
Citation: Forbes, A . The Algorithm of

Gu and Eisenstat and D-Optimal

Design of Experiments. Algorithms

2024, 17, 193. https://doi.org/

10.3390/a17050193

Academic Editors: Dunhui Xiao and

Shuai Li

Received: 27 March 2024

Revised: 25 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

The Algorithm of Gu and Eisenstat and D-Optimal Design
of Experiments
Alistair Forbes

National Physical Laboratory, Teddington TW11 0LW, UK; alistair.forbes@npl.co.uk

Abstract: This paper addresses the following problem: given m potential observations to determine
n parameters, m > n, what is the best choice of n observations. The problem can be formulated as
finding the n× n submatrix of the complete m× n observation matrix that has maximum determinant.
An algorithm by Gu and Eisenstat for a determining a strongly rank-revealing QR factorisation of a
matrix can be adapted to address this latter formulation. The algorithm starts with an initial selection
of n rows of the observation matrix and then performs a sequence of row interchanges, with the
determinant of the current submatrix strictly increasing at each step until no further improvement
can be made. The algorithm implements rank-one updating strategies, which leads to a compact and
efficient algorithm. The algorithm does not necessarily determine the global optimum but provides a
practical approach to designing an effective measurement strategy. In this paper, we describe how
the Gu–Eisenstat algorithm can be adapted to address the problem of optimal experimental design
and used with the QR algorithm with column pivoting to provide effective designs. We also describe
implementations of sequential algorithms to add further measurements that optimise the information
gain at each step. We illustrate performance on several metrology examples.
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1. Introduction

While machine learning paradigms are based on access to large sets of data to extract
the information of interest, many practical problems in science and technology arise in
a context in which data are sparse and potentially expensive to generate. Given limited
experimental resources, it is important that these resources are used effectively. The design
of experiment (DoE) is an important area of study in applied mathematics and statistics.
Many DoE studies relate to problems in which a response variable of interest, e.g., the
yield of a crop, is possibly influenced by a number of control or stimulus variables, e.g.,
crop variety, soil type, irrigation regime, fertiliser treatment, etc. The form of the response
function is usually unknown and the DoE problem is to design a number of experiments
with the control variables set to different values, in order to estimate the response function
from a set of candidate response functions and consequently choose control values that
optimise the response; see, e.g., [1–8]. The DoE problem has been addressed in applications
across many scientific disciplines, including the placement of sensors in a electrical power
grid [9,10] and the measurement of thermal properties of materials [11,12], for example.

In this paper, we look at a particular aspect of the design problem: given a known
response model, how do we choose a minimal number of measurements, taking into
account the associated uncertainties, in order to estimate all the parameters of the system
under study as accurately as possible. Thus, the problem can be posed as: given m potential
observations to determine n parameters, m > n, what is the best choice of n observations. In
the context of (linear) least squares estimation, a version of the problem can be formulated
as finding the n × n submatrix of the complete m × n observation matrix that has maximum
determinant. The problem can be posed as an example of the following general optimisation
problem. Suppose A = {ai, i = 1, . . . , m} is a set with m elements. Represent the set P(A)
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of all subsets of A as the set of characteristic functions χ : A −→ {0, 1}: if B ⊂ A, then the
corresponding function χB ∈ P(A) is such that χB(ai) = 1 if ai ∈ B and is 0 otherwise. Let
D : P(A) −→ R be a real valued function defined on P(A). The optimisation problem is

min
χ∈P(A)

D(χ) subject to
m

∑
i=1

χ(ai) = n. (1)

In theory, the global solution to this DoE problem can be found by a brute force assessment
of all choices of subsets, a total of m!/(n!(m − n)!) possibilities. For all but small m and
n, this approach will be computationally infeasible, even if the functional D is cheap to
evaluate. Two other related approaches are commonly used to partially solve this type of
combinatorial optimisation problem.

The first approach, with a long history, see e.g., [13–15], is to use a sequential approach
that at each stage constructs a new candidate subset by removing one element from the
subset, replacing it by a new element that leads to a strict improvement in D. The com-
putational cost per step for such an algorithm will be given by the cost evaluating D and
the cost of searching for a suitable exchange from the n(m − n) possibilities. Ideally, the
computational cost of an exchange should be no worse than O(m) or O(m log m) as a func-
tion of m. The second approach is based on convex relaxation, replacing a combinatorial
problem by a convex optimisation problem [16]. Let 0 ≤ wi = w(ai) ≤ 1, where we think
of wi as specifying the degree to which the ith element is in the solution optimal subset. If
W(A) is the set of functions A −→ [0, 1], then the optimisation problem is defined by

min
w∈W(A)

D(w) subject to
m

∑
i=1

w(ai) = n. (2)

In this approach, the combinatorial constraint χ(ai) ∈ {0, 1} is relaxed to the convex
constraint 0 ≤ w(ai) ≤ 1. Often, the optimal w is in a fact a characteristic function
associated with an n-element subset. The optimisation algorithms for such problems are
generally iterative and often also have a sequential element, such as in sequential quadratic
programming [17] and semidefinite programming [18]. Convex relaxation approaches to
DoE problems were considered in [4,9,10,16], for example.

In this paper, we show how two algorithms, both following a sequential approach
and developed for numerical linear algebra applications, can be repurposed to address the
design problem of choosing n observations from m possible observations.

The remainder of this paper is organised as follows. In Section 2, we give an overview
of linear least squares estimation, while in Section 3, we describe commonly used aggregate
measures of uncertainty and the corresponding criteria used in optimal experimental
design. In Section 4, we describe two algorithms that address the DoE problem under
consideration, as well as sequential algorithms for choosing additional observations in a
step-wise optimal way. Example applications of the algorithms to design problems arising
in metrology [19–22] are given in Section 5. Our concluding remarks are given in Section 6.

2. Least Squares Problems

For m × n observation matrix C, m × 1 vector of measurements y y, the least squares
estimate aa is the solution of

min
α

(y − Cα)⊤(y − Cα).

The QR factorisation of C expresses C = QR as a product of an m × m orthogonal matrix Q
and an upper triangular matrix R. If

C = [Q1 Q2]

[
R1
0

]
= Q1R1,
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where Q1 is the submatrix constructed from the first n columns of Q and Q2 that is con-
structed from the remaining m − n columns, then

a = (C⊤C)−1C⊤y = R−1
1 Q⊤

1 y,

ŷ = Ca = C(C⊤C)−1C⊤y = Q1Q⊤
1 y,

r = y − Ca = (I − Q1Q⊤
1 )y = Q2Q⊤

2 y,

are the least squares solution, model approximant, and associated residual vector. The
QR factorisation enables a to be given by the solution of R1a = Q⊤

1 y and this solution
can be constructed using back substitution, solving for an first, then an−1, etc., exploiting
the upper-triangular form of R1. The QR factorisation also avoids the numerical loss
of accuracy that can occur in forming C⊤C and its inverse in the case in which C is
ill-conditioned [23] (Chapter 5). The computational cost of evaluation the least-squares
solution in O(mn2).

The n × m matrix S = R−1
1 Q⊤

1 is the sensitivity matrix of the solution parameters a
with respect to the data y with sji = ∂aj/∂yi. If the variance matrix associated with y is Vy,
then the variance matrix associated with the solution a is

Va = SVyS⊤.

For the case Vy = I,
Va = SS⊤ = (R⊤

1 R1)
−1 = (C⊤C)−1.

For this case, the trace of the variance matrix is given by

Tr(Va) = ∑
j

∑
i

s2
ji,

the variance associated with aj is u2(aj) = ∑i s2
ji and ∑j s2

ji is the contribution of the
uncertainty associated with the ith observation to the trace of Va.

The least-squares solution a is the maximum likelihood estimate of α for the model
y ∈ N (Cα, I). If y is associated with the variance matrix Vy, i.e., y ∈ N (Cα, Vy), and Vy
is full rank and has Cholesky decomposition Vy = LL⊤, where L is lower triangular [23],
then the maximum likelihood estimate a of α solves the Gauss–Markov problem

min
α

(y − Cα)⊤V−1
y (y − Cα). (3)

If
C̃ = L−1C, ỹ = L−1y,

then the solution of (3) is the least-squares solution of C̃α ≈ ỹ:

a =
(

C̃⊤C̃
)−1

C̃⊤ỹ.

In particular, if Vy is a diagonal matrix with u2
i > 0 in the ith diagonal element, then C̃ is

constructed from the weighted rows of C, and similarly for ỹ:

c̃i = wici, ỹi = wiyi, wi = 1/ui.

