
Algorithms 2009, 2, 247-258; doi:10.3390/a2010247

algorithms
ISSN 1999-4893

www.mdpi.org/algorithms

Article

Self-organization of Dynamic Distributed Computational
Systems Applying Principles of Integrative Activity of Brain
Neuronal Assemblies

Eugene Burmakin 1,*, Alexander A. Fingelkurts 2 and Andrew A. Fingelkurts 2

1 Nokia Siemens Networks, PO Box 1, FI-02022, Espoo, Finland
2 BM-Science – Brain & Mind Technologies Research Centre, PO Box 77, FI-02601, Espoo, Finland
E-mails: alexander.fingelkurts@bm-science.com (Al.F.); andrew.fingelkurts@bm-science.com (An.F.)

* Author to whom correspondence should be addressed; E-mail: eugene.burmakin@nsn.com

Received: 25 November 2008; in revised form: 26 January 2009 / Accepted: 16 February 2009 /
Published: 17 February 2009

Abstract: This paper presents a method for self-organization of the distributed systems
operating in a dynamic context. We propose the use of a simple biologically (cognitive
neuroscience) inspired method for system configuration that allows allocating most of the
computational load to off-line in order to improve the scalability property of the system.
The method proposed has less computational burden at runtime than traditional system
adaptation approaches.

Keywords: self-organization, intelligent service broker, dynamic context, adaptive control,
brain research

1. Introduction

The adaptation of the computing systems requires execution of computationally complex algorithms
at runtime. We propose to use a simple technique for system self-organization, where most of the
computational burden for system adaptation is allocated to the design time.

The distinguishing features of distributed computing systems under investigation are their
dynamicity and operating environment uncertainty. Therefore, the adaptation mechanism should be
introduced to the system for coping with the dynamics and uncertainty [23]. Large scale personalized

OPEN ACCESS

Algorithms 2009, 2

248

mobile applications and services with the evolving functional and non-functional requirements that
operate in a changing context are examples of the dynamic computing systems under investigation.

We are going to design a system that will serve as a platform for the applications that adapt their
behavior according to the current needs of end-users and take into account the context of the
environment. By the context, we mean such parameters of the environment as the current time, the
users’ location and preferences, and 3rd party services available. A large variety of the end-user-cases
and scenarios has been suggested in [20, 21, 18].

We employ a systems reconfiguration method to enable system adaptation. By reconfiguration, we
mean addition of new components to the system and removing others for fulfilling functional and non-
functional requirements.

Two alternative methods for system adaptation are described. The first approach is based on the
centralized feedback control [3], where the dedicated decision making body collects requirements to
the system, estimates current state of the system, and proposes an adaptation process for achieving the
desired goal. After many attempts to find the best way for algorithm optimization, we opted for
Cognitive Neuroscience field. The Fingelkurts brothers have in their experimental work provided
evidence for some form of dynamic reconfiguration in neural tissue, which has been generalized
within the Operational Architectonics framework of brain-mind functioning [5, 6, 7, 8, 9]. Here we
intend to design a computing system that will similarly permit dynamic reconfiguration in a given
domain of application – the Intelligent Services Broker.

2. Intelligent Service Broker

Authors propose the Intelligent Services Broker (ISB) as a reference example of an adaptive
computing system. The goal of the ISB is to aggregate the information about available services in the
information space and deliver the best quality of service (QoS) for consumers that are placed in a
certain context by means of intelligent services composition.

At the initial step, the available services and consumers shall be provisioned in the ISB. Service
providers have to present profile description for what they offer. These profiles contain description of
the service functionality and the context required for services to operate. Consumers fill-in their static
profile with demographic data, interests and preferences; in addition to that, the ISB collects dynamic
data about subscribers. Users’ geographic coordinates, their services consumption behavior and other
types of context information can be collected for better targeting of the services promotion.

At runtime, the ISB analyses the current context for subscribers and their requirements, and
optimizes the services composition offer for delivering the best QoS in the present situation taking into
account resources available for the system.

The users’ requirements can be defined explicitly, for example, expressed verbally or entered as a
plain text; and implicitly – derived from the users’ preferences.

The ISB is architecturally decomposed for two layers, see Figure 1. Network infrastructure,
required hardware, and available sensors are depicted at the bottom layer. On the upper abstraction
layer one can see a collection of the software components that serve as a mapping of the available
services, sensors, and registered end-users to the virtual space. In other words, each consumer has its
digital software agent as well as every sensor, and all services offered by the service providers.

