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Abstract: Image understanding plays a pivotal role in various computer vision tasks, such as ex-
traction of essential features from images, object detection, and segmentation. At a higher level
of granularity, both semantic and instance segmentation are necessary for fully grasping a scene.
In recent times, the concept of panoptic segmentation has emerged as a field of study that unifies
semantic and instance segmentation. This article sheds light on the pivotal role of panoptic seg-
mentation as a visualization tool for understanding scene components, including object detection,
categorization, and precise localization of scene elements. Advancements in achieving panoptic
segmentation and suggested improvements to the predicted outputs through a top-down approach
are discussed. Furthermore, datasets relevant to both scene recognition and panoptic segmenta-
tion are explored to facilitate a comparative analysis. Finally, the article outlines certain promis-
ing directions in image recognition and analysis by underlining the ongoing evolution in image
understanding methodologies.

Keywords: convolutional neural networks; image segmentation; computer vision; instance seg-
mentation; semantic segmentation; panoptic segmentation; scene recognition; artificial intelligence;
machine learning; deep learning; pre-trained networks

1. Introduction

Perception is an important aspect of computer vision, focused on understanding
the complexities of images, including object recognition, scene interpretation from video
surveillance devices, analyzing pedestrian movements on roads, and medical image analy-
sis, among others. These devices generate a very high volume of data. Consequently, the
fields of machine learning and big data analytics have assumed a pivotal role in extracting
and comprehending patterns within these data, with the aim of developing intelligent algo-
rithms capable of executing tasks such as object detection, segmentation, and classification.

These tasks are central to computer vision, for example, the study and implementation
of techniques that include feature selection/extraction, object detection and segmentation,
object labeling, to performing segmentation of image scenes from videos in real time [1].
The primary objective of Image Understanding (IU) is to accomplish three key tasks:
(i) object identification (referred to as instance segmentation), (ii) object labeling, and
(iii) providing a segmentation mask (bounding box) around each detected object. Image
labeling represents another intriguing facet [2], facilitating the automatic assignment of
labels to objects and thereby imparting significance to each object within a frame.

Semantic segmentation refers to pixel-to-pixel segmentation and relies on Fully Con-
volutional Networks (FCNs). In this technique, the final conventional fully connected CNN
layer is substituted with a deconvolutional layer to categorize each individual pixel. For
example, given a coarse image structure, FCNs excel in fine tuning the segmentation aspect
by leveraging deconvolutional and pooling layers. The segmentation performance can be
enhanced even further by adapting the FCNs to suit specific requirements. For instance, in
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the case of U-Net [3], the approach involves augmenting the deconvolutional layers and
efficiently mapping the data to higher resolutions. Conversely, the SegNet network [4]
employs an encoder–decoder model to refine deconvolutional layers, by extracting indices
from the max-pool layers.

However, it is worth noting that many networks share architectures that are compara-
ble on the encoder side but mainly differ in their decoder configurations. Most recently, a
probabilistic graphical model known as the fully connected random field (CRF) has been
adopted by Deep Lab [5] as a substitution for the deconvolutional layers. To address the
issue of information loss, the literature has explored numerous semantic segmentation
approaches. These methods concentrate on feature extraction, employing either multi-scale
feature aggregation [6] or end-to-end structured prediction [7].

Instance segmentation on the other hand, segments objects and identifies the object
boundaries irrespective of whether the objects belong to the same category. In situations
where multiple objects fall in a similar category, instance segmentation promises to dif-
ferentiate each object from the other by drawing object boundaries whereas semantic
segmentation relies on segmenting the collective information from these objects. Two
important strategies, namely, a segment-first and instance-first strategy, have been pro-
posed [8]. The segment-first strategy segments each object by classification results whereas
the instance-first strategy identifies the ROIs for every instance and performs classification
and segmentation task in parallel to each ROI. By incorporating this idea, it is inferred that
Mask-RCNN outperforms other models on the COCO based instance segmentation [9].

Authors in [10] hold the view that, although semantic and instance segmentation
may seem similar at first glance, the metrics and datasets associated with these two visual
recognition tasks exhibit substantial differences. These differences are akin to the difference
between “stuff” and “things”. To gain a better understanding between semantic and
instance segmentation models, Kirillov et al. [10] emphasized the need of distinguishing
between “stuff” and “things”, a crucial aspect in various visual recognition tasks, “stuff”
referring to countable objects within an image (instance segmentation), including entities
like people, animals, trucks, sky, road, and grass, while “things” (semantic segmentation),
account for identification of regions with similar textures. We see a strong dichotomy
between two concepts and the question of attaining a unified vision system that can
perform segmentation that is coherent to meet the needs of real-world applications is still
an important concern.

Panoptic segmentation (PS) is the first framework proposed in 2019 by [10] that
unifies both semantic and instance segmentation. This unified segmentation has immense
potential to open doors for researchers to come up with novel algorithmic solutions. When
performing image segmentation, each pixel is provided with a semantic label along with an
instance id. This unified approach, to combine scene-level and subject-level understanding,
is driving the design and development of panoptic segmentation models. Industry leaders
such as Apple, Facebook, Tesla, and Uber have been in the forefront to come up with
pioneering vision systems that could provide a comprehensive view of the broader panoptic
segmentation landscape.

In a similar vein, this article aims to present an overview of various PS methods for
scene classification and object detection and the potential challenges that revolve around
it till date. The evaluation metrics applied in this context and some of the prominent PS
models such as the Panoptic Feature Pyramid Network (FPN), Attention-guided unified
network for PS, Seamless scene segmentation, Panoptic Deep lab, Unified PS network, and
Efficient PS are presented. Finally, the paper outlines certain key future directions in deep
learning-based segmentation research.

Main Contributions of the Paper

Considering the evolution of the deep learning-based image segmentation and its
anticipated future development, this article is organized as follows:
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i. An overview of the research advancements in deep learning-based image segmenta-
tion with focus on panoptic segmentation (PS) is presented.

ii. The article draws attention to several interesting works towards PS that include
Panoptic Feature Pyramid Network, Attention-guided network for PS, Seamless
Scene Segmentation, Panoptic Deep lab, Unified panoptic segmentation network,
and Efficient panoptic segmentation. A top-down approach to PS is discussed and
suggested improvements in predicted outputs are highlighted.

iii. Research efforts by leading companies supporting the bigger picture of developing
computer vision models for PS are presented.

iv. Performance metrics of both scene recognition and panoptic segmentation models are
discussed. Several comparisons have been performed to measure the performance
using different datasets under different metrics and highlight the potential benefits
and challenges.

From this point on, the paper is organized as follows: after Section 1 (the current
section), Section 2 discusses the literature review. Section 3 presents the concept of PS along
with the metrics and discusses some interesting models used to date. It also presents a
top-down view of PS and discusses certain challenges and further improvements. Section 4
presents the research efforts to date by companies such as Apple, Facebook, and Tesla in
developing computer vision models using PS. For example, the use of on-device PS to
enhance the camera vision that use transformers, the subject lifting network architectures
by Apple, and Detectron2 by Facebook AI research, and self-driving PS support vehicles by
Tesla are presented. Section 5 introduces the publicly available datasets and benchmarks
to both scene recognition and PS models. Finally, Section 6 concludes the paper with
future directions.

