is affected at any wavelength not solely by phytoplankton, but other substances as well. 

Therefore, in order to retrieve one component, e.g. chl it is necessary to infer simultaneously the 

content of other water constituents affecting the water colour, so called colour producing agents 

(CPAs), first and foremost, sm and doc. Together with chl, sm, doc and such substances as total 

organic carbon (toc) and total suspended sediments (tss) are traditionally categorized as water quality 

parameters (WQP). 

One of the possible solutions of the problem of WQP retrieval from satellite images collected over 

case 2 waters is the application of an algorithm based upon the Levenberg-Marquardt (LM) 

multivariate optimization procedure [4, 5]. The main advantage of the LM algorithm comparing to 

such algorithms as band ratio algorithms or neural networks is higher accuracy in inverse problem 

solution [6, 7, 8]. As our experience shows other multivariate optimization techniques (as genetic 

algorithms) prove to be at least twice more time consuming. 

In the “Methods” section we begin with a concise description of the basic principles of the LM 

technique, assessment of the algorithm efficiency. In the same section we also focus on the 

development and characteristics of hydro-optical models. The next section, “The algorithm 
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applications”, is devoted to the assessment of the developed algorithm efficiency in some case studies. 

In “Discussions” we describe possible sources of errors and the favourable conditions for the 

algorithm application. 

 

2. Methods 

 

In our study we operate with the subsurface spectral remote sensing reflectance [noted in the 

literature as Rrsw(, C, a, bb)], which is the upwelling spectral radiance just beneath the water-air 

interface, L(-0, ) normalized to the downwelling spectral irradiance, E(-0, ) at the same level [9]). 

Let S be the spectrum of Rrsw which is calculated from remote sensing data or from in situ optical 

observations (measured reflectance). 

Subsurface spectral remote sensing reflectance depends on the vector of all the major CPA 

concentrations and on their inherent optical properties (IOPs). These properties are the specific 

(normalized to the respective unit concentration) spectral absorption a* and backscattering, bb* 

coefficients of the coexisting water constituents (e.g. a*chl, a*sm, a*doc, bb*chl, bb*sm ). 

Let T be the spectrum of Rrsw calculated using the empirical equation derived from numerical Monte 

Carlo simulations by Jerome [9]: 

T = – 0.00036 + 0.110(bb/a) – 0.0447(bb/a)2    (1) 

where a and bb are the water column bulk absorption and backscattering coefficients correspondingly.  

Being additive by nature, the coefficients a and bb are sums of respective contributions (Cia*i, 

Cjbb*j) from the major CPAs: 
*
i

i
iw aCaa  ,     (2) 

*

jb
j

jwbb bCbb  ,      (3) 

where i and j are the indices of the absorbing and scattering components (e.g. chl, sm or doc). Using 

equations (1-3) we can calculate the reflectance spectrum T (reconstructed reflectance) for any vector 

of CPA concentrations if the set of respective IOPs (i.e. hydro-optical model) is given.  

The relationship (1) was developed for case 2 waters [10], similar approaches e.g. by H. Gordon are 

designed for case 1 waters. 

 

2.1. Multivariate Optimization Procedure 

 

For a vector of concentrations C and a given hydro-optical model the residual between measured 

and reconstructed reflectance at j-th wavelength can be computed as follows: 

gj = (Sj – Tj) / Tj      (4) 

The multidimensional least-square solution using all wavelengths is found by minimizing the sum 

of squared residuals by simultaneous variation of concentrations in the vector C: 

 f g j
j

( ) ( )C C  2

    
  (5) 

The absolute minimum of f (C) can be found with the Levenberg-Marquardt finite difference 

algorithm [4, 5], which assures a rapid convergence of the iterative procedure. The following iterative 

expression is used to this goal: 
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where k = iteration step,  )( k
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C
C)( matrix composed of n x m elements (n = number of wavelengths, at which the 

measurements of Sj have been conducted, m = dimension of the concentration vector C), )(CtF = 

transposed matrix, k = direction of minimization, k = length of the minimization step. The criterion 

for the termination of the iterative procedure is f (C)  10-5. 
The actual length, k  can be chosen easily and effectively through applying the method of 

reduction, which consists in the following: at a certain iteration step k  a deliberately high value of k  

is chosen (e.g. 50). From eq. 3 a new concentration vector 1kC  is determined, for which the 

inequality )()( 1 kk ff CC   is tested. If it is not satisfied, k  is reduced by a factor of two, and a new 

round of search is initiated. This iterative procedure is continued until the above inequality is satisfied, 

i.e. until the newly determined concentration vector proves to be closer to the minimum of the function 

of residuals f (C) as compared to the concentration vector established in the previous iteration step. 

In the course of the iterative descent to the global minimum of the function of residuals, the above 
procedure could end up in a local minimum. If the determined concentration vector, kC  happens to be 

on the downhill and the length of the iteration step   is sufficiently high, then the next concentration 

vector 1kC  might occur on the downhill in the direction to a deeper minimum. In this case the process 

of search will move to a new point provided the inequality )()( 1 kk ff CC   is satisfied. Thus, such a 

search with a variable length  can, under favourable conditions, evade a local minor minimum and 

end either in a deeper or even in the global minimum. 
However, equally possible is the situation that the concentration vector 1kC  is on the uphill side of 

a certain local minimum of f (C). In this case the search ends in this local minimum, which 

corresponds to an inadequate solution of the inverse problem. Naturally, the probability for the latter 

option increases with measurement errors. 

To avoid the above difficulty, it is advisable to initiate the iteration procedure for an array of initial 

guess values, C0. Afterwards the deepest minimum of f (C) is selected. The number N of the initial 

vectors C0 should not be excessively high because the computation time for the inverse problem 

solution increases proportionally with N. 

But the use of an array of initial vectors C0 does not guarantee that the iterative procedure will be 

converging or the eventually established concentration vector C be realistic. To overcome this 

problem, some a priori limits can be imposed upon each of CPA concentrations, Ci: 

max min      iii CCC        (7) 

where i is the ith constituent of the aquatic medium. 
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2.2. Assessment of Robustness of the LM Procedures against Simulated Measurement Errors 

The LM procedure in the Matlab environment has been realized using the recipes given by Press 

[11]. The code for the L-M procedure used in the present study was developed by one of us (A. 

Korosov) using the C++ language. Calculations of the resultant bulk absorption and backscattering 

coefficients for the simulated aquatic medium were performed by using the hydro-optical model 

suggested by Kondratyev [12, 10]. The model is a collection of tabulated spectral values of a* and bb* 

for the major CPAs, i.e. chl, sm and doc within the spectral region 400-700 nm, as obtained for case 2 

waters with the trophic status varying from oligotrophic to eutrophic. 

In order to test the algorithm performance, the following numerical experiment was carried out. 