In general, the cost of evaluating the Cholesky factorisation of Vy is O(m3), which could
be problematic for large m. Often, Vy has a structure that enables the factorisation to be
performed in O(m), as in the simple but common case of a diagonal variance matrix.
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3. Aggregate Measures of Uncertainty

A central issue in design of experiment analysis is to maximise some measure of the
information gain subject to constraints on resources. In a metrology context, in particular,
it is natural to express the information gain in terms of uncertainties associated with the
fitted parameters; i.e., related to the n × n variance matrix Va. Given an aggregate measure
of uncertainty derived from Va, one experiment will be judged to be more informative
than another if it is associated with a lower aggregate uncertainty. There are a number of
aggregate measures that are commonly used. In this paper, we are concerned with two:
A-optimality and D-optimality.

A full rank variance matrix V is a symmetric positive definite matrix and has an
eigenvalue decomposition with eigenvalues λj, j = 1, . . . n. The A-measure is the trace of
Tr(V) of V, the sum of the diagonal elements of V, as well as the sum of the eigenvalues of
V:

Tr(V) =
n

∑
j=1

λj.

We note that Tr(σ2V) = σ2Tr(V). The D-measure is the determinant |V| of V, and also the
product of the eigenvalues of V:

|V| =
n

∏
j=1

λj.

We also evaluate

d̄(V) = |V|1/n =

(
n

∏
j=1

λj

)1/n

, (4)

the geometric mean of the eigenvalues, noting that d̄(σ2V) = σ2d̄(V).
Arguments can be made for and against using each of these two measures. Given V,

the A-measure can be evaluated in O(n) steps, while the D-measure will usually involve
O(n3) steps, using the Cholesky factorisation of the variance matrix to evaluate its determi-
nant. The A-measure has the apparent advantage of being most easily interpreted as an
aggregate uncertainty, being the sum of the variances ∑j u2(aj) associated with each of the
parameter estimates aj or, more precisely, the numerical values of these estimates. From a
dimensional analysis point of view [24], the A-measure can only be meaningful if all the
parameters in a have the same dimension, length , mass, etc. Otherwise, the trace involves
adding quantities of different dimensions. The D-measure is consistent with a dimensional
analysis.

The A-measure can also be regarded as the variance associated with the sum ∑j aj of
parameter estimates, assuming these estimates as statistically independent. In general, they
will not be independent, and one disadvantage of the A-measure is that it takes no account
of correlation, being defined solely in terms of the diagonal elements of V. The D-measure
does take into account correlation. Consider the 2 × 2 variance matrix

V =

[
1 ρ
ρ 1

]
, Tr(V) = 2, |V| = 1 − ρ2,

associated with parameters a1 and a2. The A-measure is independent of the correlation
coefficient ρ while the D-measure depends directly on ρ2. If the result of an experiment is
to change ρ from 0 to near 1, there is a gain of information, since a1 − a2 is now much more
accurately estimated. The D-measure reflects this information gain, the A-measure does
not.

The D-measure is invariant to re-parametrizations of the model, while the A-measure
is not. Suppose Va = (C⊤C)−1 and let b = Ba, where B is n × n and full rank, so that b can
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be regarded as an alternative parametrization of the problem. For the same experimental
design, the variance matrix associated with the estimates b is given by

Vb = BVaB⊤.

We have
|Vb| = |BVaB⊤| = |B|2|Va|,

so that a strategy that is optimal for the D-measure for parametrization a will also be
optimal for parametrization b. For the A-measure,

Tr(Vb) = Tr(BVaB⊤) = Tr(B⊤BVa) = Tr(VaB⊤B),

and, in general, there is no constant K such that Tr(BVaB⊤) = KTr(Va), unless B⊤B is a
multiple of the identity matrix. In a similar vein, the D-measure is invariant with respect to
changes in unit, the A-measure is not.

The eigenvalues λj of Va are related to the size of the confidence ellipses centred about
the parameter estimates a. In fact, for a given confidence level, the lengths of the semi-axes
are proportional to

√
λj. Hence, the D-measure is related to the square of the volume of the

confidence ellipse, while the A-measure is related to the sum of the squares of the semi-axis
lengths.

4. Choosing a D-Optimal Subset of n Measurements

Let C be an m × n observation matrix, m > n, representing m measurements that could
potentially be made. If we are constrained only to use n measurements, which n should we
choose, in order to minimise an aggregate measure of the uncertainties associated with the
fitted parameters? It is assumed that there is at least one n × n submatrix constructed from
the rows of C that is full rank, allowing all the parameters a to be estimated. In this section,
we consider two algorithms described below in Sections 4.1 and 4.2, for addressing the
issue of subset selection with a view to providing a D-optimal solution. Both algorithms
were designed to address other problems but can be repurposed for design of experiment
applications.

Let Ck be a full rank n × n submatrix of C defined by a subset of the rows of C indexed
by row indices Ik = {i1, . . . , in}, and set Vk = H−1

k , where H = C⊤
k Ck. Then,

|Vk| = |Hk|−1 = |Ck|−2,

so that choosing Ik to minimise |Vk| amounts to choosing Ik to maximise |Ck|. For any
square n × n matrix A with rows ai, |A| is the volume of the parallelopiped spanned by the
vectors ai in Rn. This volume will depend on the Euclidean lengths ∥ai∥2 of the vectors and
also their mutual independence. For vectors of equal length, |A| is maximised if the vectors
ai are orthogonal to each other (and can therefore be rotated or reflected to align with the
coordinate axes). In terms of the observation matrix C, the lengths of the row vectors ci
reflect the accuracy associated with the measurement yi—more accurate measurements will
be accorded a greater weight and therefore larger row vector ci in terms of Euclidean length.
The orthogonality of the row vectors relates to how independent the sets of information
represented by the measurements are from each other. Consider[

y1
y2

]
= C

[
a1
a2

]
+

[
ϵ1
ϵ2

]
, C = C(θ) =

[
1 0

cos θ sin θ

]
ϵ1, ϵ2 ∈ N (0, 1).

Both measurements y1 and y2 are associated with the equal information gain, since ∥c1∥ =
∥c2∥ = 1. The data point y1 provides information about a1 alone, while the data point y2
potentially provides information about both a1 and a2. For θ ≈ 0, the observation equation
involving y2 only serves to provide more information about a1, and a2 remains poorly
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estimated with |C(θ)| = | sin θ| ≈ 0. For θ ≈ π/2, the information provided by y2 provides
significant new information about a2 and |C(θ)| = | sin θ| ≈ 1. In this way, amongst a set
of measurements of comparable accuracy, we look for subsets that are mutually maximally
independent. Both of the algorithms described below involve trying to select a set of
measurements that are sufficiently independent.

4.1. Subset Selection Using the QR Factorisation with Column Pivoting

The QR factorisation of an m × n matrix C = QR has the following geometrical
interpretation. The column vectors cj of C define an n dimensional subspace C of Rm. The
orthogonal matrix Q defines an axis system for Rm, such that the n columns of Q1 define
an axis system for C and the m − n columns of Q2 define an axis system for the space of
vectors C⊥ orthogonal to C. The columns for Q1 are constructed so that q1 is aligned with
c1, and so that there is an r11 such that c1 = r11q1. The vector q2 is chosen to lie in the plane
defined by c1 and c2, and so there are scalars r12 and r22 such that c2 = r12q1 + r22q2, etc.
This gives the factorisation

[c1 · · · cn] = [q1 · · · qn]


r11 r12 · · · r1n
0 r22 · · · r2n

0 0
. . .

...
0 0 · · · rnn

,

i.e., in matrix notation C = Q1R1.
An equivalent geometrical interpretation is that the orthogonal matrix Q⊤, a combina-

tion of rotations and reflections, transforms C so that its first column is aligned with the
first axis in Rm, the second column lies in the plane defined by the first and second axes in
Rm, the third column lies in the three-dimensional space defined by the first three axes in
Rm, and so on: Q⊤C = R.

For the standard QR algorithm, the columns of C are processed in the order they
appear in the matrix C. For the QR algorithm with column pivoting [23], the order of the
columns is changed to improve the numerical properties of the algorithm. The column
of largest Euclidean length is aligned with the first axis. Of the remaining columns, the
column that is furthest from the space defined by the first axis is then rotated to the plane
defined by the first and second axes. At the k + 1th stage, it is the column furthest from
the subspace defined by the first k axes directions that is chosen to be transformed to lie in
the space defined by the first k + 1 axes directions. The output of the algorithm includes
the specification of a permutation matrix P that permutes the columns of C, along with an
orthogonal Q and upper triangular R such that CP = QR.