2. Literature Review

Deep learning represents a unique category within the broader domain of artificial
neural networks (ANNs) that has gained immense popularity in the areas of image process-
ing, computer vison, speech processing to name a few. It involves hundreds and thousands
of neurons with millions and billions of connections and requires lots of computational
power. With this, the emergence of GPUs as computational devices came into forefront,
and it turns out that GPUs are great for neural networks (NNs) as they are parallel systems.
The parallel nature of NNs allows us to exploit GPUs to speed up the computations on NN
models. Convolutional neural networks (CNNs) are examples of deep learning models and
serve as powerful tools for image analysis, video analysis, and speech recognition. Deep
convolutional neural networks (DCNNs) have gained immense popularity in the research
community to understand and study the different approaches to scene recognition. Based
on the features extracted from an image, the authors in [11] classified scene recognition
algorithms into broadly six different categories: (i) global attribute descriptors, (ii) patch
feature encoding, (iii) spatial layout pattern learning, (iv) discriminative region detection,
(v) object correlation analysis, and (vi) hybrid deep models.

Visual scene understanding is another interesting aspect of computer vision [12]
and many research efforts have contributed to the current state of the art in this area.
In general, scene understanding refers to the understanding of the intrinsic details of
a scene at a very detailed level of granularity (for example, single scene category) and
hence providing a global description of the image [13,14]. Object detection includes the
localization of objects using bounding boxes [15–17], and focuses on identifying the object
instances and categories within a scene/image. There is a strong dichotomy between
semantic and instance segmentation. The semantic segmentation emphasizes a much finer
grained representation and prediction of the semantic category that each pixel belongs
to [5,18], whereas with instance based semantic segmentation it is arduous to identify
pixels that comprises of each object instance thereby combining the integration of semantic
segmentation with fine grained object detection [19].
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The ongoing revolution in computer vision is driven by the success of deep learn-
ing [20] and algorithms pertaining to the understanding of visual scenes. It is important to
remember that training of these deep learning models necessitates a substantial amount
of training data and computational resources especially in the case of medical images and
self-driving vehicles. Consider, for example, the case of autonomous self-driving cars,
where decision making is critical to visual analysis and requires a reliable, real-time scene
understanding [21]. Datasets such as Microsoft COCO [9], ImageNet [22], YouTube-8M [23],
CamVid [24], KITTI vision benchmark suite [25], CityScapes [26], Leuven [27], are available
on large scale suitable for the training of deep models for a specific task. These datasets
support the use of both semantic and instance segmentation and each of these segmen-
tation methods perform their own task and contains the information needed to perform
panoptic segmentation.

3. Panoptic Segmentation

Panoptic segmentation (PS) is a computer vision task that combines semantic and
instance segmentation to provide a distinction between “stuff” and “things”. In general, it
is a task for labeling each pixel in an image with a class category and a unique instance.
It performs a good visualization of the scene components and provides a technique of
performing object detection, categorization, and localization of scene components. This
in turn may offer support to address the challenges of today’s computer vision task such
as understanding medical images, autonomous self-driving cars, video surveillance, and
several others.

Alexander Kirillov et al. [10] introduced the initial framework for PS that presents the
task format for PS wherein every pixel in an image is mapped to a pair that consists of a
semantic class and an instance ID. Semantic labeling between stuff and things is performed
by first deriving the subsets between these and pixels that belong to a single instance will
have the same semantic class of pixel and the instance ID. The relationship of PS to semantic
segmentation (SS) is the strict generalization as both PS and SS necessitates assigning each
pixel to a semantic label. In situations where the ground truth fails to define instances
or when all the classes are considered as stuff, the task formats become similar, although
their metrics may vary. However, the things–classes may encompass multiple instances per
image, thereby distinguishing PS from SS. While PS allows the assignment of a semantic
label and an instance ID to each pixel without allowing overlapping segments, the IS task
segments every instance in an image and permits the segmentation overlap.

3.1. Metrics for Panoptic Segmentation

PS is a joint segmentation task between SS and IS (“stuff” and “things”) and earlier
works focused on evaluating their performance metrics independently [6,28–30] (seen in
Figure 1). The pursuit of a cohesive metric for unifying these distinct tasks introduces
several algorithmic complexities. In their work [10], the authors introduced a trio of metrics:
panoptic quality (PQ), segmentation quality (SQ) and recognition quality (RQ).
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Figure 1. PS demonstrating the combined instance and semantic segmentation results. (Input image
to the left is from Google search and the output to the right is extracted using Detectron2 [31]).

PQ measures the predicted PS quality relative to some ground truth. This involves
tasks such as segment matching between the predicted segments and the ground truth.
SQ is computed as the intersection over union (IoU) score (shown in equation below). RQ
represents quality estimation in identification settings [32] and is the familiar F1 score [33].
It is assumed that both predicted and ground truth segments match only if the IoU exceeds
a value of 0.5.

IoU =
|Target ∩ Predicted|
|Target ∪ Predicted|

where, for a set A, |A| denotes its size.
Panoptic quality (PQ): PQ is calculated independently for each class and an average over

all the classes is obtained. The unique matching of each class divides the predicted and the
ground truth segments into three categories namely: true-positives (TPs), false-positives (FPs),
and false-negatives (FNs). These categories represent matched and unmatched predicted
segments, and unmatched ground truth segments, respectively. PQ is calculated as

PQ =
∑(p,g)∈TP IoU(p, g)

| TP | + 1
2 | FP | + 1

2 | FN |

where 1
|TP| ∑(p,g)∈TP IoU(p, g), is the average IoU of matched segments, and to penalize

the segments that have no matches,
(

1
2 |FP|+ 1

2 |FN|
)

is included in the denominator. It is
important to know that regardless of their area, all the segments receive equal consideration.
Also, on multiplying and dividing PQ proportional to the TP set size, PQ can be expressed
as a product of SQ and RQ (SQ × RQ) as follows:

PQ =
∑(p,g)∈TP IoU(p, g)

| TP | × | TP |
| TP | + 1

2 | FP | + 1
2 | FN |
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The first factor of the product is referred to as the segmented quality (SQ) whereas
the second is referred to as the recognition quality (RQ), i.e., PQ = SQ × RQ. However, SQ
and RQ are not independent as SQ is measured only over the segments matched. It is also
interesting to consider the patches with void regions and group of instances [9].

3.2. Significant Advances in Panoptic Segmentation (PS) Achieved to Date

Research in PS is focused on evaluating the segmentation performance between “stuff”
and “things” separately. To date, this field has witnessed several advancements, mainly by
defining a unified metric that integrates both semantic and instance segmentation methods.
Such unified metrics may help in achieving a PQ, improve the segmentation quality and
recognition accuracy, thereby accurately differentiating the object instances within complex
scenes, and semantically extracting the semantic context and relationships between the
different objects and regions, therefore, enhancing the precision of segmented outputs.
Several of the noteworthy achievements, include Panoptic Feature Pyramid Network
(FPN) [34], Attention-guided unified network for PS [35], Seamless scene segmentation [36],
Panoptic Deep lab [5], Unified PS network [7], and Efficient PS [37] are discussed in the
following sub-sections.

3.2.1. Panoptic Feature Pyramid Network

The Feature Pyramid Network (FPN) aims to have a single network perform a unified
prediction at an architectural level that combines the instance (“things”) and semantic
(“stuff”) segmentation task by performing a shared computation. One of the most used
instance segmentation methods named Mask R-CNN is combined with a branch of semantic
segmentation using this shared FPN for improving the object detection and segmentation
task. This further addresses the challenges of extracting relevant features at different scales
by creating a feature pyramid that aids in extracting the features from distinct layers of a
deep CNN.