1000 concentration vectors (C = {Cchl, Csm, Cdoc}) were randomly selected in rather wide ranges (0-70 

g/L; 0-30 mg/L and 0-30 mgC/L for chl, sm and doc, respectively). One thousand spectra of T were 

generated from concentration vectors using equations 1, 2 and 3. Another 13,000 spectra of S were 

simulated by contaminating the calculated T with ‘noise’ for the following options: 

 four levels of noise in input data: 0, 5, 10 and 15%; 

 two types of noise distribution: uniform and normal; 

 two types of -dependency: noise is independent and dependent on  (the spectral dependence 

was assumed to be linearly decreasing with ) [13, 14]. 

Our comparison of simulated and retrieved results showed a very high retrieval accuracy for the 

case with a zero input noise (correlation, r equals 0.999 for all three parameters, root mean square 

error, RMSE equals 1.8 g/L for chl, 1.0 mg/L for sm and 1.5 mgC/L for doc). Moreover, our 

simulations indicate that the L-M procedure remains stable for measurement errors up to 15 %. It was 

also found that the error level and its distribution as well as its dependence on  strongly influence the 

attainable retrieval accuracy. The latter is also a function of the CPA concentration vector per se.  

For oceanographic and limnological research we assume that, at least, for case 2 waters, the chl 

retrieval errors specified in Table 1 for a number of concentration ranges are admissible [15]. The 

simulations indicate that these accuracy requirements can only be fulfilled for specific hydro-optical 

conditions, i.e. the concentrations of chl, sm and doc have to fall into specific concentration ranges 

(Table 2). 

 

Table 1. Acceptable accuracy of chl retrieval for different chl concentration ranges 

chl range, g/L 0 - 5 5 - 10 10 - 20 20 - 30 

admissible error, % 50 40 30 20 

 

Our simulations also indicate (Table 2) that the sm and doc concentration ranges (within which the 

LM procedure yields chl retrieval results with the permissible error as in table 1) shrink with 

increasing measurement error. The most stringent limitations arise in the case of normally distributed 

and -dependent measurement errors. 

Under favourable conditions (e.g. when doc and sm concentrations are in the range 0–2 mgC/L and 

0–0.5 mg/L respectively, and the noise is -independent) chl concentrations can be retrieved with 

acceptable accuracy in the entire range 0–30 g/L (the corresponding cell is marked with asterisk in 

Table 2). In turbid waters (Csm varies within 5–10 mg/L, Cdoc – within 5–10 mgC/L) and with -
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dependent noise (the corresponding cell is marked with double asterisk) chlorophyll can be retrieved 

accurately only in the range 0–5 g/L. 

However, the dependence of measured errors on  is inherent in satellite images subjected to the 

applied atmospheric correction procedure, as its base is the extrapolation of the aerosol path radiance 

determined in the near infrared to the blue spectral region [13, 14]. It can, nevertheless, be expected 

that atmospheric correction approaches based on other concepts, such as the inversion method [16], or 

the methods of statistical regularization [17], multivariate optimization, neural networks, etc. would 

result in -independent errors. This would broaden considerably the range of hydro-optical conditions, 

in which the desired accuracy of chl retrieval can be reached. 

 

Table 2. Ranges of Cchl, within which the chl retrieval accuracy specified in Table 1 is 

attainable given various options of doc and sm abundance in water and the spectral 

behavior of noise. Single- and double-asterisked entries exemplify the water composition 

situations that are, respectively, favourable and unfavourable for remote sensing of chl. 

Error 

type 
Cdoc, mgC/L 

Csm, mg/L 

0-0.5 0.5-1 1-5 5-10 10-20 

-
in

d
ep

en
d

en
t 0-2 0–30* 0–30 0–30 0–30 0–30 

2-5 0-30 5-30 0-30 0-30 0-30 

5-10 0-30 0-30 0-30 0-30 0-30 

10-20 0-30 5-30 5-30 0-30 5-30 

-
d

ep
en

d
en

t 0-2 0-5 0-5 0-5 0-5 0-5 

2-5 - - 0-5 0-5 0-5 

5-10 - - - 0-5** 0-5 

10-20 - - - - - 

 

Note that the boxes in Table 2 with no entries (-) imply that the LM procedure will not ensure the 

accuracy of chl retrieval with the admissible error. 

 

2.3. LM-Based Hydro-Optical Retrieval Algorithm 

 

The principal flow-diagram of our LM-based algorithm is given in Figure 1. An atmospherically 

corrected satellite image from SeaWiFS or MODIS is used to calculate the corresponding subsurface 

remote sensing reflectance spectrum S()for each pixel [10] making use of the normalized upwelling 

radiance [Lw()]N. Images from these sensors are downloaded from the NASA OCEANCOLOR web 

site [18] in Level-2 format. 

MERIS image processing includes calculation of S() from the provided values of remote sensing 

reflectance above water  Rrs(+0, ). These images are downloaded either from the ESA rolling archive 

[19] or from the MERCI catalogue [20] in Level-2 format. 
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In the next step, the spectral curvature of S() is automatically analysed to eliminate pixels with a) 

negative values of S at short wavelengths (400-450 nm) due to overestimation of the path radiance, and 

b) enhanced values of S in one or two first sensor channels followed by a dip in either the second or 

third channel due to underestimation of the path radiance. 

Further, the algorithm calculates the gradient of the processed S spectrum starting from the first 

channel (i.e. the shortest wavelength) and moving to the red portion of the spectrum (towards the 

longest wavelength in the visible). The pixel is preserved only if the corresponding spectrum exhibits a 

stable positive gradient at  < ~ 560 nm (it is allowed to be just non-negative at   450nm), followed 

by a negative gradient for  > ~ 560 nm. The pixel is flagged, if it does not satisfy this requirement. 

However, this mask does not discard pixels with the S spectra characteristic of clear waters, should 

they be present in the image. Identification of clear and turbid waters is performed through jointly 

analyzing both the envelope of S spectra and their mean spectral value. The latter is known [21] to be 

distinctly different for clear and turbid waters, and a corresponding threshold is applied to this end. 

 

Figure 1. A flow-diagram of the developed algorithm performance. 

Atmospherically corrected

normalized water leaving radiance

[L W ] N

Estimate atmospheric correction quality low quality Set flag "bad

high quality  atmospheric correction"

[L W ] N

Calculate remote sensing reflectance S(λ )

S(λ )

Retrieve concentrations with Select

Levenberg - Marquardt optimization hydro-optical model

Concentration vector a(λ) = Σ a i *(λ)C i

C  = { C CHL , C SM , C DOC  } b b (λ) = Σ b bi *(λ)C i

Reconstruct  remote sensing reflectance T (λ)

a(λ), b b (λ)

T( λ)

Compare measured and reconstruced spectra S(λ )

Estimate retrieval accuracy (T(λ) - S(λ) )2

High accuracy Low accuracy

Set flag Set flag

"high retrieval accuracy" "low retrieval accuracy"

{ C CHL , C SM , C DOC  } flag flag flag

output values of concentrations and flags

 
For the remaining pixels the derived S is sent to the LM unit. The algorithm code is designed in 

such a way that there is a possibility of choosing an appropriate hydro-optical model from the 
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embedded collection of hydro-optical models. The LM unit yields simultaneously the concentrations 

of chl, sm and doc. 