The first algorithm considered here is based on a subset selection algorithm described
in [23] (Section 5.5). The issue addressed by the subset selection algorithm is that of trying
to explain a measured response vector y in terms of basis vectors, usually representing
covariates x and functions of covariates, stored in an m × p matrix C. It is assumed that
y lies close to a n dimensional subspace defined by a subset of the columns of C. The
problem is to estimate n and choose n columns of C that best explain the response, using
the QR with column pivoting to select columns that are optimally mutually independent.
This information can then be used to predict other, possibly future, responses based on
knowledge of the variates represented by the selected columns. The algorithm uses the
singular value decomposition (SVD) to estimate n and the QR algorithm with column
pivoting to select an appropriate set of n columns.

Our design of experiment problem is different. The observation matrix C of all
potential measurements is assumed to be full rank, so estimating the rank of C is not
required. More importantly, our selection problem is to select from the rows of C, not
the columns. However, the selection of a set of vectors that are maximally mutually
independent is directly relevant. Suppose C has QR factorisation C = Q1R1, where Q1
is m × n and R1 in n × n and upper-triangular and full rank. The matrix R1 can be used
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to re-parametrize the problem in terms of b = R−1
1 a. The observation associated with

parameters b is Q1. Since D-optimal designs are independent of parametrization, it is
sufficient to work with Q1 as follows. We use column pivoting to find the QR factorisation
of Q⊤

1 so that Q⊤
1 P = UT, where U is an n × n orthogonal matrix and T is upper-triangular.

The first n columns selected by the QR decomposition of Q⊤
1 specified by P also specify the

n rows of C that are a good choice for the D-optimal design. This algorithm is summarised
below (Algorithm 1). Its computational complexity is O(mn2).

Algorithm 1: SSQR: subset selection algorithm using QR with column pivoting
to determine a favourable subset of an observation matrix in terms of the D-
measure

Data: An m × n observation matrix C.
Result: Index set I ⊂ {i = 1, . . . , m} where the first n elements specify Cn that

represent a good selection of the rows of C in terms of maximising the
determinant.

Steps:
Determine the QR factorization of C = Q1R1, where Q1 is an m × n orthogonal
matrix.

Use column pivoting to find the QR factorisation of Q⊤
1 so that Q⊤

1 P = UT, where
U is an n × n orthogonal matrix and T is upper-triangular.

Assign the index I by assigning I(k) = ik where ik specifies the row index of the
kth column of P such that P(ik, k) = 1.

The SSQR algorithm is not targeted directly at determining a D-optimal design but is
an approach that, at least heuristically, has elements that makes it likely to produce a design
that is good in terms of the D-measure. The algorithm is an example of a sequential ‘greedy
algorithm’, in that at each step, a choice is made that maximises some measure, irrespective
of what previous steps have been made, and takes no account of what choices could arise
in a future step. Once a row has been selected, there is no opportunity for the row to be
deselected at a future iteration. The algorithm is largely independent of the ordering of
the rows of the observation matrix C and, other than for reasons of rounding error effects
and symmetries in the observation matrix, will arrive at the same solution for different
row orderings. As has been mentioned, there is no guarantee that this solution is globally
optimal. Example calculations using the algorithm are discussed in Section 5.

4.2. Exchange Approach Based on the Gu and Eisenstat Algorithm

The second algorithm described in this paper is directly targeted at determining
a D-optimal design. It is based on the iterative algorithm of Gu and Eisenstat [25] for
determining a strongly rank-revealing QR decomposition. Below, we show how it can be
adapted to provide a reduction in the D-measure at each iteration through exchanging
rows and to stop when no reduction is possible. It starts with a selection C0 of n rows of
the m × n observation matrix C, where C0 is already full rank; e.g., that provided by the
SSQR subset selection algorithm of Section 4.1.

We recall that minimising the D-measure is equivalent to maximising the absolute
value of the determinant of the upper-triangular factor of the observation matrix. The idea
of the algorithm is as follows. Partition C⊤ as C⊤ =

[
A B

]
, where A is n × n and B is

n × (m − n). We assume that A = C⊤
0 is full rank. The Gu–Eisenstat (GE) algorithm uses

the following result:

Proposition 1. For n × n full rank matrix A and n × p matrix B, let Ã be the matrix constructed
by replacing the ith column of A, 1 ≤ i ≤ n, by the jth column of B, 1 ≤ j ≤ p. Then,

|Ã| = Fi,j|A|
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where F = A−1B.

Proof. For n-vectors u and v,

|A + uv⊤| = |A|(1 + v⊤A−1u); (5)

see Appendix A.2. The result follows for v = ei, the ith column of the identity matrix and
u = bj − ai, noting that A−1ai = ei.

This suggests the following approach, assuming that the first n rows of C are full rank
(Algorithm 2).

Algorithm 2: Basic steps to determine a D-optimal subset of an observation
matrix

Data: An m × n observation matrix C such that the first n rows are full rank, and
tolerance factor f > 1.

Result: Index set I ⊂ {i = 1, . . . , m} where the first n elements specify Cn such
that no row interchange will increase the determinant of Cn by more than
f .

Steps:
Partition C⊤ =

[
A B

]
and form F = A−1B.

Initialise m × 1 index set I with I(i) = i.
while maxi,j |Fi,j| > f do

1. Choose (i, j) such that |Fi,j| is maximised.
2. Row interchange: set A := A + (bj − ai)e⊤i , B := B − (bj − ai)e⊤j .
3. Update I, swapping the ith and (n + j)th elements.
4. Form F = A−1B.

end

The main computational element of this algorithm is forming F = A−1B at each
iteration. Forming F explicitly in this way involves O(n3) steps to evaluate A−1 and a
further O(mn) steps to evaluate the matrix product. Let Q be orthogonal such Ã = Q⊤A is
upper-triangular and set

Q⊤[ A B
]
=
[

Ã B̃
]
. (6)

Then, F = A−1B = Ã−1B̃, and the latter can be computed efficiently using back-substitution.
Thus, step 4 in Algorithm 2 can be replaced by

4.1 Determine orthogonal Q such that Q⊤A is upper-triangular.
4.2 Set [

A B
]

:= Q⊤[ A B
]
, F = A−1B.

Since |Q⊤A| = |A|, up to sign, the modified algorithm still determines the optimal index
set. As described in the Gu and Eisenstat paper, these computations can be made much
more efficient by exploiting the fact that at each iteration we are performing a rank-one
modification to update an upper triangular matrix in step 2 in Algorithm 2 above. Suppose
we have determined to replace ith column of the upper-triangular matrix A by the jth
column of B. First, we move the ith column of A to the nth column, as shown schematically
in (7).

∗ ∗ i ∗ ∗ ∗
∗ i ∗ ∗ ∗

i ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗

−→

∗ ∗ ∗ ∗ ∗ i
∗ ∗ ∗ ∗ i

∗ ∗ ∗ i
∗ ∗ ∗

∗ ∗
∗

(7)
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This step can be written as[
A1 ai A2

]
7→
[

A1 A2 ai
]
= AΠi,n

where Πi,n is the appropriate permutation matrix. The right-hand matrix is upper-triangular
except for the sub-diagonal elements stored in A2. Let Q be the orthogonal matrix where
Ã = Q⊤AΠi,n is upper-triangular and set B̃ = Q⊤B. Note that Q⊤ only acts on rows and
columns i to n of AΠi,n and rows i to n of B. We have that

F̃ = Ã−1B̃ = Π⊤
i,nF.

We can now replace the nth column ãn of Ã by the jth column b̃j of B̃, forming matrices

Ā = Ã + ue⊤n , B̄ = B̃ − ue⊤j , u = b̃j − ãn.

Note that the matrix Ā on the left remains upper-triangular. For the next iteration it remains
to calculate F̄ = Ā−1B̄. Using the Sherman–Morrison formula [26] (Appendix A.1), we
have

Ā−1 =
(

Ã + uen
)−1

= Ã−1 − ũṽ⊤

1 + en⊤ũ
, ũ = Ã−1u, ṽ = Ã−⊤en,

so that

Ā−1B̄ = Ã−1B̃ − Ã−1ue⊤j − ũ(ṽ⊤B̃)
1 + en⊤ũ

+
ũ(ṽ⊤u)e⊤j
1 + en⊤ũ

,

= F̃ + ũw⊤, (8)

where

w =

(
ṽ⊤u

1 + e⊤n ũ
− 1

)
ej −

B̃⊤ṽ
1 + en⊤ũ

.