Algorithms 2009, 2

249

The software components organize clusters dynamically on demand for collaborative work in order
to fulfill the needs of subscribers. For example, on the diagram we can see a cluster of red colored
components that represent a service composition for the correspondent red-colored consumer.

Figure 1. Concept architecture of the Intelligent Services Broker ISB. Similarly colored
SW components represent clusters that serve to the equally marked consumers. SW –
software, HW – hardware.

Let us consider an illustrative end-user scenario where the ISB helps subscribers with their
everyday life issues. An ISB subscriber Alex is walking in a city’s downtown. He is carrying a mobile
device that connects him to the virtual information space managed by ISB. Alex stated in his profile
that he is interested in the topic of self-organizing systems and would be interested to meet new
buddies with similar interests. Passing by the bookstore that is provisioned in the ISB, Alex receives a
notification message regarding the sale in the shop and availability of the items of his interest.

After entering the bookstore Alex is able to read the virtual messages left there by other customers
that also involved in the same research. The virtual messages are posted in a certain situation. The
message originator defines the condition in which the message can be read. In our use-case, message
has been left in the bookstore, and can be accessed at certain time by selected group of people.

With support from ISB, the software agent “alex” is forming a cluster with the “bookstore”,
“positioning sensor” and the “virtual bulleting board” software components for delivering the relevant
services experience for the user. After some time, Alex is leaving the store and going to a meeting with
his friends. The ISB is providing a trip navigation service; therefore the cluster is to be reconfigured
according to the new context and needs.

The following sections of the paper are devoted for description and comparison of alternative
mechanisms for the intelligent services composition.

3. Model description

A system consists of a number of components. The components are joined together to solve a
problem assigned to the system.

System S is a collection of components Cj, where j is from 1 to N. M is the number of available
components, N is the number of components in the system, M >= N.

Algorithms 2009, 2

250

The state of the system is denoted by vector X. Input (requirements) to the system – Y. The external
unexpected disturbances to the system are denoted by the vector D (Figure 2).

Figure 2. System is operating in a dynamic environment, where Y is the input, X is the
state, D denotes the unexpected disturbances.

The system is dynamic – S(t), where t is time. S is an adaptive system. The adaptation is
accomplished by means of structural reconfiguration where a set of the system’s constituent
components is changing over time.

The following two operations are introduced over the set of components of S(t):
• Op1: “add component” to the system
• Op2: “remove component” from the system

The set of operations can be extended with two more operations such as “add connection” and
“remove connection” between the components. In that case, flexibility for system reconfiguration
increases significantly, but at the same time search of an optimal configuration becomes more
demanding.

Available configurations of a system of three components A, B, and C, are presented in Figure 3.

Figure 3. Possible states of a system of three components A, B, C; “–“ stands for empty set
with no active components.

The system reconfiguration happens at runtime. Therefore, the algorithm employed for search of an
optimal configuration will be very efficient and applicable to large scale systems with fast dynamics.

4. Centralized optimization approach for the system reconfiguration

This algorithm requires a dedicated decision making body in the system, the Reconfigurator
denoted as R. This Reconfigurator will collect information about the current state of the system – X,
current requirements – Y, and generate a reconfiguration request to the system – U. Thus, discrepancy
between the desired and actual state of the system is acceptable (Figure 4).

Algorithms 2009, 2

251

Figure 4. Feedback controlled system. R (Reconfigurator) is a decision making body or
controller. U is a control signal generated by R.

Q is the quality criterion that will be minimized by R during the search for an optimal configuration
of system S.

Q = | (F – Ф) + P |, where Ф is a vector of functions provided by S in state X. F is a vector of
functional requirements at moment tj; it is derived from Y. P is the cost for the system to be in the
current state X(tj).

The detailed description of the criterion and its properties is provided in [3].
For estimation the P, part of Q, the Reconfigurator needs to have an access to the components’

profile.
The profile includes parameters such as provided functionality by the component, the required

resources, and the operational requirements.
The Reconfigurator searches the configuration of system S that will provide a minimal value of the

criterion Q.

Figure 5. Search of the optimal configuration. S=(C) is the initial configuration with
quality criterion Q=15 and S=(ABC) is the goal state with Q=4. Bold circles stand for
current (C) and future (ABC) configurations.