The algorithm has a quality assessment/assurance unit whose function is to detect pixels 

corresponding to water areas whose hydro-optical properties significantly differ from those covered by 

the chosen hydro-optical model. This is done through calculating T using the retrieved concentration 

vector and the adopted hydro-optical model and the parametric relationship T = f(a, bb). The 

reconstructed spectrum T is then compared with the initial spectrum S derived from the acquired 

satellite image. The pixel becomes flagged if the difference (S – T)2 surpasses a certain threshold (10-5 

sr-1) established experimentally. 

 

2.4. Development of hydro-optical models 

 

As seen in Section 2.1., the solution of the inverse problem resides in determining the concentration 

vector C given the spectral values of CPA specific coefficients of absorption and backscattering, i.e. a 

hydro-optical model. Such a model can be obtained through different ways. The following sections 

describe our approaches with regard to the case studies discussed in this paper. 

 

2.4.1. Lake Ladoga hydro-optical model 

 

In the second part of the 1980s, during the summer-time of three consecutive years, a large-scale 

ship campaign was conducted across the entire Lake Ladoga. In the course of this campaign, 

concurrently measured were spectral subsurface upwelling, Eu(-0,) and downwelling, Ed(-0,) 

irradiances to obtain spectral volume reflectance, R() = Eu(-0,) / Ed(-0,), which is related to bulk 

coefficients of absorption, a() and backscattering bb*() [21] and the concentrations of chl, sm and 

doc. These data were employed for the development of a hydro-optical model of Lake Ladoga. To do 

this, the LM procedure (section II) was exploited, this time for determining specific spectral 

coefficients of absorption, a*i() and backscattering bb*j() (Fig. 2) of the water constituents 

addressed in this study (for details see [12]). 

It is important to underline that in the hydro-optical model of Lake Ladoga, a*doc is calculated 

through the normalization to the total doc concentration, i.e. not solely to the weight of the coloured 

fraction (called yellow substance or gelbstoff) - cdom. This has been done in order to facilitate the use 

of satellite data for validation of ecological models, which generally do not differentiate between 

sunlight-absorbing and non-absorbing doc fractions. Such an approach opens door to the assimilation 

of satellite retrievals by aquatic ecological models. 
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Figure 2. Spectra of specific absorption (upper row of plates) and specific backscattering 

(second row of plates) for three hydro-optical models: 1 - Lake Ladoga; 2 – North Sea; 3 – 

Lake Erie. For chlorophyll (left column), the absorption and backscattering values are in 

m2/mg, for suspended minerals (central column), – in m2/g and for DOC (right column), – 

in m2/gC. Wavelengths on the X-axe  are  in nm. 
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The efficiency of the developed algorithm performance was tested based on a fraction of the 

shipborne measurements that were not used for the hydro-optical model development. Table 3 lists 

WQP concentrations measured in situ and retrieved from spectral volume reflectance concurrently 

measured at the same locations. 

 

Table 3. Comparison of the chl, sm and doc concentrations measured in situ and retrieved 

from shipborne optical measurements in Lake Ladoga 

Measured concentrations Retrieved concentrations 

Cchl, g/L Сsm, mg/L Сdoc, mgC/L Cchl, g/L Сsm, mg/L Сdoc, mgC/L 

0.5 0.2 8 0.3 0.2 7 
6.6 1.0 9 5.5 1.1 10 
1.0 0.4 9 1.0 0.4 8 
0.6 0.3 9 0.8 0.2 7 
0.5 0.3 8 0.8 0.2 7 
1.0 0.2 8 1 0.05 9 
3.9 1.0 8 4 1.0 8 
7.1 0.8 8 9 1.0 7 
0.9 0.3 8 1 0.3 6 
2.1 0.3 8 1.5 0.3 7 

Correlation (r) 0.96 0.98 0.43 

Root mean square error (RMSE) 0.73 0.096 1.2 
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The developed algorithm restores the desired concentrations with an average error in the range 

about 6–12%. The attained accuracy is high enough, and indicates the intrinsic capacity of the 

developed LM algorithm to accurately retrieve the desired concentrations inasmuch as the adopted 

verification procedure excludes the intervening factor of imprecise atmospheric correction. 

 

2.4.2. The North Sea hydro-optical model 

 

For the North Sea the intrinsic hydro-optical model (Figure 2) has been obtained under the ESA 

GMES MarCoast shipborne campaign encompassing cruises in the coastal areas of southern Norway. 

Water samples were collected to determine the concentration vector constituted by chl, total suspended 

matter (tsm), and absorption at 443 nm by yellow substance plus non-pigmented/detrital particulate 

matter. Concurrently with water sampling, surface reflectance, w() was measured at six wavelengths 

(412, 443, 490, 510, 555, and 665 nm), where w() is related to Rrsw via the coefficient of 

proportionality k = 0.587 sr-1. A detailed description of this hydro-optical model is given elsewhere 

[22]. The water sampling and laboratory analyses were conducted in accordance with methods 

described in [23]. 

 

2.4.3. Lake Erie hydro-optical model 

 

A rather extensive field campaign (over 60 stations) was being conducted by the Michigan State 

University (MTU) across Lake Erie in 2005 during June – September. The in situ measurements 

encompassed spectrometric measurements to retrieve subsurface remote sensing reflectance, Rrsw() at 

6 MODIS wavelengths in the visible (412, 443, 488, 531, 551, 667 nm) as well as the concentrations 

of chl, sm and doc. 

The Lake Ontario hydro-optical model [21] was selected as a starting option for elaborating the 

Lake Erie hydro-optical model (Fig. 2). An iterative algorithm was used to find the desired five 

variables (i.e. a*
chl, bb

*
chl, a

*
sm, bb

*
sm, a*

doc:). 