Thus, F̄ is a rank-one update of F̃. The expressions above can be considerably simplified.
We note that

ũ = F̃(:, j)− en,
ṽ⊤u

1 + e⊤n ũ
− 1 = −1/F̃(n, j),

B̃⊤ṽ
1 + en⊤ũ

= −F̃(n, :)⊤/F̃(n, j),

so that
w = − 1

F̃n,j
(F̃(n, :)⊤ + ej).

Recalling that F̃ = Π⊤
i,n A−1B, we see that from (8), Ā−1B̄ can be constructed as a rank-one

update of the previously calculated F = A−1B. We also note that F̃(n, j) = F(i, j) > 1 (since
the update is only invoked to increase |A|) so that the rank-one update of F is numerically
stable. The formation of Ã and Ā requires O(n2) steps and the formation of F̄ requires
O(mn) steps. These calculations lead to a computationally efficient and numerically stable
version (Algorithm 3) of Algorithm 2:
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Algorithm 3: GE: efficient algorithm to determine a D-optimal subset of an
observation matrix

Data: An m × n observation matrix C such that the first n rows are full rank, and
tolerance factor f > 1.

Result: Index set I ⊂ {i = 1, . . . , m} where the first n elements specify
Cn = C(I(1 : n), :) such that no row interchange will increase the
determinant of Cn by more that f ; matrices

[
A B

]
storing the

upper-triangular factor of C(I, :)⊤.
Steps:
Partition C⊤ =

[
A B

]
and form F = A−1B.

Initialise m × 1 index set I with I(i) = i.
while maxi,j |Fi,j| > f do

1. Choose (i, j) such that |Fi,j| is maximised. and store ai and bj.
2. Apply permutation matrix Πi,n to move the ith column of A to the nth

column A := AΠi,n.
3. Apply Π⊤

i,n to F: F := Πi,nF.
4. Determine (n − i + 1)× (n − i − 1) orthogonal matrix Q such that

Q⊤A(i : n, i : n − 1) is upper-triangular and update:

A(i : n, i : n) := Q⊤A(i : n, i : n), B(i : n, :) := Q⊤B(i : n, :).

5. Set an = A(:, n), bj = B(:, j), ũ = F(:, j)− en and

w = − 1
Fn,j

(F(n, :)⊤ + ej).

6. Interchange columns and update I. A(:, n) = bj, B(:, j) = aj. Set in = I(n),
ij = I(n + j) and I(n) = ij, I(n + j) = in.

7. Update F: F := F + ũw⊤.

end

The algorithm is a sequential descent algorithm, with each exchange producing a
decrease in the determinant of the variance matrix by at least a factor of 1/ f 2 < 1, ensuring
that it stops in a finite number of steps. However, there is no guarantee that the algorithm
will determine the globally D-optimal subset, only a locally D-optimal solution. A different
ordering of the rows of the observation matrix is quite likely to produce a different solution.
Consider the following matrix C(a):

C(a) =



1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 a
0.50 0.50 0.50 0.50
0.17 −0.83 0.17 0.50
0.17 0.17 −0.83 0.50

−0.83 0.17 0.17 0.50


. (9)

The bottom four rows form an orthogonal matrix Q with |Q| = 1. However, for a > 0.5,
there is no row interchange that will allow the determinant of the first four rows to be
increased, and the GE algorithms stops with the first four rows with determinant a, sub-
optimal if a < 1.0. For 0.5 < a < 1.0, the SSQR algorithm, by contrast, selects the bottom
four rows, in this case, the globally optimal solution.
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4.3. Combined SSQR-GE Algorithm

An effective approach in practice is to combine the SSQR and GE algorithms, using
the SSQR algorithm to find an initial selection of columns, and to use the GE interchange
algorithm to improve on, if possible, this selection. This combined algorithm has the
advantages of being largely independent of the row ordering and will deliver a local
minimum based on the SSQR algorithm starting point. Again, there is no guarantee that
the solution will be a global optimum, but the examples discussed in Section 5 show that
the combined algorithm works well.

4.4. Sequential Approach for Choosing a Set of Additional Observations

The algorithms described in Sections 4.1 and 4.2 are designed to determine a minimal
set of observations that produce D-optimal estimates of the model parameters a. We
now consider the case in which estimates of a have already been established. Suppose
the (full rank) variance matrix V = LL⊤ = (R⊤R)−1 represents the current knowledge
about parameters a and up to m (new) measurements are potentially available, modelled
according to

yi ∼ N (c⊤i a, 1), i = 1, . . . , m.

(As before, we assume that, for each i, yi and ci have been weighted so that the uncertainty
associated with yi is 1.) Which measurements should we make in order to best improve
our knowledge about a? We suppose that resources exist to make p more observations.
An exhaustive search of all combinations is only feasible for small p and modest m. The
sequential algorithms below add the observations one at a time, with the choice at each
stage designed to maximise the information. These are further examples of so-called
‘greedy algorithms’.

Let C be the m × n observation matrix whose ith row is c⊤i and Vi the variance matrix
associated with a given that the ith measurement (and only the ith measurement) is made.
Then,

Vi = (R⊤R + cic⊤i )
−1 = V − Vci(Vci)

⊤

1 + c⊤i Vci
,

using the Sherman–Morrison formula [26] (Appendix A.1). Let

f i = Vci, g2
i = c⊤i f i = c⊤i Vci. (10)

Then,

Vi = V − f i f⊤i
1 + g2

i
= V − uiu⊤

i , ui =
1√

1 + g2
i

f i. (11)

so that Vi is a symmetric rank-one update of V.
The eigenvalues λj,i of Vi can be related to the eigenvalues λj of V through the follow-

ing result [23] (Section 8.1), [27] (p. 94):

Proposition 2. Suppose W = V + ρuu⊤, where V is an n × n symmetric matrix, u is an n-vector
with u⊤u = 1 and ρ is a constant. Suppose V and W have eigenvalues

λ1(V) ≥ λ1(V) ≥ λ2(V) ≥ · · · ≥ λn(V),

and
λ1(W) ≥ λ1(W) ≥ λ2(W) ≥ · · · ≥ λn(W).

If ρ ≥ 0, then
λi(W) ∈ [λi(V), λi−1(V)], i = 2, . . . , n,

while if ρ ≤ 0, then

λi(W) ∈ [λi+1(V), λi(V)], i = 1, . . . , n − 1.
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In either case, there exist n constants γi, γi ≥ 0, with γ1 + · · · γn = 1, such that

λi(W) = λi(V) + γiρ.

4.4.1. Sequential D-Optimality Algorithm

We use the relationship (5) to write

|Vi| = |(R⊤R + cic⊤i |−1,

= |R⊤R|−1|
(

1 + c⊤i (R⊤R)−1ci

)−1
,

= |V|
(

1 + ci
⊤Vci

)−1
,

=
1

1 + g2
i
|V|, g2

i = c⊤i Vci.

A sequential algorithm can therefore be designed which at each stage chooses the i that
maximises g2

i . The algorithm can be run in two modes: the first in which the algorithm can
choose any row at most one time, the second in which there is no limit in the number of
times any row can be selected. Having a row repeated k times is equivalent to having a single
more accurate observation with its uncertainty reduced by a factor of 1/

√
k. In the second

mode, it is often the case that additional measurements correspond to repeat measurements
chosen from the D-optimal set of n points. In the algorithm below (Algorithm 4), the mode is
controlled by the flag iR:

Algorithm 4: Sequential approach to optimising the D-measure in choosing p
observations from a possible m > p observations

Data:
• C, an m × n observation matrix C, m > n,
• V, an n × n full rank variance matrix V encoding the current state of

knowledge of the parameters,
• p, an integer 1 ≤ p < m specifying the maximum number of observations

to be made, and
• flag iR = 0 or 1. If iR = 1, rows of C can be selected more than once.

Result: A p × 1 index set I ⊂ {i = 1, . . . , m}, updated variance matrix V
representing the variance in the parameters as a result of using
observations Cp = C(I, :), the p rows of C specified by I, and p × 1 t
where 0 < tq < 1, the reduction in the determinant of V at each iteration:
|Vq+1| := tq|Vq|. The rows are chosen to minimise tq at each iteration.