As seen in Figure 2a, multi-scale features are extracted using the backbone model
of FPN, used for object detection. In Figure 2b, to carry out instance segmentation, a
region-based branch is used like the concept used in Mask R-CNN [38]. Subsequently,
a lightweight dense pixel prediction branch is added in parallel, utilizing similar FPN
features to perform semantic segmentation. Panoptic FPN is seen as a version of unifying
the Mask R-CNN and FPN to ensure robust and precise segmentation and detection tasks.
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3.2.2. Attention-Guided Unified Network for Panoptic Segmentation

An attention-guided unified network is used for segmenting the foreground objects
(instance level) and background objects (semantic level). Some works [35] emphasize
extracting the cues (complimentary) from the foreground objects to achieve background
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understanding. This network serves as an integrated framework with two branches,
to segment the foreground and background simultaneously. A region proposal net-
work (RPN) is added along with the foreground segmentation mask to the background
branch to provide object-level and pixel level attentions. It is inferred that the network
is evaluated on datasets such as MS-COCO, with PQ of 46.5%, and Cityscapes, with PQ
of 59.0%, and achieves a uniform accuracy gain for both foreground and background
segmentation, respectively.

The architecture seen in Figure 3 adopts panoptic FPN as a backbone and shares the
relevant features in parallel with the three branches, namely, the foreground, background,
and an RPN. It can be further viewed into two stages, namely, the training stage (where the
network is fine-tuned in an end-to-end fashion) and inference stage (where panoptic results
extracted by “things” and “stuff”) stage. The PAM (proposal attention module) and the
MAM (mask attention module) are the two models used for defining the complementary
relation among the two branches.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 27 
 

3.2.2. Attention-Guided Unified Network for Panoptic Segmentation 
An attention-guided unified network is used for segmenting the foreground objects 

(instance level) and background objects (semantic level). Some works [35] emphasize 
extracting the cues (complimentary) from the foreground objects to achieve background 
understanding. This network serves as an integrated framework with two branches, to 
segment the foreground and background simultaneously. A region proposal network 
(RPN) is added along with the foreground segmentation mask to the background branch to 
provide object-level and pixel level attentions. It is inferred that the network is evaluated on 
datasets such as MS-COCO, with PQ of 46.5%, and Cityscapes, with PQ of 59.0%, and 
achieves a uniform accuracy gain for both foreground and background segmentation, 
respectively. 

The architecture seen in Figure 3 adopts panoptic FPN as a backbone and shares the 
relevant features in parallel with the three branches, namely, the foreground, background, 
and an RPN. It can be further viewed into two stages, namely, the training stage (where the 
network is fine-tuned in an end-to-end fashion) and inference stage (where panoptic results 
extracted by “things” and “stuff”) stage. The PAM (proposal attention module) and the 
MAM (mask attention module) are the two models used for defining the complementary 
relation among the two branches. 

 
Figure 3. Attention-guided unified network architecture [35]. 

3.2.3. Panoptic DeepLab 
Panoptic DeepLab [5] aims to address the semantic segmentation task based on deep 

learning by focusing on three important areas: (i) dense prediction tasks (using atrous 
convolution), (ii) atrous spatial pyramid pooling, and (iii) the localization of object 
boundaries. Atrous convolution is used as a convolution with up-sampled filters to perform 
dense prediction tasks and allows to explicitly control the resolution of different features 
computed with deep NNs. Atrous spatial pyramid pooling on the other hand, is used to 
segment the objects at multiple scales. An incoming convolutional feature layer with filters 
at different scales and varied sampling rates, are then used to generate a more effective field 
of view thereby capturing objects and the image context at multiple scales. To attain accurate 
localization of object boundaries, deep convolutional NN methods and probabilistic 
graphical models are then combined. An invariance is achieved with the combination of 
down sampling and max pooling but has an adverse effect on the localization accuracy. To 
overcome this, the responses at the last deep convolutional NN layer are combined with a 
fully connected Conditional Random Field (CRF). This way, the localization performance is 
improved both qualitatively and quantitatively. 

Figure 3. Attention-guided unified network architecture [35].

3.2.3. Panoptic DeepLab

Panoptic DeepLab [5] aims to address the semantic segmentation task based on deep
learning by focusing on three important areas: (i) dense prediction tasks (using atrous
convolution), (ii) atrous spatial pyramid pooling, and (iii) the localization of object bound-
aries. Atrous convolution is used as a convolution with up-sampled filters to perform
dense prediction tasks and allows to explicitly control the resolution of different features
computed with deep NNs. Atrous spatial pyramid pooling on the other hand, is used to
segment the objects at multiple scales. An incoming convolutional feature layer with filters
at different scales and varied sampling rates, are then used to generate a more effective
field of view thereby capturing objects and the image context at multiple scales. To attain
accurate localization of object boundaries, deep convolutional NN methods and probabilis-
tic graphical models are then combined. An invariance is achieved with the combination of
down sampling and max pooling but has an adverse effect on the localization accuracy. To
overcome this, the responses at the last deep convolutional NN layer are combined with a
fully connected Conditional Random Field (CRF). This way, the localization performance is
improved both qualitatively and quantitatively.

Figure 4 illustrates the panoptic Deep Lab model that uses a deep convolutional
NN (VGG-16 or a ResNet) for the semantic segmentation task by replacing all the fully
connected layers by the convolutional layers and increasing the feature resolution using
the atrous convolution and reducing the degree of signal down sampling from 32 pixels to
8 pixels. A bilinear interpolation is then used to up-sample the feature maps to the original
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resolution of image. And to refine the segmentation result, a fully connected CRF is applied
to capture the object boundaries.
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3.2.4. Seamless Scene Segmentation

To cater for seamless scene segmentation, the architecture aims to use a convolutional
NN that seamlessly integrates the multi-scale features generated by FPN with contextual
information like a lightweight Deep Lab alike module. It overcomes the limitations of
evaluating a non-instance category by learning a PQ metric only for the “things” classes
and considers the “stuff” portion of an image as a unified instance. It is inferred that the
predictions for “stuff” classes with the ground truth should not have an IoU > 0.5. With
these parameters into consideration, the network is evaluated, and it seems to generate
SOTA results on Cityscapes, Indian driving, and Mapillary Vistas datasets. It can be
inferred that the novel CNN architecture proposed in [36], can generate a seamless scene
segmentation output by jointly operating both semantic and instance segmented tasks on
the top of a single network backbone.

3.2.5. Unified Panoptic Segmentation Network

The unified panoptic segmentation network is used to address panoptic segmentation
tasks by designing a deformable convolution-based head that includes a semantic segmen-
tation head with Mask R-CNN style instance segmentation head placed on the top of a sole
backbone residual network. To resolve the semantic and instance segmentation, it expands
the logic from the two heads and tries to come up with a representation to address the
unknown class. The network aims to address the challenges posed by the variations in
instances and allows backpropagation to the bottom modules in an end-to-end fashion.
The experiment was carried out on a COCO and Cityscapes dataset and its performance is
seen to draw faster inferences.

Figure 5 illustrates the architecture of a Unified Panoptic Segmentation Network that
contains a backbone network with shared convolutional feature extraction with multiple
heads stacked atop the network. Each head is seen as a sub-network that is designed for a
specific task and leverages the features from the backbone. The Mask R-CNN serves as the
backbone for feature extraction, employing a deep residual network (Res Net) with FPN.
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3.2.6. Efficient Panoptic Segmentation

Comprehending a scene where an agent performs autonomous operation and whose
performance is essential for ensuring its effective operation. It is important to understand
and recognize the instances with general scene semantics to address the task of panoptic
segmentation. An efficient panoptic segmentation architecture was designed to comprise a
shared backbone and encode rich features at multiple scales. The paper [37] introduces the
KITTI panoptic segmentation dataset [25] containing annotations for the KITTI challenge
benchmark along with three other datasets, Mapillary Vistas, Cityscapes, and Indian
Driving. A semantic head is used to aggregate fine, contextual features and an instance
head that uses Mask R-CNN to achieve a seamless panoptic segmentation output.