In each iteration step: 

 the a*
chl, bb

*
chl, a

*
sm, bb

*
sm, a*

doc cross-sections for Lake Ontario are shifted up or down using the 

following equation (example for a*chl ): 

a*chl i = a*chl 0 + Ochl       (8) 

where achl i is the value of a*chl in the ith iteration step, a*chl 0 is the value of a*chl for Lake 

Ontario, Ochl is the random offset for a*chl; 

 the shifted hydro-optical model is further used for the retrieval of CPA concentrations from the 

Rrsw() values measured in situ employing our LM- based algorithm; 

 the difference between the retrieved and measured CPA concentration vector C is then 

calculated. In performing this step, only the difference between the concentrations of chl and 

sm was tested; 

 the obtained difference is further used for the selection of the best vector O. This step yields 

five offsets (Oachl, Obbchl, Oasm, Obbsm, Odocl,) that are further used for calculating a rough hydro-

optical model for Lake Erie. 
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Thus, due to application of the above procedure, the cross-sections of the established rough model 

only differ from the Ontario cross-sections by offsets O. However, in reality, the spectral distributions 

of the desired CPA cross-sections can also differ from the “benchmark” model in terms of their 

spectral envelope. In order to accommodate this option and reveal possible spectral deviations of the 

sought for hydro-optical model from the “benchmark” model, applied were both the LM optimization 

technique and the Genetic algorithm [11] to find the best set of *a  and *
bb  in each channel. The results 

(i.e. desired spectral specific absorption and backscattering coefficients) proved to be very similar. 

The LM optimization was run six times (for six channels), and it was found that a* and bb* values 

in different MODIS channels were independent. In each step of the LM optimization: 

 Rrsw values in a certain channel were calculated using the established five spectral values of  
*a  and *

bb  (a*
chl, bb

*
chl, a*

sm, bb
*

sm, a*
doc) and the CPA concentrations. All three concentrations 

measured in situ were used to calculate Rrsw(); 

 the calculated spectral values of Rrsw were further compared with the measured ones and the 

respective cost function f was determined; 

 the Jacobian of f was calculated; 

 each optimization iteration was run using the estimated cost function and calculated Jacobian; 

 vectors a* and bb*(i.e. a
*

chl, bb
*

chl, a
*

sm, bb
*

sm, a*
doc) were modified according to the yield of the 

previous iteration step; 

In each iteration step, each of the above 5 variables (i.e. the above specific absorption and 

backscattering coefficients) were operated. 

The model established in the previous step was used to retrieve CPA concentrations from Rrsw 

spectra measured in situ. Then, the retrieved doc concentrations supplemented the measured 

concentrations of chl and sm. This set of data was then processed like it was done in the previous step. 

This allowed tuning not only the CPA vectors a* and bb* but also the doc concentration values. 

Having tuned a* and bb* with adjusted doc concentrations, doc concentrations are to be retrieved 

anew with the tuned model. A single iteration proved to be sufficient: the CPA spectral specific 

coefficients established in the first iteration didn’t change with further iteration steps. Thus the 

established spectral specific coefficients were assumed as the best fit. 

Our comparison of chl and sm measured in situ with the respective concentrations obtained by 

applying the LM-based algorithm to Rrsw() values concurrently measured from board a ship showed 

(Figure 3) that correlation is high (rchl = 0.74, rsm = 0.82), absolute difference is low (RMSEchl = 0.98 

g/L, RMSEsm = 0.68 mg/L) and regressions are practically without any offset 

(chlretrieved = 0.98 chlmeasured – 0.1, smretrieved = 0.58 chlmeasured + 0.159) indicating that the established 

dependence is governed exclusively by the parameter in question. 

The results obtained indicate that firstly, the established hydro-optical model describes fairly well 

the present hydro-optical conditions in Lake Erie, and secondly, the developed LM-based algorithm 

operates satisfactorily in the case of a formerly eutrophic but then oligotrophicated water body. 
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Figure 3. Comparison of chl (A, g/L) and sm (B, mg/L) concentrations measured in situ 

and retrieved from shipborne optical measurements in Lake Erie. 
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2.5. Hydro-optical model sensitivity test 

 

When applying the LM-based algorithm to remote sensing reflectance spectrum, the hydro-optical 

model is assumed to be constant for all the given spectra. However, for realistic interpretation of ocean 

colour data the natural temporal and spatial IOP variability needs to be taken into account [24]. In 

order to quantify the influence of IOP variability on the inverse algorithm retrieval accuracy a 

sensitivity test is performed by one of us (A. Folkestad) in three steps. Firstly, the equations (1–3) 

were applied to simulate a reference spectrum T() using an arbitrary vector of the CPA concentrations 

and a reference hydro-optical model obtained from ship borne data. Secondly, in order to test the T() 

response to IOP variability the same combinations of CPAs are applied as input to the forward model, 

but the IOP’s spectral values are shifted from their respective values in the reference hydro-optical 

model. Wavelength independent shifts of ±50% are applied to specific absorption and backscattering 

coefficients for each of the CPA. Finally, the LM-based algorithm and the reference hydro-optical 

model were applied for the retrieval of CPA from the spectra T() generated with the shifted model. 

Any observed difference between the inversely retrieved CPA and initial CPA concentrations is 

entirely caused by the corresponding change in IOP values and is, therefore, a measure of the inverse 

algorithm’s sensitivity to the IOP variability. 

The sensitivity test showed that in waters, where chl is the dominating substance, the accuracy of 

chl retrievals remains acceptable (i.e. within ranges specified in Table 1) with a* and bb* of tsm or doc 

shifted. In case 2 waters dominated by sediments or dissolved organics the difference between initial 

and retrieved chl concentrations is unacceptably high with IOPs of sm or doc shifted. For sm retrievals 

the situation is different, because this is the dominant backscattering component of natural waters. 

Accordingly, the sm retrieval error is acceptably low in all options except with bb*sm shifted. The 

retrieval error of doc is low in all cases. 

The sensitivity test reveals that even under conditions of a 50% change of IOP the results may be 

retrieved with acceptable accuracy. Therefore, the hydro-optical models developed on in situ data 
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collected in one water body can be applied to another one. This approach is justified when both water 

bodies largely share one and the same catchment or in the case of geographical proximity of both 

water bodies when the mineralogical characteristics of sm and geochemical composition of doc can be 

expected to be similar. The same refers to chlorophyll: if the phytoplankton community composition is 

similar due to similar hydrological regime and trophic status then the same model can be applied for 

both water-bodies. 

 

3. Assessment of the Developed Algorithm Efficiency in Some Case Studies 

 

3.1. Lake Ladoga 

 

Lake Ladoga is the greatest European lake located in north-western Russia. The lake has undergone 

severe eutrophication due to anthropogenic input of nutrients, first and foremost, phosphorus. As a 

result, its productivity significantly increased, with the summer-time phytoplankton community 

composition shifted from diatoms to blue-greens, and the trophic status became mesotrophic [25]. 

The performance of the retrieval algorithm and the hydro-optical model for Lake Ladoga is 

illustrated on distributions of the chl, sm and doc concentrations in Lake Ladoga (Figure 4). These 

results are retrieved from c.a. 400 SeaWiFS images taken during the period 1998-2004 in July and 

averaged.  

 

Figure 4. Distributions of the chl (A), sm (B) and doc (C) concentrations in Lake Ladoga 

in July as retrieved from SeaWiFS data and averaged over 1998-2004. The maps are given 

in the geographic projection. 
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Figure 4. Cont. 