Set F = VC⊤ and n × m matrix G with Gj,i = Fj,iCj,i with gi = ∥G(:, i)∥,
i = 1, . . . , m.

for q = 1 to p do

1. Evaluate τi = 1/(1 + g2
i ), i = 1, . . . , m.

2. If q > 1 and iR = 0, set τi = 2, i = I(1), . . . , I(q − 1).
3. Find k such that τk ≤ τi, i = 1, . . . , m.

4. Set I(q) = k, tq = τk, u = F(:, k)/
√

1 + g2
k , and w = Cuk.

5. Update V := V − uu⊤, F = F − uw⊤, and gi = [(gi − wi)(gi + wi)]
1/2,

i = 1, . . . , m.

end

For each q, the only operations required are matrix–vector multiplications and similar,
requiring at most O(mn) steps. This compares with O(mn3) steps for an algorithm not
exploiting rank-one updates.
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4.4.2. Expected Information Gain Calculations

The quantities tq calculated at each stage give the reduction in determinant of the
variance matrix at the qth step. The following argument can be used to provide an expected
value for tq, under the assumption that the rows of C each provide approximately the same
amount of information. Suppose C consists of rows with a 1 in one column and zeros
elsewhere. A D-optimal design would select rows so that the ones are distributed equally
amongst the columns. If a total of q rows are selected, the variance matrix Vq is such that

Vq ≈ n
q

I, |Vq| ≈
(

n
q

)n
.

From this argument, the expected value of tq, q > n, is such that

tq ≈ t̃(q) =
(

q − 1
q

)n
. (12)

In terms of the geometric mean d̄ of the eigenvalues of the variance matrices, we have

d̄(Vq) =
q − 1

q
d̄(Vq−1).

For q = n + 1, we have
1
2
≥
(

n
n + 1

)n
≥ 1

e
≈ 0.37,

where the left hand value corresponds to the case n = 1, and 1/e is the limiting value as
n → ∞.

4.4.3. Sequential A-Optimality Algorithm

We can also construct a counterpart of Algorithm 4 for A-optimality. For any v,
Tr(vv⊤) = v⊤v = ∥v∥2. With f i and gi as in (10), if

τ2
i = f 2

i /(1 + g2
i ), f 2

i = f⊤i f i,

then
Tr(Vi) = Tr(V)− τ2

i .

This last expression calculates the change in the A-measure for a given choice of one
additional measurement. A sequential algorithm can therefore be designed which at each
stage chooses the i that maximises τ2

i . Each stage requires the calculation of the quantities
f 2
i and g2

i , i = 1, . . . , m. If V is the current variance matrix, then the f 2
i are given by the sum

of the squares of row elements of F = VC⊤. Suppose measurement k maximises τ2
i . Then,

the update of F is given by

F = (V − uku⊤
k )C

⊤ = F − ukw⊤, w = Cuk,

and the updated of g2
i is given by g2

i − w2
i , with the latter evaluated as (gi − wi)(gi + wi)

for better numerical accuracy. These steps are summarised in (Algorithm 5):
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Algorithm 5: Sequential approach to optimising the A-measure in choosing p
observations from a possible m > p observations

Data:
• C, an m × n observation matrix C, m > n,
• V, an ×n full rank variance matrix V encoding the current state of

knowledge of the parameters,
• p, an integer 1 ≤ p < m specifying the maximum number of observations

to be made, and
• flag iR = 0 or 1. If iR = 1, rows of C can be selected more than once.

Result: A p × 1 index set I ⊂ {i = 1, . . . , m}, updated variance matrix V
representing the variance in the parameters as a result of using
observations Cp = C(I, :), the p rows of C specified by I, and p × 1 t
where tq = τ2

q , the reduction in the trace of V at the qth iteration. The rows
are chosen to maximise τ2

i at each iteration.
Set F = VC⊤, fi = ∥F(:, i)∥, n × m matrix G with Gj,i = Fj,iCj,i with gi = ∥G(:, i)∥,

i = 1, . . . , m.
for q = 1 to p do

1. Evaluate τ2
i = f 2

i /(1 + g2
i ), i = 1, . . . , m.

2. If q > 1 and iR = 0, set τ2
i = 0, i = I(1), . . . , I(q − 1).

3. Find k such that τ2
k ≥ τ2

i , i = 1, . . . , m.

4. Set I(q) = k, tq = τ2
k , u = F(:, k)/

√
1 + g2

k , and w = Cu.

5. Update V := V − uu⊤, F = F − uw⊤, fi = ∥F(:, i)∥ and
gi = [(gi − wi)(gi + wi)]

1/2, i = 1, . . . , m.

end

As for Algorithm 4, the computational requirement for each step is O(mn).

5. Numerical Examples
5.1. Polynomial Calibration Curves

Many instrument response functions are modelled as polynomial curves, most com-
monly, of order 2 (degree 1), i.e., modelling a linear response, but higher orders arise, e.g.,
in the calibration of platinum resistance thermometers [28], or in the calibration of a stage
motion [29] where polynomials of order 10 are involved. (Design problems for problems
for polynomial models augmented by Gaussian process models are considered in [4].)
Suppose a polynomial response function of order n is defined on the interval [−1,1], and
that it is desired to calibrate the response function using n calibration points xi ∈ [−1, 1].
Which choice of n points is D-optimal? For a linear (quadratic) response n = 2 (n = 3), it
is intuitively clear that the end points x = ±1 (and x = 0) are optimal. For higher orders,
the optimal choice is not obvious. In fact, the D-optimal set [30] for order n is given by
solutions of

(1 − x2)L̇n(x) = 0, (13)

where L̇n(x) is the derivative of Legendre polynomial of order n (degree n − 1). These
solutions can be approximated by the so-called ‘arcsine’ points

xi = cos
(

π
n − 1 − i

n − 1

)
, i = 0, 1, . . . , n − 1. (14)

Table 1 gives the results of applying the SSQR algorithm and the combined SSQR-GE
algorithm to estimate the D-optimal calibration points for the cases n = 4, 5, . . . , 11 choosing
from m = 2001 possible points equally spaced in the interval [−1, 1] in steps of 0.001. For
these calculations, we have used Chebyshev polynomial basis functions [31] for numerical
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stability (but the optimal choice of points is independent of the choice of basis functions.)
The arcsine estimates are also given in the table, along with the D-optimal points derived
from (13); see Appendix B. The results show that, in terms of closeness to the D-optimal
points, the SSQR algorithm improves on the arcsine estimates, while the GE algorithm
improves the SSQR solution and is accurate to three decimals in almost all cases (there is
one exception for the case n = 11). Table 2 gives the computed geometric mean measure
d̄(Va) given in (4) for evenly spaced calibration points, the arcsine solutions, the SSQR
solutions, and the SSQR-GE solutions given in Table 1. Also shown is the number of GE
exchanges undertaken to improve the SSQR solutions. The table reflects the improvements
provided by the SSQR and SSQR-GE algorithms. The number of GE exchanges is small
compared to m = 2001. The evenly spaced calibration points are markedly worse than the
other solutions for larger n.

Table 1. D-optimal calibration points for polynomial calibration curves of order n = 4, . . . , 11 defined
in the interval [−1, 1]. For each set of four columns, the first column, labelled x0, gives the arcsine
estimates of the calibration points in (14); the second column, labelled xQR, gives the optimal the
calibration points determined by the SSQR algorithm; the third column, labelled xGE, gives the
estimates determined by the combined SSQR-GE algorithm; while the fourth column, labelled x∗,
gives the optimal the calibration points derived from (13).

x0 xQR xGE x∗ x0 xQR xGE x∗

n = 4 n = 5
−1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
−0.500 −0.488 −0.447 −0.447 −0.707 −0.669 −0.655 −0.655
0.500 0.437 0.447 0.447 0.000 0.006 0.000 0.000
1.000 1.000 1.000 1.000 0.707 0.686 0.655 0.655

1.000 1.000 1.000 0.000
n = 6 n = 7

−1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
−0.809 −0.786 −0.765 −0.765 −0.866 −0.845 −0.830 −0.830
−0.309 −0.286 −0.285 −0.285 −0.500 −0.484 −0.469 −0.469
0.309 0.308 0.285 0.285 0.000 0.002 0.000 0.000
0.809 0.779 0.765 0.765 0.500 0.493 0.469 0.469
1.000 1.000 1.000 1.000 0.866 0.841 0.830 0.830