Figure 6 illustrates the architecture of Efficient panoptic segmentation for PS. The
architecture makes use of semantic prediction that contains a class, bounding-box, masks
predictions. All these are then combined as input to the panoptic fusion step to get the
resultant PS output.
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3.3. Top-Down Approach to Panoptic Segmentation

The PS is classified into top-down, bottom-up, single-path approaches, and other
approaches [39]. But many deep learning methods follow the top-down approach, and
this section elaborates the understanding of this approach. It is a simple approach of
object detection and segmentation and is categorized into two stages namely one-stage and
two-stage. In a one-stage approach, a one-stage detector is used to remove the proposals
generation and make use of an anchor-free approach to perform object detection. The
two-stage approach on the other hand, performs the proposals generation as its first
step and then post-processing is done in the next step to achieve segmentation. Instance
segmentation uses a Mask R-CNN [38] in this two-stage approach as seen in Figure 7.
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The instance segmentation is built on a faster R-CNN, and it can be seen from Figure 7
that the ROI Pooling is substituted by ROI Align and minimizes the quantization errors.
The technique is simple and straightforward, and based on the results of object detection by
fast R-CNN, the Mask R-CNN utilizes a mask using smaller fully connected CNN to obtain
the segmentation mask on a pixel-by-pixel basis along with the bounding boxes, output
class, and mask logits. The issue lies not only in addressing conflicts between different
branches such as the inconsistent class label predictions in both semantic and instance
segmentation, but also within branches, addressing issues of overlapping and occlusion.

A single network is used by PS to combine the predictions of semantic and instance
segmentation branches that are trained together using heuristics called the JSIS-Net (Joint
semantic and instance segmentation) network [40]. This network architecture (seen in
Figure 8) uses a feature extractor (ResNet-50 in this case) shared between the semantic
and instance segmentation branch. Mask R-CNN is used by the instance segmentation to
generate pixel clusters that are combined to obtain a normalized mask. However, a pyramid
pooling module is used by the semantic segmentation branch to extract feature maps and to
reshape the size prediction of the image input. The semantic branch’s predicted ‘thing’ class
is now substituted with the ‘thing’ class predicted from the instance branch. Subsequently,
the network merges the predicted ‘stuff’ class from the semantic branch and the predicted
‘thing’ class from the instance branch to perform PS. This network architecture successfully
resolves the differences between the semantic and instance segmentation branches via a
post-processing module and overlooks the conflicts of intra-branch which is overlapping
and occlusion.
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3.3.1. Improvement in PS on Predicted Output Using Top-Down Approach

The conflicts that arise among the outputs of both semantic and instance segmentation
branches should be studied comprehensively. It is seen that the top-down approach needs
a refinement step to harmonize the results from the two branches seamlessly. But the
conflicts are mainly noticed during the post-processing step as discussed in the previous
section. The internal disagreements within the instance branches stem from overlapping
and occlusion.
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i. Overlapping and Occlusion

As already stated, in PS each pixel is labeled by the category to which it is assigned,
and then segmentation is performed on each object instance. This is a challenging task as
the current approaches make use of two independent models which do not share features
and therefore the pipeline implementation is labor intensive. Since a heuristic approach is
applied to merge the results, it is difficult to determine the extent of overlapping between
object instances in the absence of sufficient contextual information at the time of merging.
As instance segmentation is basically object detection, an overlap can be seen between the
different instance masks being predicted. However, in the case of PS, a class label and an
instance id are assigned to prevent this overlap. To avoid overlapping, non-maximum
suppression (NMS) is utilized that primarily sorts the predicted segments with respect to
its confidence scores. The bounding box with the highest scores is chosen and added to the
list of outputs and is subsequently extracted from the candidate list. The IoU among all
the candidate boxes is computed by the network and boxes whose IoU is greater than the
threshold is discarded.

While resolving the overlapping issue, it is also important to view the instances sorted
in descending fashion using detection scores and then placing the objects on some material
canvas such that higher-score objects are placed higher. This approach can fail because
of occlusion. To address this, a spatial sorting module named Occlusion Aware Network
(OANet) [41] for PS is proposed at the post-processing step that can predict the ‘stuff’ and
instance segmentation in a single network. This network maps the output of instance
segmentation to a tensor; a large convolution is then applied to get a ranking score map.
The ranking score map is optimized by using a cross-entropy loss and then OANet obtains
the ranking score of each object instance and then executes spatial sorting. This way, the
occlusion problem between the predicted instances is resolved.

Some improvements on PS include incorporating the information exchange module,
incorporating certain methods based on attention, and improvements on the loss function
to name a few, as seen in the literature.

4. Companies Developing Computer Vision Models for Panoptic Segmentation

Companies such as Apple, Facebook, and Tesla, have been in the forefront to come up
with such computer vision system models that provide a comprehensive view of a bigger
picture of panoptic segmentation. The research efforts by these companies up to this date
include the following.

4.1. Apple

Understanding a range of scenes from an input image at a pixel-level (image segmen-
tation) is central to any vision task and requires understanding of different features and
segmenting them. Images captured from iPhones or iPads provide features to power the
photographic styles that allow area adjustments and are guided by segmentation masks.
The built-in features contain different image sharpening algorithms to render images of
better quality and employ scene-level prediction of elements such as the roads, sky, build-
ings, etc., along with subject level prediction, for example, each person’s body. As it is
known, semantic segmentation provides a categorical label for each pixel, but lacks the
ability to differentiate between various subject-level elements [42]. To this end, panoptic
segmentation (PS) attempts to unify the scene and subject-level predictions, aiming to
expand a range of predicted elements for a comprehensively parsed scene to larger number
of categories.

i. On-Device Panoptic Segmentation model

In 2021, the machine learning research community at Apple was successful in design-
ing an on-device PS model for enhancing their camera vision system on devices using
transformers [42]. The idea was to divide each image into different segmentation masks,
with a special focus on deriving the instance-aware segmentation masks (especially for
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the persons category) presented as additional image channels. A neural architecture for
PS was designed using transformers to be compatible to both the in-camera pipeline and
offers the ability of achieving an efficient on-device execution with no impact on its battery
life. To this end, a network was constructed that could run on the Apple Neural Engine
(ANE). This ANE is an optimized co-processor designed for the energy-efficient execution
of deep neural networks on Apple devices. For the execution of an intricate camera pipeline,
containing multiple latency-sensitive workloads running concurrently to maximize the
utilization of all available co-processors, they employed a single ANE segment. To achieve
a high-resolution output image, a detection transformer (DETR) architecture was utilized
that does not require post-processing and non-maximum suppression (NMS) for eliminat-
ing the anchor-based coordinate decoding and duplicate predictions. By doing so, DETR
demonstrated high efficiency in assessing the regions of interest (ROIs) and utilized a
two-stage approach. In the first stage, thousands of anchor-based ROIs are evaluated using
Mask-RCNN. Subsequently, the top anchor-based proposals amounting to hundreds are
forwarded to the next stage. The ROIs are constrained by an order of magnitude, typically
set at 100 in the original DETR model and yet achieve a minimal degradation in detection
performance for the target distribution of images of less than five people in the scene. The
extension of DETR to the PS model introduces an additional convolutional decoder module
batched along a sequence of dimension N, as seen in Figure 9.
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Figure 9. The DETR Network architecture (reproduced from [42]).