 B 

 C 

 

The retrieved concentrations of chl, sm and doc are in compliance with the historical data from 

Lake Ladoga [25–27]. In mid-summer, the concentration of chl in Lake Ladoga, which is presently a 

mesotrophic water body, may vary within the range 1-25 g/L. The central and northern parts of Lake 

Ladoga are deep and remain rather cold even in July. As a result, the chl concentrations are lower there 

than they are in shallow/well-warmed areas. This is especially so in the southern zone. 

The lake water is also rich in doc: in near shore regions Cdoc can be as high as 10-13 mgC/L, and on 

average is about 8 mgC/L [25]. 

Near-shore waters of Lake Ladoga also contain, although in moderate amounts, terrigenous sm 

brought in with river discharge. The largest rivers discharging into the lake are located in the south-

eastern area (the lower right-hand part of Fig. 4), but there is also an inflow of riverine waters along 

the western shore (left-hand side of Fig. 4). 

The central/deep regions of Lake Ladoga generally contain low amounts of sm unless temporarily 

persistent winds and/or meandering currents transport suspended mineral matter offshore [27, 28]. All 
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these features can be found in the CPA distributions given in Fig. 4, and this can be considered as a 

qualitative substantiation of the retrieved spatial distributions of chl, sm and doc in Lake Ladoga. 

Thus, the above indirect verification is clearly indicative that the algorithm restores correctly the 

spatial distribution of chl, sm and doc in accordance with the trophic status, bathymetry and hydrology 

of Lake Ladoga. 

 

3.2. White Sea (southern bays) 

 

The White Sea, morphologically a shelf marine basin is located on the periphery of the Arctic 

Ocean to which it is connected through the Barents Sea. It is essentially a mediterranean sea, being 

semi-enclosed by the northern European landmass. Both climate change, specific landscape features of 

the watershed and intensification of agricultural/industrial activities in the area brought about some 

significant ecological changes in the sea, notably in its southern bays, which trophic status turned to 

mesotrophic. 

Concentrations of chl, sm and doc were measured in situ in the southern bays of the White Sea 

(recipients of full-flowing riverine fresh waters) in July 2001. One SeaWiFS image taken 

synchronously with shipborne measurements on July 10, 2001 (time gaps between in situ 

measurements and satellite overpass were less than 24 hrs) was processed by the LM-algorithm. In the 

absence of a dedicated hydro-optical model, the Lake Ladoga model has been employed for reasons 

given in section 2.5. 

The CPA concentrations measured in situ are compared in Table 4 with the concentrations retrieved 

by the LM–based algorithm described above. 

 

Table 4. Comparison of the WQP concentrations measured in situ and retrieved by the 

LM-based algorithm from SeaWiFS data for the White Sea, Onega Bay, July 2001. 

In situ measurements Remote sensing data 

 chl, g/L doc, mgC/L sm, mg/L chl, g/L doc, mgC/L sm, mg/L 

1.6 8.3 0.25 1.3 6.5 0.8 
1.1 5.8 0.25 1.2 5.5 0.7 
1.1 5.9 0.65 1.1 4.5 1.1 
1.5 5.8 0.70 1.5 4.0 1.0 
1.8 6.3 0.30 1.6 4.0 1.0 
1.8 5.3 0.10 1.7 3.9 0.9 

r 0.90 0.79 0.65 

RMSE 0.15 1.6 0.56 

 

3.3. Eastern Gulf of Finland 

 

The eastern margins of the Gulf of Finland are known to be eutrophic and laden both with doc and 

sm [29]. Thus, these are typical case 2 waters. Like in the case of the White Sea, we lacked the Gulf of 

Finland inherent hydro-optical model and the Lake Ladoga model has been employed. Thus again we 
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assumed their hydro-optical models to be very close based on the argumentation presented in 

Subsection 2.4. 

Concentrations of chl, sm and doc were measured in the eastern Gulf of Finland on August 20, 21, 

22 and 23 2002. A SeaWiFS image taken on August 20, 2002 was processed with the LM-algorithm. 

In situ data from stations taken on August 20 and 21 were compared with the respective remote 

sensing data (Table 5). The temporal mismatch (T) between shipborne measurements and satellite 

(SeaWiFS) overflights varied been several hours (for three points) and 1 day. 

 

Table 5. Comparison of WQP concentrations measured in situ and retrieved from SeaWiFS 

data for the Baltic Sea, eastern Gulf of Finland, August 2002. 

Time gap 
In situ measurements Remote sensing data 

chl, g/L doc, mgC/L sm, mg/L chl, g/L doc, mgC/L sm, mg/L 

T
<

 2
4 

hr
s 

4.23 10.5 0.8 5.2 14.2 0.5 

9.00 12.0 1.1 12.0 14.8 2.7 

17.89 13.5 4.5 12.1 14.7 3.2 

r 0.77 0.77 0.69 

RMSE 3.8 2.7 1.2 

24
 h

rs



T
 <

 4
8 

hr
s 

15.18 14.3 3.1 13.5 14.9 1.1 

7.32 9.0 0.9 18.6 14.7 1.9 

13.12 8.6 0.9 18.0 14.8 2.3 

9.97 8.3 1.0 18.0 7.3 1.1 

7.31 8.3 1.2 8.1 9.0 1.5 

7.58 7.9 0.8 10.0 8.1 1.3 

r 0.29 0.56 -0.46 

RMSE 6.1 3.4 1.1 

 

3.4. North Sea 

 

For the LM-based algorithm validation, 20 HPLC chl and Ferrybox turbidity (tsm) samples have 

been available. These parameters were measured using the NIVA Ferrybox system [30] onboard the 

passenger ferry MS Color Festival that was crossing the Skagerrak (eastern-most region of the North 

Sea) between Oslo (Norway) and Fredrikshavn (Denmark) twice per day. For HPLC chl determination 

water samples were collected and analysed in the laboratory. In addition, the Ferrybox system 

measured chl fluorescence and turbidity continuously along the entire ferry transect. The turbidity data 

were converted to tsm and used in the validation as single point measurements coincident with the 

HPLC match-up locations. Data used for this study originated from 9 different dates through March to 

November, 2007. A comparison of concentrations of chl and tsm measured in situ and retrieved by our 

LM-based algorithm from the MERIS data (Table 6) indicates that the LM-based algorithm provides a 

high level of correlation (0.89) between the retrieved and measured values for chl and significantly 

less high, but still acceptable (0.46), for tsm with the RMSE of about 1.0 and 0.47 respectively. 
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Table 6. Comparison of WQP concentrations measured in situ and retrieved from MERIS 

data for the North Sea, Skagerrak, 2007 with the LM-algorithm and standard ESA 

algorithms.  