1.000 1.000 1.000 0.000
n = 8 n = 9

−1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
−0.901 −0.880 −0.872 −0.872 −0.924 −0.908 −0.900 −0.900
−0.623 −0.613 −0.592 −0.592 −0.707 −0.692 −0.677 −0.677
−0.223 −0.211 −0.209 −0.209 −0.383 −0.383 −0.363 −0.363
0.223 0.225 0.210 0.209 0.000 −0.002 0.000 0.000
0.623 0.608 0.592 0.592 0.383 0.376 0.363 0.363
0.901 0.882 0.872 0.872 0.707 0.695 0.677 0.677
1.000 1.000 1.000 1.000 0.924 0.906 0.900 0.900

1.000 1.000 1.000 0.000
n = 10 n = 11

−1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
−0.940 −0.925 −0.920 −0.920 −0.951 −0.938 −0.934 −0.934
−0.766 −0.753 −0.739 −0.739 −0.809 −0.796 −0.784 −0.784
−0.500 −0.493 −0.478 −0.478 −0.588 −0.580 −0.565 −0.565
−0.174 −0.177 −0.165 −0.165 −0.309 −0.311 −0.296 −0.296
0.174 0.168 0.165 0.165 0.000 −0.001 0.000 0.000
0.500 0.497 0.478 0.478 0.309 0.307 0.296 0.296
0.766 0.751 0.739 0.739 0.588 0.582 0.566 0.565
0.940 0.925 0.920 0.920 0.809 0.795 0.785 0.784
1.000 1.000 1.000 1.000 0.951 0.939 0.934 0.934

1.000 1.000 1.000 0.000
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Table 2. For n = 4, 5, . . . , 11, rows two to five give the computed geometric mean measure d̄(Va)
given in (4) for evenly spaced calibration points, the arcsine solutions, the SSQR solutions, and the
SSQR-GE solutions given in Table 1. The final row gives the number of GE exchanges undertaken to
improve the SSQR solutions.

n 4 5 6 7 8 9 10 11

d̄0 0.4871 0.4152 0.3748 0.3511 0.3379 0.3316 0.3304 0.3332
d̄AS 0.4714 0.3789 0.3175 0.2734 0.2403 0.2143 0.1935 0.1763
d̄QR 0.4682 0.3746 0.3130 0.2691 0.2362 0.2107 0.1901 0.1733
d̄GE 0.4673 0.3735 0.3119 0.2682 0.2354 0.2099 0.1894 0.1726

nGE 3 6 7 9 12 17 19 21

Figure 1 graphs the values of tq, q = 1, . . . , 100, and its analytical approximation
t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, without repeat
measurements, for the cases n = 4, upper curve, and n = 11, lower curve, starting with
the SSQR-GE solution. The values of tq are batched with a significant jump after every n
additional measurement. Without the repeat measurement, the algorithm tends to select
available points closest to the D-optimal n points. If the algorithm is run with repeat
measurements allowed, the algorithm selects the same set of D-optimal n points again and
again. This behaviour is reflected in the graphs of tq for this case; see Figure 2.

Figure 1. Polynomial calibration points: values of tq, q = 1, . . . , 100, and its analytical approximation
t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, for the cases n = 4, upper
curve, and n = 11, lower curve.
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Figure 2. As Figure 1, but for the case where repeated measurements are permitted.

5.2. Tensor Product of Polynomials

Our second example arose from a problem relating to the estimation of heat distri-
bution on an plate [32]. The application involved modelling the heat distribution as a
Gaussian process model [33] involving tensor product polynomials, along with spatially
correlated effects. A sub-problem is related to choosing a set of calibration points from a
10 × 14 grid of possible sensor locations in order to determine the tensor product mean
function. The tensor product model is of the form

f (x, y, a) =
nx

∑
i=1

ny

∑
j=1

aij fi(x)gj(y),

where fi(x) and gj(y) are Chebyshev polynomial basis functions. Figure 3 shows the
solution calibration points for nx = ny = 5 constructed from polynomial basis functions
up to degree 4. Two solutions are shown: the first in which the calibration points are
selected from a 131 × 91 finer grid of 11,921 points, the second in which the calibration
points are selected from a 14 × 10 grid of 140 points. The solutions found for the fine
grid coincide with a grid 5 × 5 grid of points (x∗k , y∗l ), where the x∗k , k = 1, . . . , 5 are the
D-optimal solutions derived from the solution of (13) on the interval [0, 20] and the y∗l are
the D-optimal solutions on the interval [0, 10]. For this arrangement, the observation matrix
C associated with the polynomial fit is the tensor product C = Cx ⊗ Cy. For square, full
rank matrices A and B of size nA × nA and nB × nB

|A ⊗ B| = |A|nA |B|nB .

Hence, it is consistent that the D-optimal points for the tensor product are constructed from
the D-optimal points for the x- and y-basis functions. The solution points for the coarse
grid are seen to approximate the solution for the fine grid, given the constraints imposed by
the coarse grid. The coarse grid solution points do not represent a regular grid in this case.
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For the case of the fine grid, the GE algorithm took 16 iterations to reach a local optimum,
starting with the SSQR solution. For the coarse grid, the GE algorithm confirmed that the
SSQR solution is locally optimal.

Figures 4 and 5 plot the values of tq, q = 1, . . . , 200, and its analytical approximation
t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, for the fine and
coarse grids, respectively, with and without repeat measurements. For a coarse grid and
no repeat measurements, the additional calibration points that are permitted consistently
provide less information compared to the expected information gain given by t̃ in (12).
For a coarse grid of just 140 points, later additional measurements have to be selected
from locations that are less informative in terms of improving the D-measure. With repeat
measurements on the coarse grid, the actual information gain is in line with the expected
information gain.

Figure 3. Tensor product polynomial calibration points found by the SSQR-GE algorithm. The points
marked with a ‘+’ are those selected from a fine grid, those marked ‘o’ from a coarse grid.

Figure 4. Cont.
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Figure 4. Tensor product polynomial calibration points: values of tq, q = 1, . . . , 100, and its analytical
approximation t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, for the fine
grid, with no repeat measurements, upper curve, and with repeat measurements, lower curve.

Figure 5. Tensor product polynomial calibration points: values of tq, q = 1, . . . , 100, and its analytical
approximation t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, for the coarse
grid, with no repeat measurements, upper curve, and with repeat measurements, lower curve.

5.3. Coordinate Metrology

In coordinate metrology, the size and shape of a geometric surface S is determined
from the measurement of the coordinates xi of points lying on the surface. If the geometric
surface S = S(a) is parametrized by a = (a1, . . . , an)⊤ and d(x, a) is a measure of the
distance from a point x to S(a), then for measurement points x1:m = {xi, i = 1, . . . , m},
m ≥ n, estimates of a are determined by solving the least squares optimisation problem

min
a

=
m

∑
i=1

d2(xi, a).



Algorithms 2024, 17, 193 20 of 29

If the variance matrix associated with the measured points coordinates is σ2 I, then the
variance matrix Va associated with the fitted parameters is approximated by

Va = σ2
(

J⊤ J
)−1

, Jij =
∂d
∂aj

(xi, a),

involving the Jacobian matrix J. Thus, it is possible to determine optimal measurement
strategies, i.e., where to measure on the surface S , in terms of the determinant of the
Jacobian matrix J. Often, the case of choosing a minimal set of points with m = n is of
interest. For simple geometries, an optimal set of points is straightforward to arrive at, e.g.,
three points equally spaced around a circle, but for more complex geometries, the choice of
an optimal set may not be obvious, as considered below.

Figure 6 shows a reference artefact designed and calibrated by the Czech Metrology
Institute (CMI) [34,35]. The form of the geometric surface is a hyperbolic paraboloid given
by the equation

z = 24 + (x/8 − 1)(y/8 − 1). (15)

A paraboloid with its axis approximately parallel to the z-axis is parametrized in terms of
two rotation angles α and β and six further parameters b such that

ẑ = b1 x̂2 + b2ŷ2 + b3 x̂ŷ + b4 x̂ + b5ŷ + b6, x̂ = R(α, β)x,

where R(α, β) = Rx(α)Ry(β) is the rotation matrix constructed from the plane rotation
matrices

Rx(α) =

 1 0 0
0 cos α − sin α
0 sin α cos α

, Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

.