In the forward pass, each ROI generates a distinct segmentation mask. Its input
comprises a unique set of feature maps generated from the transformer module, together
with a shared set of feature maps generated from the convolutional encoder module. One of
the performance bottlenecks in DETR is when many ROIs are processed together and when
the output resolution is set to a relatively low value, causing the batched convolutional
decoder module to become a performance bottleneck. The output resolution is set to
as high as 384 × 512 to achieve a higher quality segmentation mask. To overcome this
bottleneck of DETR at higher resolutions, and to scale the large number of object queries,
the Hyper-DETR architecture shown in Figure 10 was proposed.
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The Hyper-DETR model integrates PS into DETR framework in an efficient way.
Hyper-networks are considered as one of the meta-learning approaches and the tech-
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nique works by decoupling the convolutional decoder–compute path from the transformer
compute path. The outputs from the transformer module are then decoded as weight
parameters of shape 16 × N and fed to the dynamic convolution layer that has a kernel size
of 1 × 1. A higher-resolution feature map is generated by the convolutional 16 × 384 × 512
decoder, and finally the dynamic convolution layer linearly combines the two tensors
into N unique 384 × 512 masks as the output of Hyper-DETR. The advantages of using
Hyper-DETR are twofold. First, batching is not required to run a convolutional decoder,
and this separates the intricacy of higher resolution mask synthesis from the length of
ROI sequence. Second, categories of scene-level, for example, sky, are managed using the
convolutional path, by skipping the transformer module execution in situations where
subject-level attributes are not being sought. The primary limitation is the multitude of
output channels that are not located at statically determined indexes. This way the Hyper-
DETR PS architecture achieves a magnitude of higher output resolutions with a higher
number of region proposals, thereby enabling the understanding of camera at pixel level
and supporting a range of features without impacting the battery life.

ii. Fast Class-Agnostic salient-object segmentation

In 2023, Apple announced the launching of live stickers that support devices with
subject lifting features [43]. For example, in Photo Apps, the subject lifting model executes
only with user interactions such as touch and hold on a photo subject. To facilitate faster
on-device segmentation and seamless integration of services, the model should exhibit an
extremely low latency. Here, the image source is resized to 512 × 512 and subsequently
fed as input to a convolutional encoder based on Efficient Net v2. The features extracted at
different scales are subsequently fused and up sampled through a convolutional decoder.
Two additional branches emerge from the terminal feature of the encoder: one branch that
predicts an affine channel-wise reweighting for the decoded channels like the dynamic
convolutional branch in [42]; and the other branch that predicts a scalar confidence score,
estimating the likelihood of a salient foreground in the scene and is used for gating the
segmentation output. The final output prediction is a single-channel alpha matte with the
input resolution of 5 × 1512 as seen in Figure 11. The run-time on an iPhone 14 device is
less than 10 milliseconds and on the older devices, the network runs on the GPU.
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4.2. Facebook

Facebook AI Research (FAIR) released Detectron2 as part of their next-generation
library that offers state-of-the-art models for computer vision tasks [31]. It is an open-source
framework for object detection and segmentation framework built on top of PyTorch and
provides a unified API for performing a variety of tasks such as object detection, instance
segmentation, and panoptic segmentation. It provides high-quality implementations of
the state-of-the-art algorithms like Mask-RCNN, Densepose estimation (see Figure 12,
where the input image to the left is from Google search and the output result to the right
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is extracted using Detectron2 [31]), RetinaNet, and rotated bounding boxes, to name a
few, and is designed to be flexible, easy to use, and supports several research projects that
have focus on enabling rapid research as it trains faster. It is considered as the successor to
Detectron and the Mask-RCNN benchmark. Apart from this, it includes a model zoo with
models for object detection, instance segmentation and many others.
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Detectron2 uses a two-stage approach to object detection: the first makes use of the
region proposal network (RPN) to generate a set of candidate regions. In the second stage,
it uses a Mask R-CNN model to classify and segment the candidate regions. The RPN is
a CNN that takes an input image and generates a set of candidate regions and is trained
to predict a score for each identified object/region, indicating the likelihood of that object
belonging to a certain category, and predicts a bounding box for each category (as seen in
Figure 1 where the input image to the left is from Google search and the output to the right
is extracted using Detectron2 [31]). The repository for Detectron2 has open-source model
weights for algorithms such as instance segmentation, mask-RCNN, panoptic segmentation
(PS), and dense pose estimation.

For PS, Detectron2 has been trained on COCO (common object in context) dataset
that has been widely used particularly for visual detection tasks that constitute scene
understanding. For training PS, Detectron2 uses 118 K images for training and 5 K images
for testing, as the annotations in PS focus on “stuff” and “things” as discussed in earlier
sections. Using this COCO dataset, 80 classes for “things” such as a person, an umbrella, a
bicycle, etc., and 91 classes for “stuff” such as sky, road, pavements, etc., can be detected [44].

It is seen that PS can be performed only on a handful of datasets, like COCO, Cityscapes,
Indian driving, Mapillary vistas, and ADE20k, that have required annotations. Moving
forward, the next step in the process is to have an ecosystem where many different datasets
are annotated, and PS could then become capable of addressing a wide spectrum of use
cases. Training a PS on local machine without GPU support would hinder the performance
as there are large images to train. To address this, it is important that the computer vision
industry come up with some ways that are easier to implement, support custom datasets,
and provide ways to expand the different use cases across multiple domains.

4.3. Tesla

In a 30 November 2021 tweet on the PS project, Andrej Karpathy, Senior Director of AI
at Tesla, stated that “for autonomous driving vehicles, it is important be aware of the objects
around the vehicle and on what surface it is driving on to navigate on the streets safely”.
This means that Tesla is very close to developing such a vision system where self-driving
vehicles can identify both the roads and the relevant objects around it (see Figure 13).
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Tesla has been on the verge of developing full scale, completely autonomous self-
driving cars. To achieve this, it is necessary that the driverless vehicle consists of sensors for
collecting real-world data and by using this dataset collected, it trains the neural networks
that can support the auto-pilot features that enhance the capability of self-driving cars. It is
important to have the labeled data: images collected are tagged with information such as
people, vehicles, lanes, street signs, etc. If the images are labeled properly, then these images
can be fed to the neural net vision system to perform recognition. The auto-pilot team at
Tesla focuses on labeling the data. The latest project of Tesla’s panoptic segmentation (PS)
use would enhance the self-driving capabilities to next level and may attain level 4 and
level 5 automation capabilities [45].

The PS results generated from the perception system of self-driving cars can be used
by the planning and control modules to take informed driving decisions much better. For
example, the detailed object shape and silhouette information may help improve object
tracking, thereby resulting in a more accurate input for, steering, acceleration and many
more tasks.

5. Publicly Available Datasets and Benchmarks

With the availability of large publicly available datasets that contain thousands of
images with ground truth labels, it becomes easier for the models to learn from this huge
collection of data. Some of the publicly available datasets that support PS and scene
recognition are presented.

5.1. Datasets for Panoptic Segmentation

i. COCO 2020 Panoptic Segmentation

To push the SOTA in achieving a coherent scene segmentation, the COCO PS aims
at unifying the semantic and instance segmentation tasks to address the needs of the
current real-world computer vision systems (augmented reality, self-driving vehicles, etc.).
As discussed earlier, “things” refers to as countable objects (animals, people, tools, etc.)
and “stuff” refers to regions that belong to the same texture or material (sky, road, grass,
pavements, etc.). Earlier Microsoft COCO models evaluated these two tasks separately.
COCO PS works by assigning a semantic label and an instance id to each pixel in an image,
thereby achieving a dense coherent scene segmentation. This PS task has been a part of the
Joint COCO and LVIS recognition challenge workshop at ECCV 2020 [46]. PS utilizes all
the annotated 123 k COCO images that are divided into 172 classes, of which 80 belong to
the “thing” category and 91 to the “stuff” category. The panoptic quality (PQ) is used to
evaluate the performance of the model.
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ii. Cityscapes Panoptic–Semantic Labeling