The search of the optimal configuration can be based on a number of search algorithms, for instance
on the A* algorithm [24] with the optimality criterion Q as the heuristic function. For illustrative
purposes, we provide the algorithm description (Figure 5):

Step 1. Take the current node of the configuration search graph, calculate Q and move the node to
the list “Open”.

Step 2. If “Open” is empty, then the algorithm ends and generates an exception of no solution
having been found, otherwise to Step 3.

Algorithms 2009, 2

252

Step 3. Select a node with the smallest value of Q from the list “Open” and move node “Current” to
the list “Closed”.

Step 4. If the “Current” node is good enough, then the algorithm ends (“End”), providing the
solution as a set of pointers from “Current” node to “Initial” node, otherwise go to Step 5.

Step 5. Take the node “Current” and build all child nodes. If no child nodes can be built, then go to
Step 2. otherwise go to Step 6 (the reconfiguration graph is building dynamically).

Step 6. Estimate Q for all of child nodes of “Current”, move them to the list “Open”, and build the
pointers from them to the parent node “Current”. Go to Step 2.

As a result of the algorithm execution at the time tj, we acquire:
• optimal (with minimal Q) configuration of S at the moment tj
• set of reconfiguration steps that will be taken for reaching optimal configuration.

The described approach employs system adaptation with architectural support [25]. The key idea is
to have a dedicated decision making unit that manages the system configuration, which consists of a
few fairly simple components. However, the solution based on this idea lacks scalability. The
Reconfigurator becomes a performance bottleneck when there is a large number of system components
and high level of system dynamics.

In the worst case scenario, the computational complexity of the presented search algorithm
increases exponentially [24]. Obviously, executing such an algorithm at runtime for a system with a
large number of components and with a significant number of potential states leads to degradation of
the system responsiveness to a changing context and to the evolving requirements.

For a partial scalability improvement, we may split the system into a number of subsystems with
their own Reconfigurators [19], or introduce a few optimization constraints to the formula of Q for
reaching only a sub-optimal configuration within the defined number of reconfiguration steps [3].

According to the research done earlier [3, 17, 19], tuning of the heuristic function and the sub-
optimal search restrictions might improve the performance for particular applications; however in the
general case, the widely used approach looks reasonable only for systems with a limited number of
components. Therefore the novel solution is needed.

The following sections address the issue and describe an alternative method that attempts to solve
the bottleneck problem cased by centralization of the decision making process in the feedback
controlled system at runtime based on the operational principles of brain-mind functioning.

5. Coalition of the neuronal assemblies in the human brain

According to the Operational Architectonics (OA) [5, 6, 7, 8, 9] of the brain-mind functioning, a
viewed image/scene or an idea created in a human mind result in ignition and coalition formation
among several areas/neuronal assemblies of the human brain. It is well established, that single neurons
(highly distributed along the cortex) can quickly become associated (or dis-associated) by
synchronization of their activity and giving rise to functional transient assemblies. Anatomical
connections are not necessarily an important prerequisite for such synchronization; it is rather a
stimulus (external – physical or internal – mental) and/or a task that is important and is the causal
source of synchrony [8]. Each of these functional neuronal assemblies maintains discrete complex
brain operations: they process different attributes of object or environmental scene, thus being simple

Algorithms 2009, 2

253

cognitive operations [6]. The joint functionally connected activity of many neuronal assemblies
produces complex cognitive/mental operations.

Each neuronal assembly makes a specific contribution to the performance of complex cognitive
operation, and the contribution is determined by the position which a particular neural assembly
occupies within the richly connected, parallel, and distributed brain system. The temporal
synchronization of many operations of local neuronal assemblies together (Operational Synchrony,
OS) gives rise to a new level of brain abstractness – metastable brain states [7]. It is suggested that
these metastable brain states or functional Operational Modules (OM), as we name them, underlie
complex brain functions and/or mind complex operations (cognitive percepts and mental states that
have representational nature). Indeed, a clear correlation between the type of event and the spatial-
temporal pattern of the joint assemblies (OM) has been observed [6]. It is important that no central
coordination unit is presented, either in each assembly or in the OMs. The units (neuronal assemblies)
are specialized for certain functions rather than used as generic purpose components.