For the surface (15), nominally b⊤ = (0, 0, 1/64,−1/8,−1/8, 25). Figures 7–9 show the
distribution of the x- and y-coordinates for three sets Xk, k = 1, 2, 3, of eight calibration
points. The first two are given by ‘expert judgement’; that is, possible choices for a
measurement strategy based on engineering practice. The first expert choice, X1, Figure 7,
represents an approximately uniform distribution, a first guess at a good distribution. This
distribution of points is sufficient to determine all the parameters, and the associated 8 × 8
Jacobian matrix is full rank. (If the x- and y- coordinates of the data points are rotated
through 45 degrees about the z-axis, the associated Jacobian matrix is rank deficient by
three.) The second set X2 came about through experimenting with moving the inner four
points in dataset X1 closer or further from the origin of the xy-plane. It turned out that
moving the four points further from the origin was better, resulting in dataset X2, Figure 8.
At first glance, the distribution of points in X2 does not look a good choice. The third
dataset is that obtained using the SSQR-GE algorithm. The GE algorithm performed 11
interchanges starting from the SSQR solution. The optimal choice has seven points along
the boundary in the xy-plane and one point in the interior. Any interior point not too far
from the origin would also result in a good selection. In terms of the aggregate measure d̄k
defined in (4) associated with the three datasets, we have d̄1 = 6.0d̄3 and d̄2 = 2.2d̄3.

Table 3 gives the square roots vi of the diagonal elements of (J⊤k Jk)
−1, where Jk is the

Jacobian matrix associated with the kth dataset. If the variance matrix associated with the
measurements is σ2I, then vi = u(aj)/σ, where u(aj) is the estimate of the standard uncertainty
associated with the jth parameter [36,37]. In terms of standard uncertainties, the D-optimal
dataset X3 is far better for estimating the surface parameters than the other two datasets.

Figure 10 plots the values of tq, q = 1, . . . , 100, and its analytical approximation t̃(q)
given by (12), determined by the sequential D-optimal Algorithm 4, with and without
repeat measurements. For higher values of q, there is good agreement between tq and t̃q.



Algorithms 2024, 17, 193 21 of 29

Table 3. Standard uncertainty factors u(aj)/σ associated with the hyperbolic paraboloid parameters
a = (α, β, b⊤)⊤ for three eight-point datasets Xk, k = 1, 2, 3.

u(aj)/σ α β b1 b2 b3 b4 b5 b6

X1 2.3867 2.3867 0.0049 0.0049 0.0139 2.6219 2.6219 10.5328
X2 0.7259 0.7259 0.0042 0.0042 0.0035 0.4999 0.4999 2.8188
X3 0.2049 0.2413 0.0012 0.0014 0.0014 0.2883 0.2520 1.4690

Figure 6. The CMI hyperbolic paraboloid reference artefact.

Figure 7. Hyperbolic paraboloid calibration points: ‘expert’ guess at a good set of calibration points.
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Figure 8. Hyperbolic paraboloid calibration points: second ‘expert’ guess at a good set of calibration
points, a modification of X1, Figure 7.

Figure 9. Hyperbolic paraboloid calibration points: D-optimal points determined by the SSQR-GE
algorithm.



Algorithms 2024, 17, 193 23 of 29

Figure 10. Hyperbolic paraboloid calibration points: values of tq, q = 1, . . . , 100, and its analytical
approximation t̃(q) given by (12), determined by the sequential D-optimal Algorithm 4, with no
repeat measurements, upper curve, and with repeat measurements, lower curve.

5.4. Calibration of a Network of Standards Using a Comparator

In this section, we consider the calibration of a number of standards, starting with
one calibrated standard and using a comparator to calibrate the other standards relative
to the calibrated standard. An example application is in mass calibration using a mass
balance [38–40]. Given a calibrated standard A1, nominally of 1 kg, and two uncalibrated
masses A2 and A3 each of nominal mass 0.5 kg, A2 and A3 can be calibrated using two
measurements, the first comparing A1 with the combined mass of A2 and A3, and the
second comparing A2 and A3. A second example from length metrology relates to the
calibration of gauge blocks [41], where it is possible to align two gauge blocks end to end, a
process called ‘wringing’, to define a combined length. This discussion is relevant to the
calibration of any set of artefacts defining an extensive quantity where the artefacts can
be grouped to define a quantity that is (nominally) the sum of the individual quantities.
We use the term ‘network’ to reflect the fact that the estimates of all the quantities are
statistically correlated and an experiment that updates the information about one artefact
will also update information about the other artefacts.

Let a = (a1, . . . , an)⊤ represent the values of the quantities associated with the artefacts
where the nominal values a♯ = (a♯1, . . . , a♯n)⊤ of the quantities are such that the artefacts
can be grouped into sets of two groups, with each group being associated with the same
nominal value. Thus, there are disjoint subsets Li, Ri ⊂ I = {1, 2, . . . , n}, Li ∩ Ri = ∅,
i = 1, . . . , m, such that

∑
q∈Li

aq ≈ ∑
q∈Ri

aq.

An example considered further below involves a set of artefacts having nominal values 1.00,
0.50, 0.50, 0.20, 0.20, 0.10, 0.10, 0.05, and 0.05. The fact that the two subsets are associated
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with the same nominal value allows a comparator measurement to be made, with the
associated observation equation

0 ≈ yi = ∑
q∈Li

aq − ∑
q∈Ri

aq + ϵi, ϵi ∈ N (0, σ2
i ),

where ϵi represents a random effect associated with the comparator measurement. The
design problem is to define measurement strategies encoded by Li and Ri, i = 1, . . . , n, that
provide the most accurate calibration of the standards. For the example considered here,
there are almost 400 viable experiments.

Tables 4 and 5 show five designs for the calibration of the n = 9 standards. A ‘1’ in column
j indicates that j ∈ Li, while a ‘−1’ indicates that j ∈ Ri. Each array of 9× 9 elements is in fact
the unweighted observation matrix C associated with the particular design. The first row in
each design represents the observation associated with the calibration of the first standard using
an absolute measurement system. This first observation is the only source of information about
the first standard and must be included in the optimal solution. The uncertainties associated
with the remaining standards scale with the uncertainty associated with the first observation.

The first design, given in Table 4, is one defined by ‘expert judgement’, and represents a
typical set of experiments that would be performed in practice. (In fact, for this set of standards,
it is not entirely obvious how to choose a design that will calibrate all of the standards.) The
next design, indicated by the first nine rows in Table 5, is that determined by the SSQR-GE
algorithm with σ1 = σC = 1.0 and σi = σR = 0.5, i = 2, . . . , n. The most striking and, at first
sight, surprising feature of this second design is that almost all the artefacts are involved in
experiments 2 to n. The reason for this is that, in some sense, the comparator uncertainties
represented by σi = σR are partitioned amongst the artefacts involved, and more artefacts
being included in an experiment means that each artefact is assigned a smaller uncertainty.

The two designs considered so far are based on the assumption that all the comparator
measurements are associated with the same uncertainty σR, irrespective of the number
of artefacts and the nominal values of the artefacts. A more plausible assignment of
uncertainties would take into account both the number and nominal values. For a mass
balance, it would be usual for the associated uncertainty to have a component that varied
in proportion to the mass. Similarly, a length measuring device will usually have one or
more influencing factors, e.g., refractive index effects for the case of a laser interferometric
comparator [41], that vary in proportion to length. The use of multiple artefacts in each
experiment will also likely introduce effects that will add to the uncertainties.

For each experiment, let ni be the total number of artefacts involved and let

vi = ∑
q∈Li∪Ri

a♯q,

be a measure of the total value of the quantities involved in the ith experiment. Given σR,
σV and σN , we can assign σi according to

σ2
i = σ2

R + ni,2σ2
N + v2

i σ2
V , ni,2 = max(ni − 2, 0), i = 2, . . . , n. (16)

Table 5 presents the optimal designs calculated using the SSQR-GE algorithm with σi
calculated as in (16) for the four different values of σR, σN and σV shown in Table 6. The third
design in Table 5 is the result penalising experiments with a large number of artefacts, while
the fourth design in the table is the result of penalising experiments with a larger value of vi.

Table 6 gives the uncertainties u(ai) associated with ai for four different assignments
of σi, i = 2, . . . , n = 9 for the designs in Tables 4 and 5. Also shown in the table is the
aggregate measure d̄ = |Va|1/n of uncertainty, the total number ∑i ni of artefacts and a
measure ∑i vi of the total nominal values involved in each set of experiments. The last three
rows give the values of σR, σN and σV used to calculate σi, i = 2, . . . , n. In all cases, the
SSQR-GE algorithm leads to significant improvements over the expert judgement design.
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Table 4. Design of a calibration experiment given by ‘expert judgement’.