In situ measurements 
Remote sensing data 

LM - algorithm ESA standard algorithms 

chl, µg/L tsm, mg/L chl, µg/L sm, mg/L algal_1, mgC/L algal_2, mgC/L

0.76 0.75 1.29 1.02 1.11 1.24 

0.72 1.08 0.93 1.29 1.85 2.22 

0.49 1.10 1.63 1.02 1.49 2.14 

0.96 0.84 0.95 0.67 1.92 2.30 

0.61 1.04 1.94 0.89 1.24 2.07 

11.06 2.49 8.47 2.10 11.35 13.61 

2.68 1.24 2.25 2.18 2.57 5.50 

5.55 2.35 6.25 2.31 6.36 9.13 

0.56 0.95 1.58 0.88 0.83 2.39 

4.13 1.14 3.89 2.18 3.97 6.83 

0.81 0.85 0.52 1.25 1.04 0.90 

3.84 1.16 3.81 1.67 3.69 5.30 

5.6 2.13 7.32 1.72 10.18 8.49 

1.09 0.90 1.60 1.08 0.72 2.30 

4.1 1.15 4.30 1.64 4.11 5.70 

0.51 0.94 1.04 0.87 1.99 3.19 

0.73 0.76 0.38 0.77 1.20 1.39 

4.04 1.16 3.86 1.91 3.56 5.91 

9.03 2.35 7.90 1.80 10.56 10.95 

r 0.96 0.68 0.95 0.98 

RMSE 0.95 0.46 1.27 2.10 

 

It is worthwhile to compare the efficiency of the developed LM-based algorithm with the efficiency 

of other algorithms suggested for MERIS data processing (Table 6). Algal_1 and algal_2 are the 

products of standard ESA algorithms for estimation of the chl concentration in, respectively, oceanic 

(case 1) and coastal (case 2) waters.  

As Table 6 indicates, the LM-based algorithm with the developed dedicated hydro-optical model 

performs appreciably better, both in terms of the explained variance and RMSE as compared not only 

with the oceanic algal-1 but also the coastal algal-2 algorithm. A validation of the MERIS standard 

products and some other alternative algorithms has been conducted recently by [31]. 

As an alternative approach for evaluating the performance of the LM-based algorithm, the values of 

phytoplankton chlorophyll fluorescence measured by the Ferrybox system were used to estimate a 

proxy for the chlorophyll concentration (chlF) along the whole transect using a linear regression 

between concurrent measurements of HPLC chl and sensor chl fluorescence. It is important to note 

that the use of chlF do not qualify for a proper validation of the satellite chl products, as the conversion 
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factor between chl concentration and chl fluorescence varies due to a number of factors. However, chlF 

provides important information about the variation and gradients of phytoplankton activity along the 

ferry transect. The relative agreement between the satellite product and the in situ observations along 

the transect can thus be studied. 

Our comparison shows (Figure 5) that chl concentrations retrieved with the LM algorithm are rather 

close to the chlF values derived from the night-time fluorescence signals (r = 0.83, RMSE = 2.7 g/L) 

and compare worse with the chlF values derived from the day-time fluorescence signals (r = 0.48, 

RMSE 8.85 g/L). 

 

Figure 5. A) Comparison of FerryBox nigh-time chlF (blue dots) with the results of chl 

retrieval with the LM-based algorithm (pink dots) and HPLC measurements (yellow dots) 

taken on 25.03.2007 along the transect running between Oslo, Norway and Hirtshals, 

Denmark. Axes: on the horizontal – latitude, N, on the vertical - chl concentration (g/L). 

B) Location of the transect between Oslo and Fredrikshavn. 
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Great Laurentian Lakes 

 

3.5. Lake Michigan 

 

Lake Michigan is the second largest of North America’s Great Lakes and the largest freshwater lake 

in the United States. It is an oligotrophic water body with some eutrophicated areas (like Green Bay 

and the eastern coastal zone). 

A small-scale shipborne campaign was performed for validation purposes by ERIM. Values of chl, 

tsm and toc concentrations were measured at 13 stations near the lake eastern coast in July 2003. By 

definition, tsm encompasses all suspended matter including both mineral and organic fractions. 

Obviously, correspondence between sm and tsm can be poor, for instance, under conditions of an 

enhanced growth of phytoplankton. By definition, toc encompasses both particulate and dissolved 

fraction of organic carbon [32], therefore correspondence between doc and toc can also be poor. 

SeaWiFS images taken synchronously with shipborne measurements were processed by the LM-

algorithm. The time gap between remote and in situ measurements did not exceed 24 hrs. As there was 
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no a dedicated hydro-optical model for Lake Michigan, the hydro-optical model of Lake Ontario was 

tentatively chosen. Table 7 lists the measured and retrieved values of concentrations. 

 

Table 7. Comparison of CPA concentrations measured in situ and retrieved from SeaWiFS 

data from the eastern coast of Lake Michigan, July 2003; tsm– total (i.e. organic and 

inorganic) suspended matter, toc– total (i.e. suspended and dissolved) organic carbon. 

In situ measurements Remote sensing data 

chl, µg/L tsm, mg/L toc, mgC/L chl, µg/L sm, mg/L doc, mgC/L 

0.72 2.42 24.63 1.11 10.17 23.86 
1.2 1.34 22.19 1.85 9.81 24.37 
0.5 4.38 15.96 0.46 2.58 10.12 

0.46 1.65 37.73 0.44 3.91 24.37 
0.53 9.38 4.98 0.5 4.43 7.32 
0.63 1.36 8.45 0.57 2.76 7.89 
0.55 2.68 18.63 0.42 2.55 11.14 
0.54 1.45 7 0.2 1.3 4.8 
0.63 5.33 9.55 0.08 1.53 5.71 
0.71 3.95 7.71 0.12 1.19 4.51 
0.51 0.72 24.07 0.21 1.36 15.08 

r 0.82 -0.09 0.88 

RMSE 0.36 4.1 5.9 

 

3.6. Lake Huron 

 

Lake Huron is oligotrophic in its most areas, except for Saginaw Bay and the southern Georgian 

Bay where eutrophic conditions prevail [33]. The Saginaw Bay water quality is largely controlled by 

run-off, tributary discharge, as well as by anthropogenic effluents coming from Bay City and the city 

of Saginaw. The phytoplankton species for the Huron Lake open area are typical of oligotrophic water 

bodies. In contrast, the phytoplankton community in Saginaw Bay is representative of typical 

eutrophic conditions [33]. 

The above indicates that there should be two distinctly different water masses residing in the outer 

and inner parts of the Bay which is conducive to a substantial difference in the optical characteristics 

of both parts of the Bay due to differences in the phytoplankton abundance and taxonomic 

composition, mineralogical and microphysical characteristics of suspended minerals. The suspended 

matter in the inner part should be directly provided by nearby tributaries, run-off and wind/water 

dynamics-driven resuspension whereas in the outer part it is largely the result of filtering due to 

gravitational settling of the particulate matter generated by distant sources). 