Dataset of urban street scenes are captured by a vehicle in 50 German cities [47]. It is
widely used to evaluate semantic, instance, and panoptic segmentation tasks. It comprises
of around 5000 diverse frames with a high-quality pixel-level annotation. Together it
constitutes 30 classes of which 10 classes belong to “thing” category (person, car, animals,
etc.) and 20 classes belong to “stuff” category (sky, grass, and ground), respectively.

iii. BDD100K Panoptic Segmentation

BDD is a largest driving video dataset captured from various cities in the United
States and contains 100 K videos that have pixel wise annotations and around 10 tasks for
evaluating the exciting progress of image recognition algorithms in context to autonomous
driving [48]. Together it constitutes 40 classes of which 10 classes belong to “thing” category
(particularly non-stationary objects) and 30 classes belong to “stuff” category, respectively.
This dataset takes into account environmental factors such as the weather, geographic
diversity, and is useful for training models such these are less likely to be surprised
by new conditions.

iv. Mapillary Vistas v2.0

Mapillary Vistas v2.0 supports semantic, instance, and panoptic segmentation and
provides street-level images captured from six different continents. This dataset contains
around 25,000 high resolution images with 124 semantic object categories, among which
70 belong to “thing” category and 54 belong to the “stuff” category [49]. Additionally,
it captures various factors that include seasons, weather, time of the day, camera, and
viewpoint. Moreover, the annotations consist of polygons and not bitmaps.

It is seen that this dataset earlier contained 65 classes in totality, among which 28 were
from “stuff” classes and 37 from “thing” classes, respectively [50]. The dataset was further
divided into three sets namely, the training, validation, and testing sets, and moreover,
18,000, 2000, and 5000 images were referred to as the size belonging to each category.

v. Semantic KITTI Panoptic Segmentation

Semantic KITTI is a 3D point cloud PS dataset that contain street scenes captured with
LiDAR sensor or a stereo camera from Karlsruhe, Germany [51], with a 360 degrees field
view. It consists of 11 driving sequences with PS labels and these labels use six “thing”
classes and 16 “stuff” class categories.

vi. ScanNet

ScanNet is an RGB-D video dataset that contains 2.5 million views in 1513 scans,
annotated with 3D camera poses, surface reconstructions, and instance-level semantic
segmentations [52]. It uses 38 “thing” classes (items and furniture in rooms) and two “stuff”
classes (such as walls and floor). Though it is not yet completely developed it covers around
90% of all surfaces.

vii. nuScenes

The nuScenes dataset is a large-scale dataset inspired by KITTI dataset for autonomous
driving developed by Motional which was formerly known as nuTonomy [53]. It provides
1000 driving scenes from cities with dense traffic particularly from Singapore and Boston. To
show an interesting set of traffic situations, driving maneuvers, and unexpected incidents,
they extract scenes of 20 s length. For object detection and tracking, Motional provides
23 annotations for “thing” class and nine for the “stuff” classes and provides accurate 3D
bounding boxes at 2 Hz. In 2019, this dataset was first released with 1000 scenes extracted
from the sensor suite of an autonomous vehicle with one LiDAR, six cameras, five Radar,
GPS. Comparatively, nuScenes has seven times more object annotations than the KIITI
dataset. In the year 2020, Motional released nuScenes-lidarseg, where each lidar point from
a keyframe present in nuScenes is annotated with one of 32 possible semantic labels. This
way nuScenes-lidarseg provides 1.4 billion annotated points across 40,000-point clouds and
1000 scenes, i.e., 850 scenes for training and validation, and 150 scenes for testing.
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5.2. Comparison of Various Panoptic Segmentation Models

Table 1 illustrates the performance of various panoptic segmentation models using
different backbone networks found in the literature. On the Cityscapes dataset, the panoptic
FPN comparison is performed with DIN [54]. Panoptic FPN surpasses DIN with a PQ
margin of 4.3 points. DIN (Detect-to-Instance Network) is a substitute for region-based
instance segmentation, initiating with pixelwise SS and performs grouping to retrieve
instances [34]. Likewise, AUNet is compared with leading bottom-up methods (such as
DWT [55], SGN [8]) and Mask R-CNN achieving a persistent improvement in accuracy
with MS-COCO, and hence, serve as a new approach. The design of Panoptic DeepLab is
straightforward and requires only three loss functions while training as discussed in [5],
and incorporates minimal parameters to a contemporary semantic segmentation model.
Note: the results of each performance metric presented in Table 1 are the results extracted
from the respective models presented in [5,34–36].

Table 1. Performance of various PS models on different datasets found in the literature.

Models Dataset Back-Bone PQ PQST PQTH Comparison

Panoptic Feature Pyramid
Network (FPN) [34]

COCO

R50-FPN×2 39.2 27.9 46.6 On Cityscapes, the panoptic FPN
comparison is performed with DIN [54]

and it is inferred that panoptic FPN
surpasses DIN with a 4.3-point PQ margin.
Note: DIN is a substitute to region-based

instance segmentation. It commences with
pixelwise semantic segmentation and
subsequently performs grouping to

retrieve instances.

R50-FPN 39.0 28.7 45.9

R101-FPN 40.3 29.5 47.5

Cityscapes

R50-FPN×2 57.7 62.4 51.3

R50-FPN 57.7 62.2 51.6

R101-FPN 58.1 62.5 52.0

Attention-guided unified
network for Panoptic

Segmentation (AUNet)
[35]

COCO

ResNet-101-FPN 45.2 31.3 54.4 AUNet is compared with the leading
bottom-up methods (such as DWT [55],

SGN [8]) and Mask R-CNN.
It is inferred that a consistent accuracy
gain is achieved with MS-COCO, and
thereby a new state-of-the-art can be

further achieved.

ResNet-152-FPN 45.5 31.6 54.7
ResNeXt-152-FPN 46.5 32.5 55.8

Cityscapes
ResNet-50-FPN 55.0 57.8 51.2
ResNet-50-FPN 56.4 59.0 52.7

ResNet-101-FPN 59.0 62.1 54.8

Panoptic DeepLab [5]
Cityscapes VGG-16 based

LargeFOV 40.3 49.3 33.5
The design of Panoptic DeepLab is simple

and requires only three loss functions
while training and incorporates minimal
parameters to a contemporary semantic

segmentation model.
Mapillary Vistas ResNet-101 65.5 - -

Seamless Scene
Segmentation [36]

Cityscapes ResNet-50-FPN 59.8 64.5 53.4
An effort to attain seamless scene

segmentation involves the integration of
semantic and instance segmentation
methods, jointly operating on a sole

network backbone.
Mapillary Vistas ResNet-101-FPN 37.2 42.5 33.2

Unified panoptic
segmentation network

UPSNet [7]

COCO ResNet-101-FPN 46.6 36.7 53.2 Three large datasets are used whose
empirical results demonstrate that UPSNet

attains SOTA performance with faster
inference in comparison to other models.

Cityscapes ResNet-101-FPN 61.8 64.8 57.6

UPSNet dataset:
MR-CNN-PSP ResNet-50-FPN 47.1 49.0 43.8

Efficient panoptic
segmentation EPSNet [56] COCO ResNet-101-FPN 38.9 31.0 44.1

A one stage EPSNet is presented and
achieves a significant performance on

COCO dataset and outperforms other one
stage approaches. Hence, EPSNet is
notably faster than other existing PS

networks.

To achieve seamless scene segmentation [36], semantic and instance segmentation
methods are combined and jointly operate on top of a single network backbone. UPS-
Net [7] makes use of three large datasets such as COCO, Cityscapes, and UPSNet, whose
empirical results illustrate that UPSNet attains SOTA performance with quicker inference in
comparison to other models [57]. On the other hand, a one-stage EPSNet [37] was presented
that achieves significant performance on COCO dataset and outperforms other one-stage
approaches. Therefore, EPSNet is significantly faster than other existing PS networks.
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5.3. Datasets for Scene Recognition

This section presents datasets for scene recognition from [11], and their associated
benchmarks, as illustrated in Table 2. These datasets are a combination of widely used
datasets and some of them are new. A comparison of the recognition accuracies among
some of the representative algorithms is studied, followed by a comprehensive analysis.