1.00 0.50 0.50 0.20 0.20 1.0 1.0 0.05 0.05

1 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 1 0 −1 −1 −1 0 0 0
0 0 1 −1 −1 0 −1 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 −1

Table 5. Designs of four calibration experiments calculated using the SSQR-GE algorithm with
uncertainties σi calculated according to (16) for the different values of σR, σN , and σV given in Table 6.

1.00 0.50 0.50 0.20 0.20 1.0 1.0 0.05 0.05

1 0 0 0 0 0 0 0 0
1 0 −1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 −1 1 −1 1
1 −1 −1 −1 1 1 −1 −1 1
1 −1 −1 −1 1 −1 1 1 −1
0 1 0 −1 −1 0 0 −1 −1
0 1 −1 0 1 −1 0 −1 −1
0 0 1 −1 0 −1 −1 −1 −1

1 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0
0 1 0 −1 −1 −1 −1 1 1
0 1 −1 1 −1 1 −1 −1 1
0 1 −1 0 1 −1 0 −1 −1
0 1 −1 0 −1 1 1 1 −1
0 0 1 −1 −1 0 0 −1 −1
0 0 0 1 0 −1 −1 1 −1
0 0 0 1 −1 −1 1 −1 1

1 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0
0 1 0 −1 −1 0 −1 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 0 −1 −1 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1

1 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0
0 1 0 −1 −1 0 −1 0 0
0 1 −1 0 0 0 0 0 0
0 0 0 1 0 −1 −1 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1
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Table 6. Uncertainties associated with ai for four different assignments of σi, i = 2, . . . , n = 9. The
columns labelled E give the uncertainties associated with ‘expert judgement’ design given in Table 4,
while the columns labelled ‘O’ give those associated with the optimal designs, given, in Table 5,
calculated by the SSQR-GE algorithm. Also shown in the table are the aggregate measure d̄ = |Va|1/n

of uncertainty, the total number ∑i ni of artefacts, and a measure ∑i vi of the total nominal values
involved in each set of experiments. The last three rows give the values of σR, σN , and σV used to
calculate σi, i = 2, . . . , n.

a♯
i E O1 E 02 E O3 E 04

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 0.61 0.56 0.66 0.64 0.69 0.69 1.04 1.04
0.50 0.61 0.55 0.66 0.64 0.69 0.69 1.04 1.04
0.20 0.39 0.31 0.43 0.40 0.60 0.58 0.50 0.57
0.20 0.49 0.29 0.52 0.39 0.61 0.58 0.54 0.60
0.10 0.57 0.26 0.61 0.32 0.90 0.44 0.57 0.36
0.10 0.91 0.27 1.03 0.36 1.64 0.45 1.34 0.34
0.05 0.35 0.20 0.36 0.28 0.40 0.48 0.29 0.27
0.05 0.35 0.20 0.36 0.28 0.40 0.48 0.29 0.27

d̄ 0.17 0.06 0.21 0.12 0.21 0.13 0.21 0.15
∑ vi 7.0 17.4 7.0 11.0 7.0 6.3 7.0 6.3
∑ ni 24 62 24 48 24 22 24 22
σR 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20
σN 0.00 0.00 0.20 0.20 0.80 0.80 0.20 0.20
σV 0.00 0.00 0.20 0.20 0.20 0.20 0.80 0.80

6. Concluding Remarks

In this paper, we have looked at the experimental design problem: given m potential
observations to determine n parameters, m > n, what is the best choice of n observations.
In the context of least squares estimation, the problem was formulated as finding the
n × n submatrix of the complete m × n observation matrix that has maximum determinant,
corresponding to the D-optimality criterion. We described two algorithms, the SSQR and
GE algorithms, to address this problem. Both were adapted from numerical linear algebra
algorithms associated with the QR factorisation of a matrix. We also described algorithms
for updating estimates of the problem parameters that are sequentially optimal with the
respect to the D-optimality and A-optimality criteria. We illustrated the behaviour of
the algorithms on a number of applications drawn from the field of metrology. These
algorithms are straightforward to implement. The SSQR algorithm, in particular, is a minor
adaption of the standard QR factorisation algorithm with pivoting. The algorithms enable
computationally efficient implementations, exploiting rank-one matrix updating techniques.
The algorithms are descent-type algorithms that will converge to a local minimum that is
not necessarily a global minimum. In the examples considered, the algorithms determined
effective experimental designs, often with much better performance than ‘hand-crafted’
designs based on expert judgement.
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Appendix A. Numerical Linear Algebra

Appendix A.1. Sherman-Morrison Formula

See [23]. For n × n full rank matrix A and n-vectors u and v(
A + uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

If ũ = A−1u and ṽ = A−⊤v, then(
A + uv⊤

)−1
= A−1 − ũṽ⊤

1 + v⊤ũ
= A−1 − ũṽ⊤

1 + ṽ⊤u
.

Appendix A.2. Determinant of a Rank One Update of a Matrix

See, e.g., [42,43]. For A and square matrix and n-vectors u and v

|A + uv⊤| = |A|(1 + v⊤A−1u).

Writing
A + uv⊤ = A(I + (A−1u)v⊤),

it is sufficient to consider the case A = I: |I + uv⊤| = 1 + v⊤u. From the matrix equation[
I 0

v⊤ 1

][
I + uv⊤ u

0 1

][
I 0

−v⊤ 1

]
=

[
I u
0 1 + v⊤u

]
it is seen that the determinant of the matrix on the right-hand side is equal to the determi-
nant of the matrix in the middle of the left-hand side, establishing the result for the case
A = I.

Appendix B. Legendre Polynomials

See, e.g., [44]. Note: in this section, the parameter vector a = (a0, . . . , an)⊤ is an n + 1
vector indices starting from 0, not 1.

The D-optimal points for calibration experiments involving a polynomial response
function of degree n are defined in terms of solutions of the polynomial equation

F(x) = 0, F(x) = (1 − x2)L̇n−1(x) = 0,

where L̇n−1(x) is the derivative of Legendre polynomial of degree n − 1. Given an estimate
x of a solution, an updated solution is given by Newton’s method [17,45] according to

x := x − F(x)/Ḟ(x), Ḟ(x) = −2xL̇n−1 + (1 − x2)L̈n−1(x)

where L̈ denotes the second derivative of L(x) with respect to x. Starting estimates for the
n + 1 solutions are given by the arcsine points:

xi = cos
(

π
n − i

n

)
, i = 0, 1, . . . , n.

Legendre polynomials Lj(x) are orthogonal polynomial basis functions defined on the
interval [−1, 1] and can be evaluated using the three-term recurrence relationship, starting
with L0(x) = 1, L1(x) = x, and for j ≥ 2,

jLj(x) = (2j − 1)xLj−1(x)− (j − 1)Lj−1(x).
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If f (x) is a degree n polynomial given by a sum of Legendre polynomial basis functions

f (x, a) =
n

∑
j=0

ajLj(x),

then ḟ (x), the derivative of f with respect to x, is a degree n − 1 polynomial and can be
written as

ḟ (x, ȧ) =
n−1

∑
j=0

ȧjLj(x),

where ȧ = Ȧ(a1, . . . , an)⊤ is defined in terms of the latter n elements of the n + 1 vector
a = (a0, a1, . . . , an)⊤, and Ȧ is the n × n matrix constructed from diagonals formed from
the sequence 1, 3, 5, . . . , 2n − 1. The matrix Ȧ for the case n = 10 is

Ȧ =



1 0 1 0 1 0 1 0 1 0
0 3 0 3 0 3 0 3 0 3
0 0 5 0 5 0 5 0 5 0
0 0 0 7 0 7 0 7 0 7
0 0 0 0 9 0 9 0 9 0
0 0 0 0 0 11 0 11 0 11
0 0 0 0 0 0 13 0 13 0
0 0 0 0 0 0 0 15 0 15
0 0 0 0 0 0 0 0 17 0
0 0 0 0 0 0 0 0 0 19


Similarly, the second derivative f̈ (x) can be written as

f̈ (x, ä) =
n−2

∑
j=0

äjLj(x),

where ä = Ä(a2, . . . , an)⊤ is defined in terms of the latter n−1 elements of a = (a0, a1, . . . , an)⊤,
and Ä is the (n − 1)× (n − 1) matrix with

Ä = Ȧ(1 : n − 1, 1 : n − 1)Ȧ(2 : n, 2 : n).
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