Coordination of the integrative activity of the brain neuronal assemblies (located in different brain
areas) is reached to the extent that these assemblies are able to mutually influence each other in order
to reach a common functional state, concurrently stabilizing main parameters of their activity [8].
Thus, the “transition” of the same neural assembly into the new OM, in accordance with participation
in the realization of another complex cognitive operation, must depend on the ability of this neural
assembly to adapt to the main variables of the new OM. As a consequence, discrete parts (or
assemblies) of the neural networks may gain another functional meaning when they are recruited by
other OM, and therefore, take part in realization of another perceptual or cognitive act [6, 7, 8]. In this
process, some local neuronal assemblies in the large-scale network become temporarily coordinated
(formation of an OM), while others are temporarily excluded from participation in the coordination
state. Furthermore, the spatial activity pattern within each coordinated local neural assembly,
representing its contribution to the large-scale pattern (indexed as OM), becomes temporarily
stabilized [8]. However, each specialized neuronal assembly performs a unique role by expressing its
own form of information, and at the same time, its performance is largely constrained by interactions
with other neuronal assemblies to which it is functionally connected. This regimen of brain functioning
was named metastability [7, 10, 11].

Thus, the OA framework [5, 6, 7, 8, 9] describes the dynamic self-assembling process, where parts
of the brain engage and disengage in time, allowing a person to perceive objects or scenes, and to
separate remembered parts of an experience, and to bind them all together into a coherent whole. In
this view (Figure 6), the potential multivariability of the neuronal networks appears to be far from
continuous in time [9], but confined by the dynamics of short-term local and global metastable brain
states [7, 10, 12, 13].

However, to avoid any possible misunderstanding, we should stress that the OA framework
establishes discrete states without fundamentally violating the demand of continuity of
brain/experience dynamics (for a comprehensive analysis, see Ref. 9). In short, the continuity of OMs
exists as long as the set of neuronal assemblies in distant brain areas keeps synchronicity between their
discrete operations.

Algorithms 2009, 2

254

Figure 6. Brain activity dynamics. It is presented as a chain of periods of short-term
metastable states (operational modules, OM) of the individual brain subsystems (grey
shapes), when the numbers of degrees of freedom of the neuronal assemblies are
maximally decreased. Larger shapes outlined in red illustrate complex OMs which are
separated from each other by rapid transitional periods (RTPs). During such RTPs, the
evaluation about the achieved (previous) state is done and the decision of what should be
done and how to achieve the new adaptive state is made [5, 9]. Note, that in the transition
period, cortical system (complex and simple OMs) rapidly breaks functional couplings
within one set of brain areas and establishes new couplings within another set.

The described neuronal assemblies’ and OM’s formation process served as a starting point for
designing the self-organization method for the dynamic computing systems.

6. Biologically inspired self-organization method

A self-organized system is a set of active components, and in this case, the system does not need to
have a dedicated decision making unit for defining the best configuration. The intelligence required for
optimal adaptation is distributed among the components.

Each component Ci (i=1..M) can be described by the set of variables Ci=C(f_ini, f_outi, statei),
where, f_ini is a frequency that activates the component Ci; f_outi – frequency of the output signal
produced by the activated Ci; statei is a boolean variable: {‘active’, ‘passive’} that represents the state
of Ci; M is a number of available components.

System S is a set {Cj} j=1..N (N=<M), where for all j, statej = ‘active’; N is the number of
activated components. Therefore, only the activated components are considered to be part of the
system S.

Activation of the components is done by means of the signals F=U{Fext, Fint} that are broadcasted
among all the components, where, Fext is multimodal activation signal created by external stakeholders
and Fint is a set of signals induced in the system U{f_outj}.

State machine of the component Ci is presented in Figure 7.

T I M E

RTP

RTP

Algorithms 2009, 2

255

Figure 7. State machine of a component. The state can be changed from Passive to Active
and back depending on the structure and content of the activation signal F.

‘Active’‘Passive’

f_ini F f_ini F

f_ini F

f_ini F

Ci

Signal F activates only those components that can “understand” one of the inbuilt frequencies of F,
see Figure 8.

Figure 8. Activation of the system components. External activation signal Fext activates
components C1 and C3. f_out3 the output signal of C3 activates component C4. Grey circles
stand for activated components.

Referring to the example presented in Figure 8, all the components receive Fext simultaneously and
process it in parallel. Then, the output signal of the activated C3 is broadcasted among all the
components as Fint. It is processed in parallel, and activates C4. Therefore, total system activation time,
in this case, is equal to two signal processing operations due to the parallel nature of the data
processing.