Table 2. Comparison of accuracies of some of the scene recognition approaches on four different
datasets from [11].

Scene
Recognition Types Method Feature

Retrieval Scene-15 SUN-397 Indoor-67 Sports-8

Global Attribute
Descriptors

GIST [13] GIST 73.28 - - 82.60
LDBP [58] LDBP 84.10 - - 88.10

mCENTRIST [57] mCENTRIST - - 44.60 86.50
CENTRIST [59] CENTRIST 83.88 - - 86.22

Patch Feature
Encoding

SPM [60] SIFT 81.40 - 34.40 81.80
DUCA [61] AlexNet 94.50 - 71.80 98.70

HIK [62] CENTRIST 84.12 - - 84.21
MOP-CNN [63] AlexNet - 51.98 68.88 -

LScSPM [64] SIFT 89.75 - - 85.31
NNSD [65] ResNet-152 94.70 64.78 85.40 99.10

LR-Sc+ SPM [66] SIFT 90.03 - - 86.69

Spatial Layouts
Pattern Learning

RSP [67] SIFT 88.10 - - 79.60
S2ICA [68] VGG-16 93.10 - 74.40 95.80

RS-Pooling [69] AlexNet 89.40 - 62.00 -

Discriminative
Region Detection

Object Bank [70] Object Filters 80.90 - 37.60 76.30
DSFL [71] AlexNet 92.81 - 76.23 96.78

VS-CNN [72] AlexNet 97.65 43.14 80.37 97.50
ISPRs [73] HOG 91.06 - 68.50 92.08

Object Correlation
Analysis

SDO [50] VGG-16 95.88 73.41 86.76 -
MetaObject-CNN [74] Hybrid CNN - 58.11 78.90 -

Hybrid Deep
Models

DAG-CNN [75] VGG-19 92.90 56.20 77.50 -
Dual CNN-DL [76] Hybrid CNN 96.03 70.13 86.43 -

FOSNet [77] SE-ResNeXt-
101 - 77.28 90.37 -

Hybrid CNNs [78] VGG-19 - 64.53 82.24 -

i. Scene-15

This dataset contains 4485 gray images from 15 different categories that include
both indoor and natural scenes [60]. The image sizes are relatively small, with 200 to
400 images per category. It is crucial to highlight that the recognition accuracy of certain
CNN algorithms may be diminished for images lacking color information. In the absence of
distinct training and test sets, random images, typically around 100 per category, are chosen
for training, while the remaining images are employed for testing. For better evaluation
results, it is suggested to perform random splits several times.

ii. SUN-397

SUN is an acronym for scene understanding. This dataset comprises 397 distinct scene
categories and 108,754 color images, with at least 100 images per category. These categories
contain various indoor and outdoor scenes with larger objects and alignment variance
and hence impose huge complexity for scene recognition tasks. One hundred images per
category are chosen as the standard protocol [79], fifty of which are used for training with
the remaining fifty images used for testing.
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iii. MIT Indoor-67 scenes

This dataset contains 15,620 color images distributed across 67 categories [80]. This
is particularly complex as the indoor scenes suffer from huge intraclass variation, with
confusing indoor scenes having similar backgrounds and sharing repeated objects.

iv. UIUC Sports-8

The UIUC dataset contains 1572 color images distributed over eight distinct categories
covering various scenes of sports events [81], with 130 to 250 images per category. These
are high-resolution images, i.e., from 800 × 600 to thousands of pixels per dimension;
70 images are randomly sampled for training with the remaining images used for testing
each category.

v. Places

This dataset comprises around 2.5 million scene images [14] and contains an evaluation
criterion based on top-5 error. Considering the case with the SUN-397 dataset, that provides
scene images in good numbers, but each category still suffers from sufficient data required
for feeding deep learning models. The Places-205 dataset, on the other hand, contains
205 scene categories that are similar with each category containing at least 5000 images
for training; 100 and 200 images belonging to each category are utilized for validation and
testing. The Places2 dataset [82] is an extension of the Places dataset and combines around
10 million images with scene categories containing more than 400. To date, this dataset
seems to be probably more challenging to carry out scene recognition as it is based on the
current occurrences of scenes. It is inferred that more than 4000 images are selected for
each class across 365 categories for coming up with datasets like Places365-Standard and
Places365-Challenge.

Table 2, drawn from [11], illustrates the accuracies comparison of some of the scene
recognition algorithms with respect to feature extraction. These algorithms are grouped
into six categories, as discussed in Section 2. Global attribute descriptors lead to worst
recognition accuracy as these descriptors are obtained without training and by some
predefined numerical calculation and are not likely to be suggested for the present scene
recognition applications. In recent years, there has been extensive exploration of patch
feature encoding, driven by its recognition accuracy, which shows similarity with methods
such as patch features and codebook learning. As seen in Table 2, the features retrieved
from patches achieve a recognition accuracy that is higher than the handcrafted features.
However, advanced codebook learning methods may lead to better outputs due to their
inherent relationships. An advantage of patch feature encoding is that these algorithms
are trained to deal with cluttered backgrounds and with deformed objects in images to a
certain degree. The sports-8 dataset achieves the highest recognition accuracy of 99.10%
when compared to the other datasets. Patch feature encoding can be applied in situations
where computational resources are limited with limited scene categories, and where the
response time is of paramount importance compared to the accuracy of scene recognition.
Spatial layout pattern (SLP) learning improves the recognition accuracy of the scene, but
an excessive number of spatial partitions can negatively impact scene recognition accuracy.
Consequently, while SLP learning proves effective for stable indoor and outdoor scenes, it
may cause confusion in recognizing indoor scenes (that are highly lookalike) with similar
spatial layouts.

These algorithms achieve moderate recognition accuracy with some minor changes
to the existing CNNs and require additional computations in comparison to the current
frameworks and utilize minimal inference time. Discriminative region detection addresses
the shortcomings of extreme spatial partitions in context to SLP learning and focuses on
the detection of regions of interest (RoIs) in complex scene categories and achieves better
recognition results as seen in Table 2. To detect the RoIs, some algorithms make use of
pretrained object detectors such as Object Bank [70], where the training process is more
arduous and consumes a lot of time and increases the computational overhead. Also, the
detection of discriminative regions is more sensitive to scene categories, and it is obvious
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that for larger datasets there are larger objects with many different categories. In general,
these kinds of discriminative detection algorithms achieve recognition accuracies that are
higher even on smaller and intermediate datasets in a reasonably shorter time frames.
Among all scene approaches to scene recognition, object correlation is more complex than
object detection (identification of discriminative patches) is the first step for the analysis
of subsequent correlations and require some real-time region proposal techniques. To
this end, various probabilistic models have been developed to examine the connections
among various objects and categories of scenes. Another disadvantage is that errors in
detected objects or patches will have an impact on the subsequent correlations and hence,
the recognition accuracy does not just relate to the object correlation but relies either on
regional proposal techniques or the object detection model. Object correlation analysis
achieves moderate accuracy in context to scene recognition task with slowest inference
speeds due to computational overhead and serve as an optional choice for a purpose at
hand. Hybrid deep models can achieve higher accuracies on massive scale datasets and
combines the expressive powers of feature convolutions and the various methods to feature
encoding such as CNN-DL [76], Hybrid CNNs [78], and VSAD [83], to name a few, that
results in arduous training procedures, longer inference times and huge computational
cost. Some tailored networks, for example, DAG-CNN [75] and FOSNET [77], that are
end-to-end, attempt to simplify the training process by unifying extra information into the
architecture. These hybrid deep models consume minimal computations and inference
times to obtain a satisfactory recognition accuracy as they are favored with adequate
computational resources.