Similar considerations could be suggested with regard to the dissolved organics (doc): the 

autochthonous component in the outer part of the bay could be predominant, whereas in the inner part 

the allochthonous component should most certainly prevail. Evidently, under appropriate conditions, 

due to wind and current impacts, both types of water masses can invade the counterparts of the bay and 

mix up with the ambient waters. 



Algorithms 2009, 2                            

 

 

489

Field studies on the Great Laurentian Lakes were performed by ERIM in June and July 1998 at 13 

stations in the inner and outer parts of Saginaw Bay. Conducted from board a small research vessel, 

spectrometric measurements and CPA sampling for chl, and doc were performed. The spectrometric 

measurements (at the SeaWiFS wavelengths) allowed retrieving spectral volume reflectance, R(, Ө0).  

The LM algorithm was applied for retrieval of WQP concentrations from spectra of R(, Ө0) several 

times with different hydro-optical models. The test showed that for the inner and outer parts of the bay 

the most suitable hydro-optical models are that of Lake Ladoga and slightly modified [34] Ontario 

model [33], respectively (Table 8). The retrieved sm values appear as quite plausible in view of the 

typical Secchi disc depths (averaging 1-3 m, [33]). 

 

Table 8. Comparison of chl and doc concentrations measured in situ and retrieved from 

optical measurements in Lake Huron. The first part of the table corresponds to 

measurements in the Saginaw Bay, the second one – outer part of the lake. The sm 

retrievals are not supported by in situ determinations. 

Model In situ measurements Remote sensing data 

chl, mg/L doc, mgC/L chl, mg/L doc, mgC/L 
sm, 

mg/L 

Lake 
Ladoga 

14.24 ±2.14 2.45 ±0.26 12.56 ±3.28 2.68 ±0.56 0.72 

9.98 ±1.5 2.73 ±0.27 12.62 ±2.30 1.76 ±0.63 2.49 

13.73 ±2.06 3.17 ±0.32 9.75 ±3.16 3.95 ±0.73 3.83 

10.05 ±1.51 2.35 ±0.24 10.47 ±2.31 4.75 ±0.54 3.11 

17.26 ±2.59 2.39 ±0.24 19.87 ±3.97 1.7 ±0.55 3.21 

Lake 
Ontario 

1.26 ±0.19 1.48 ±0.15 2.23 ±0.29 1.04 ±0.34 0.14 

0.79 ±0.12 2.07 ±0.21 0.93 ±0.18 2.71 ±0.48 0.19 

1.13 ±0.17 1.14 ±0.11 0.88 ±0.25 0.59 ±0.26 0.1 

1.28 ±0.19 1.47 ±0.15 0.89 ±0.29 1.12 ±0.34 0.18 

1.74 ±0.26 2.27 ±0.23 2.11 ±0.40 2.6 ±0.52 0.23 

0.35 ±0.5 1.56 ±0.16 0.24 ±0.08 1 ±0.35 0.1 

0.51 ±0.8 1.47 ±0.15 0.88 ±0.12 1.13 ±0.34 0.12 

0.8 ±0.12 2.03 ±0.2 0.88 ±0.18 1 ±0.47 0.11 

r 0.96 0.71  

RMSE 1.6 0.93  

 

This experiment is indicative that very time consuming and expensive determinations of spectral 

specific coefficients of absorption, a*() and backscattering, bb*() in some cases can be replaced by 

less cumbersome measurements of both the concentration vector C(chl, sm, doc) and spectral volume 

reflectance, R() or subsurface spectral remote sensing reflectance, Rrsw(). 

 

3.7. Bay of Biscay 

 

The Bay of Biscay is an area of incursion of the North Atlantic waters into the western periphery of 

the European continent. It resembles a gigantic triangular, which is a recipient of numerous rivers, 

some of them being fairly full-flowing and bringing large amounts of suspended minerals, dissolved 
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organic matter and nutrients into the bay. In the spatial distribution of the terrigenous suspended and 

dissolved matter, the important role is played by fronts of various nature, in particular the thermo-

haline front forming over the 100 m isobath. The coastal zone is conditionally bounded by the 200 m 

isobath, beyond which the pelagic zone extends out to the western boundary of the bay. The 

phytoplankton community within the coastal zone is mostly controlled by diatoms [35]. 

In the Bay of Biscay not only the coastal zone should be considered as the area of case 2 waters. 

The pelagic zone is known to be the realm of extensive blooms of a coccolithophore, Emiliania 

Huxley, which usually accounts for about 90% the phytoplankton, whereas the remaining ~10% is the 

portion of diatoms. 

Coccolithophores are algal cells covered with calcium carbonate plates that, at the late phase of the 

algal life-cycle, become detached completely or partially from the cell’s body. It implies that the algal 

chl within the blooming areas generally does not correlate with this mineral residue. Hence, by 

definition (see Introduction), such waters subsume under the category of case 2 waters. 

We applied our LM-based algorithm to satellite data (SeaWiFS, MODIS, MERIS) collected over 

the Bay using two separate hydro-optical models: one for the coastal zone and one for the pelagic 

waters. 

The first hydro-optical model was obtained through multivariate optimization of the North Sea 

hydro-optical model. The optimization approach is similar to the one described in the section 2.5. This 

hydro-optical model considered chl, tsm and yellow substance (cdom) as CPAs. 

For validation of the LM-algorithm we utilised the database of in situ and SeaWiFS data matchups 

developed at IFREMER, Brest, France [36]. The database consists of more than 500 simultaneous chl 

and tsm measurements collected synchronously with SeaWiFS overflights during 6 years (1998 – 

2004) on several tens of stations along the French coast of the Bay of Biscay and during several 

expeditions to the centre of the bay. 

Our comparison of chl and tsm obtained by applying the LM-based algorithm to Rrsw() measured 

remotely showed (Fig. 6) that correlation is high (rchl = 0.67, rsm = 0.60), absolute difference is low 

(RMSEchl = 3.7 g/L, RMSEsm = 6.6 mg/L) and the retrieved values are slightly overestimated 

(chlretrieved = 0.3 chlmeasured + 0.4, smretrieved = 0.4 chlmeasured + 1.5) indicating that the established 

dependence is governed exclusively by the parameter in question. 

The second hydro-optical model applied for the Bay of Biscay assumes coccolithophores, 

coccoliths and diatoms as CPAs in the pelagic waters (here, the symbol  denoting wavelength 

dependence is dropped for simplicity): 

a = aw+a*phpСphp+a*cocCcoc+a* ccCcc+a*smCsm+a*cdomCcdom;   (9) 

bb = bbw+bb*phpCphp+ bb*coc Ccoc+bb*ccCcc+bb*sm,Csm,    (10) 

where indices w, php, coc and cc refer to water, diatom phytoplankton, coccolithophores and 

coccoliths, respectively. The specific absorption coefficient of coccoliths, a*cc can be assumed zero 

because coccoliths practically do not absorb light. The coccolithophore spectral coefficients a*coc and 

bb*coc were taken from [37–39]. 
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Figure 6. Comparison of chl (A) and tsm (B) concentrations measured in situ and retrieved 

from remote sensing data obtained for the coastal zone of the Biscay Bay for the time 

period 1998 – 2004. 
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Thus, the second algorithm is intended not only to flag the coccolithophore blooming areas, but also 

to differentiate chl in diatoms and coccolithophores as well as to quantify the concentration of 

coccoliths. 