The maximal computational effort in the presented example is equal to six operations when Fext
activates only one component C1 and all other are activated consequently, for instance, as follows C1-
>C3->C2->C6->C5->C4. This short analysis shows that computational complexity of the proposed
system formation approach is proportional to M – the number of available components.

Through cross-activation and initiation by external requests, the components form a system in
which they collectively solve the required tasks and head towards a defined goal.

Algorithms 2009, 2

256

7. Conclusions and future work

The proposed brain inspired self-organization method reduces real-time computational burden for
the system’s formation and adaptation process. For the computational effort analysis, we estimated a
number of computing operations needed for the system formation at runtime. The related
computational effort of the proposed self-organization method is growing linearly with the increase of
the number of components in the system while the real-time effort in the centralized feedback
controlled systems is growing exponentially.

In this paper, we have addressed the scalability issue of adaptive distributed systems by decoupling
real-time part of the adaptation method and design-time part.

Future development will concentrate on implementing an off-line algorithm to define activation
signals; this algorithm will take performance criteria and the desired values (attractors) for the system
evolution as the inputs and provides the settings required for optimal real-time system functioning.

8. Related work

A service broker engine that adapts the composite application structure to provide the best service
for end-users (taking into account their preferences and the current status of their context data) is
proposed in SPICE [20, 25]. Agha [1] and Kon et al. [2] propose architectures for adaptive and
reflective middleware that can be used for development of context-sensitive applications. Kokas et al.
[22] and Shi et al. [4] propose to create adaptive software systems based on control optimization
framework. Costa et al. [21] in the research project RUNES are developing systems with rule-based or
policy-based adaptation. This approach is feasible mostly for systems with predefined set of states.

The above-listed works represent a significant research segment of the current state of the art in the
domain. However, most of them propose the use of the centralized adaptation algorithms that share
similar scalability problems as the one presented in Section 3.

Valvassori [26] presents a biologically inspired implementation of the blob structures as a set of
distributed processors. The blob formation method applies broadcasting of signals from a processor to
the neighboring units.

The closest to the ideas presented in this paper is the CASCADAS project [28], which defines a
software framework for development of the agents that can collaborate among each other for collective
problem solving. The significant difference, however, is in the approach for developing the algorithm
for the purposeful clusters formation. Hence, we consider the CASCADAS as a complementary project
to the work presented here due to the fact that CASCADAS covers lots of implementation details that
are not emphasized in the present paper.

Acknowledgements

The authors would like to thank Professor Juha Röning and Dr. Boris Krassi for their support and
for motivating feedback on the presented work.

Algorithms 2009, 2

257

References and Notes

1. Agha, G. Adaptive Middleware. Comm. ACM 2002, 45, 31-33.
2. Kon, F.; Costa, F.; Blair, G. The Case for Reflective Middleware. Comm. ACM 2002, 45, 33-38.
3. Burmakin, E.M.; Krassi, B.A.; Tuominen, J.O.; Adaptive Reconfigurable Distributed Dynamic

Systems in the Control-Optimization Framework. In Proc. of IASTED International Conference
on Software Engineering, Innsbruck, Austria, Feb 2004; pp. 685-691.

4. Shi, Xiao-An; Zhou, Xing-She; Wu, Xiao-Jun; Gu, Jian-Hua. Adaptive control based dynamic
real-time resource management. In Proc. of the Second International Conference on Machine
Learning and Cybernetics, Xi’an, P.R. China, 2-5 Nov 2003; pp. 3155 - 3159.

5. Fingelkurts, An.A.; Fingelkurts, Al.A. Operational architectonics of the human brain biopotential
field: towards solving the mind-brain problem. Brain Mind 2001, 2, 261–296.

6. Fingelkurts, An.A.; Fingelkurts, Al.A. Operational architectonics of perception and cognition: a
principle of self-organized metastable brain states. VI Parmenides Workshop, Institute of Medical
Psychology, Elba/Italy, 2003, (invited full-text contribution).

7. Fingelkurts, An.A.; Fingelkurts, Al.A. Making complexity simpler: multivariability and
metastability in the Brain. Int. J. Neurosci. 2004, 114, 843–862.

8. Fingelkurts, An.A.; Fingelkurts, Al.A. Mapping of the brain operational architectonics. In Focus
on Brain Mapping Research; Chen, F.J., Ed.; Nova Science Publishers Inc.: New York, NY,
USA, 2005; pp. 59–98.

9. Fingelkurts, An.A.; Fingelkurts, Al.A. Timing in cognition and EEG brain dynamics: discreteness
versus continuity. Cogn. Process 2006, 7, 135–162.

10. Kelso, J.A.S. Behavioral and neural pattern generation: The concept of Neurobehavioral
Dynamical System (NBDS). In Cardiorespiratory and Motor Coordination; Koepchen, H.P.,
Huopaniemi H, Eds.; Springer-Verlag: Berlin, Germany, 1991; pp. 224-238.

11. Kelso, J.A.S. Dynamic patterns: The self-organization of brain and behavior. MIT Press:
Cambridge, MA, USA, 1995.

12. Kaplan, A.Y.; Shishkin, S.L. Application of the change-point analysis to the investigation of the
brain’s electrical activity. In Nonparametric Statistical Diagnosis: Problems and Methods;
Brodsky, B.E., Darkhovsky, B.S., Eds.; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 2000; pp. 333–388.

13. Bressler, S.L.; Kelso, J.A.S. Cortical coordination dynamics and cognition. Trends Cognit. Sci.
2001, 5, 26-36.

14. Ramadge, E.J.; Wonham, W.M. Supervisory control of a class of discrete event processes. SIAM
J. Control Optimiz.1987, 25, 206-230.

15. Lin, E.; Wonham, W.M. On observability of discrete-event systems. Inform. Sci. 1988, 44, 173-
198.

17. Burmakin, E.M.; Krassi, B.A.; Tuominen, J.O. Context in the Dynamic Reconfigurable Systems.
In Proceedings of the IASTED International Conference on Software Engineering, Innsbruck,
Austria, Feb 2005; pp. 459-451.

Algorithms 2009, 2

258

18. Edwards, W. Keith. Putting Computing in Context: An Infrastructure to Support Extensible
Context-Enhanced Collaborative Applications. ACM Trans. Comput. Human Interac. 2005, 12,
446-474.

19. Burmakin, E.M.; Krassi, B.A.; Tuominen, J.O. AMPROS: Distributed Reconfiguration
Algorithm. In Proceedings of the IASTED International Conference on Software Engineering,
Innsbruck, Austria, Feb 2005; pp. 438-441.

20. Boussard, M.; Hesselman, C.; Cesar, P.; Vaishnavi, I.; Kernchen, R.; Meissner, S.; Sinfreu, A.;
Spedalieri, A.; Räeck, C. Delivering Interactive Multimedia Services in Dynamic Pervasive
Computing Environments. International Conference on Ambient Media and Systems
(AmbiSys'08), Quebec City, Canada, Feb 2008.

21. Costa, P.; Coulson, G.; Mascolo, C.; Motolla, L.; Picco, G.; Zachariadis, S. A Reconfigurable
Component-Based Middleware for Networked Embedded Systems. Int. J. Wireless Inform.
Networks 2007, 14, 149-162.

22. Kokas, M.; Baslawski, K.; Eracar, Y. Control Theory-based Foundation of Self-controlling
Software. IEEE Intelligent Sys. 1999, 14, 37-45.

23. Burns, R.S. Advanced Control Engineering; Butterworth-Heinemann: Oxford, UK, 2001.
24. Autere, A. Extensions and Applications of the A* Algorithm. Ph.D. Thesis, Helsinki University of

Technology, Helsinki, Finland, 2005.
25. SPICE Project Deliverables (2007): D2.3 Service Broker Architecture for Service Enabler Access.

http://www.ist-spice.org/nav/deliverables.htm
26. Valvassori, M. Biologically inspired Self-Organized Blob Structures on Amorphous Computers.

In Proc. First International Conference on Self-Adaptive and Self-Organizing Systems, July 2007;
pp. 359 – 362.

27. Trumler, W.; Pietzowski, A.; Satzger, B.; Ungerer, T. Adaptive Self-optimization in Distributed
Dynamic Environments. In Proc. First International Conference on Self-Adaptive and Self-
Organizing Systems, July 2007; pp. 320 – 323.

28. CASCADAS Project Deliverables (2008): D3.6 Software implementation of modules for unit
synchronization and unit decision-making.
http://www.cascadas-project.org/docs/deliverables/M36/D3.6.pdf

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