The spatial distributions of chl, cdom and tsm (not illustrated here) retrieved with the LM-algorithm 

explicitly exhibit the impact of the river discharge along the coastline, especially in the area adjacent 

to the estuaries of Rivers Loire and Gironde, the most full-flowing on the French seaboard. 

Validation of the algorithm might be done through the analysis of spatial distributions of 

coccolithophores, coccoliths, and diatoms (Figure 7). As seen, in 2005 there was a very extensive 

coccolithophore bloom covering most of the pelagic area, but in the coastward direction it is distinctly 

restricted by the 200 m isobath that corresponds to a sharp shelf break. This is a clear manifestation of 

the importance of the bay’s hydrography, and the influence of the associated fronts mentioned above. 
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Importantly, inasmuch as the employed algorithm yields the concentrations of coccoliths, it was 

possible to assess the content of suspended carbon in the surface layer. It is known that the mean 

concentration of carbon in a coccolith is about 0.210-12 g [40]. For the situation exemplified in Fig. 7, 

the area occupied by the E. Huxley mounted up to 800 km2. With the thickness of the mixing layer 

equaling 10 m, the entire volume in question makes up 81011 m3. The mean concentration of 

coccoliths as determined from the satellite image constituted 81012 coccoliths/m3. Thus, the total 

amount of inorganic carbon in the plume was assessed at 171012 g. Such assessments are important in 

light of the global carbon’s role in the climate status of the planet [40]. 

 

Figure 7. Retrieval of spatial distributions of chl of diatoms (A) and E. huxley (B) as well 

as coccoliths (C) from a MODIS image taken on 5 May, 2005 over the Bay of Biscay. The 

maps are given in the geographic projection. 

A 

B 
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Figure 7. Cont. 

C 

 

4. Discussion 

 

4.1. Error sources analysis 

 

As seen in Section 2.5, the pivotal element of the developed algorithm is the employed hydro-

optical model, so that the accuracy of the concentration vector retrieval is controlled (apart from the 

atmospheric correction) by the adequacy of that model. Bearing in mind that the employed hydro-

optical model has been specifically developed only for one water body, and further tentatively used for 

another one (as in the case of the White Sea, Gulf of Finnland, Lake Michigan or Lake Huron), it 

would hardly be reasonable to expect a closer correspondence between the in situ and retrieved data. 

Despite a frequent lack of synchronality between shipborne measurements and satellite overflights 

(t sometimes surpassed 10 hours), the retrieved and measured data compare pretty well as is 

illustrated in Tables 4-8. The closest conformity between these sets of data is observed for the 

coinciding dates when there is a chance that the field of chl remains more or less unchanged. 

Conversely, this agreement deteriorates as the time difference grows. 

When analysing Tables 4–8, it should be kept in mind that each in situ measurement relates to a 

single point (measuring less than 1 m by 1 m) on the water surface, whereas the satellite signal, from 

which the CPA concentration vector is retrieved, refers to a pixel measuring about 1 km by 1 km. 

Although the pixel area encompasses the point at which the in situ measurement has been performed, 

this fact, nevertheless, implies that the retrieved CPA concentration vector is a surface-averaged value 

for the processed pixel. Understandably, in the case of pronounced horizontal and vertical 

heterogeneity of CPA distributions (which is a very common case), the departures between the in situ 

measurements and retrieved CPAs are inevitable. Naturally, this applies to all 

intercomparison/validation case studies discussed throughout the text. 
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As seen, in the case of the North Sea the correlation between the retrieved chl and chlF are 

significantly higher for the night-time cruises than for the day-time ones. Given that the satellite 

overpasses the study area at about 11 am local time, the explanation is thought to be residing in the 

sinusoidal diurnal cycle of the phytoplankton fluorescence (Figure 8, [41]): the fluorescence signal is 

minimum at the local noon, and its maximum falls on the local midnight. The ratio between chl and 

fluorescence varies on the same diurnal scale, due to the varying photosynthetic state of the 

phytoplankton cells. Thus the correlation between chl concentration measured by the satellite and 

fluorescence measured by the Ferrybox system varies accordingly. 

 

Figure 8. Diurnal cycle of the phytoplankton fluorescence (0 m, relative units) recorded in 

the Riga Bay, May 1975 [41]; t- local time (hrs). 

 
 

In the Lake Michigan case study it is evident that a poorer correspondence for sm and doc is due to 

the fact that we had to compare them with total suspended substance (TSS), and total organic carbon 

(TOC) that necessarily differ from sm and doc envisaged by the Lake Ontario hydro-optical model. 

Obviously, correspondence between sm and tsm can be poor, for instance, under conditions of an 

enhanced growth of phytoplankton. By definition, toc encompasses both particulate and dissolved 

fraction of organic carbon [32], therefore correspondence between doc and toc can also be poor. 

However, even under such conditions the algorithm explains 0.83 of chl variance. 

It should also be mentioned that a poorer correspondence for sm concentrations measured in the 

White Sea is most likely due to a filter with coarse pores used for water sample processing and sm 

extraction. 

 

4.2. Concluding Remarks 

 

An operational algorithm based on the Levenberg-Marquardt multivariate optimization technique is 

developed for processing remote sensing data in the visible. The algorithm allows to retrieve 

simultaneously the concentrations of three main colour producing agents such as phytoplankton 

chlorophyll, suspended minerals and dissolved organic matter. These are natural water constituents 

frequently considered as water quality parameters. The algorithm is outfitted with the quality control 

module increasing the validity of retrieval results. 
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The developed algorithm is neither area- nor satellite sensor- specific: indeed, the presented results 

explicitly indicate that SeaWiFS, MODIS and MERIS data on a variety of inland and marine coastal 

waters on the European and North American continent can be successfully processed by our algorithm 

provided with an adequate hydro-optical model. It can easily be used for processing images taken not 

only by any present but also future ocean colour sensors. The algorithms is intended to be utilized for 

processing satellite images taken over case 2 waters, for case 1 waters standard NASA and ESA 

algorithms are more efficient [6]. 

The essential element of the algorithm is the hydro-optical model, which is water-body specific. 

However, several examples are given how this difficulty/impediment can be overcome in specific 

cases. Extensive validation experiments conducted in a variety of water bodies indicate that the 

algorithm is robust and efficient in the case of both marine coastal and inland/lacustrine waters. 
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