Limitations and Challenges of Scene Recognition Algorithms

This section discusses the limitations and challenges of the scene recognition algo-
rithms, namely, (i) global attribute descriptors (GADs), (ii) patch feature encoding (PFE),
(iii) a spatial layout pattern learning (SPL), (iv) discriminative region detection (DRD),
(v) object correlation analysis (OCA), and (vi) hybrid deep models (HDM) [11].

i. In early 2000, scene extractions from images were mainly carried out using the GAD’s.
These descriptors utilized low-level image features such as the semantic typicality
(this measure groups the natural real-world images in terms of their similarity into six
different scene categories that include forests, coasts, rivers/lakes, plains, sky/clouds,
and mountains, and categorizes a given image into one of those categories along side
the nine local semantic concepts based on the frequency of image occurrence. Here, a
archetypal categorial form of representation is learnt from each scene category and
the “typicality measure” proposed is further evaluated (qualitatively and quantita-
tively) by incorporating a cross-validation on images containing 700 natural scenes.
Furthermore, as typicality is a measure of uncertainty of predictions based on given
annotations, and the nature of real-world images resembling an obscure nature, it
is imperative to pay attention to the modeling of scene typicality after carrying out
manual annotations [84]); a GIST (which is an abstract representation of a scene for
activating the memory representations of different scene categories, such as sky, city,
mountains, etc.); a census-transform histogram (CENTRIST) [59] (a visual descriptor
for identifying the scene categories or the topological places by encoding the struc-
tural properties in an image and by suppressing the detailed textual information. It
is inferred that the model proved to be successful for both datasets related to scene
categories and the topological places and has been noticeably faster); etc. These GAD’s
saw limited performance in scale for understanding the visual scene representations
that are complex in nature.

ii. To improve the performance, PFE gained prominence in the research community. It
made use of the local features (aka. local visual descriptors), for example, histogram
of oriented gradients, scale-invariant feature transform [85], bag-of-visual words,
and local binary patterns, to name a few. Researchers utilized the bag-of-visual
words framework before deep learning took the center stage and comprised of three



Algorithms 2024, 17, 189 21 of 26

different modules such as (i) feature extraction, (ii) code book learning, and (iii) coding
processing. For any given image, the local features are extracted and are propagated
to the code book learning module for extracting the visual words. This module uses
k-Means clustering and extracts the k clusters by dividing the visual descriptors
resembling the local features in terms of their Euclidean distances. Each cluster
obtained represents a group of visual descriptors that share similar features whose
center point is considered as the distinct visual word. This way all clusters containing
the visual-words forms a code book. Finally, by incorporating all the learned features,
the coding processing module predicts the contents of the entire image.

In PFE, the codebook structure has crucial implications on the scene recognition per-
formace. One possible limitation of codebook learning as discussed in [11] relies on the
dictionary size meaning, the amount of visual words belonging to each category. The
codebook learning becomes exorbitant considering a humungous amount of scene images
that it is required to deal with. Additionally, it is inferred that the dimensionality of the
derived codes increases manifold with the increase in the number of scene categories,
resulting in more complexity and very slow inference processes. One such solution is to
learn a codebook that is compact while simultaneously maintaining a higher recognition
accuracy. This can be possible by getting rid of the correlated words using an indicator
function. By using an automatic compact dictionary learning (ACDL) [86], the size of the
codebook can be reduced. Besides this, constraints such as selectivity, sparsity, and discrimi-
nation may be incorporated to assure certain specific characteristics from the derived codes.
The authors in [87] present a comprehensive analysis of the various codebook learning
methods by emphasizing on the main characteristics of those methods. However, choos-
ing an appropriate characteristic depends on several factors, which need further research
and exploration.

iii. The SPL pattern learning aims at increasing the scene recognition accuracy as some
scenes may have certain specific spatial layouts. One such spatial layout utilizes
the randomized spatial partitions [67] by considering both classification and optimal
spatial partition as one single problem. Here, an input image is partitioned into a
pool of several partitions, each representing a different size and shape. This is further
transformed into a histogram based representation of features consisting of an ordered
pair p(Ii, θj) where Ii represents the level and θj represents the partitioned patterns.
Another spatial layout presented in [88] make use of class-specific spatial layouts that
are obtained from spatial partitions based on the convolutional-feature maps. There
have been several customized modules found in the literature that support various
spatial structures, for example, randomized spatial pooling [69] and spatial pyramid
pooling [89], to name a few.

To examine the spatial structures that are more flexible, there have been several research
efforts found in the literature. One such effort is the use of a randomized spatial pooling layer
proposed in [90] that embodies appropriate spatial layout information to the CNN.

iv. DRD is another way of independently extracting important regions or objects from
the scenes. This is performed by using models such as deformable part based [90],
and Object bank [70] to obtain the discriminative regions. However, to reduce the
noisy features, important spatial pooling regions ISPR’s are used in identifying and
locating the discriminative regions. It is noted that ISPRs make use of part filters to
preserve the quality of image regions.

DRD attempts aims to address the problems caused by the pooling regions in SPL
for example, loss of certain salient features caused during the division of regions into
several fragments. DRD focuses on the regions of interest. Using the deformable part-
based models [90] with some latent SVM training, aids in discovering the common visual
structures that helps in capturing the continual visual elements alongside salient objects.
The Object bank [70], on the other hand, sits atop the response maps and contains several
object-sensing filters that are pretrained on generic-labeled objects and integrates the local
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semantic meanings into a complete image representation. The increase in the number
of detected objects from scene images, results in an increase in the dimensionality of the
response vector, and therefore, a regularized logistic regression can be used for activating
several instances belonging to each class.

v. OCA models the relationship among the diverse assignment of objects and scene
categories and is considered the most challenging tasks among several scene recogni-
tion approaches. Here, the discriminative patch identification serve as the first step
in carrying out the subsequent correlation analysis and this depends either on the
pre-trained object detectors or on other practical region proposal methods. To analyze
and understand the relationship between the diverse assignment of objects and scene
categories, several probability models have been introduced in the literature. With
the humungous information, OCA achieves a moderate recognition accuracy, and is
considered the slowest in terms of the inference speed because of heavy computational
load. It is to be noted that OCA can serve as an alternative in situations when object
detection is needed for the task.

vi. HDMs are considered as effective approaches to scene recognition. The intermedi-
ate layers in the CNN, on the one hand, capture the local features whereas the top
layers capture the holistic features. In the end-to-end networks, multi-stage convolu-
tional features should be considered for example the DAG-CNNs (directed acyclic
graph CNNs) [75].

In general, features from layers close by contains unwanted information that is corre-
lated, and hinders the scene recognition performance. These hybrid models though exhibit
considerable advantages, but suffer from similar issues as with codebook learning. Also,
codebook learning and deep models together consume huge memory and computational
resources. Therefore, by combining the codebook approaches (existing) with deep networks
serve as a potential solution and is considered an open issue.

6. Conclusions and Research Directions

This article presents a review of the scene recognition approaches and the role of PS as
a breakthrough approach towards computer vision. With respect to feature extraction, the
performance of the six categories of scene recognition algorithms such as global attribute
descriptors, patch feature encoding, spatial layout pattern learning, discriminative region
detection, object correlation analysis, and hybrid deep models, and the potential issues
concerning it, are discussed [11]. Although multi-scale ensembles have proven to be
effective in improving the recognition performance, they require more computational
resources and are still task dependent. Also, many hybrid-deep learning models have been
seen to emerge successful in scene recognition.

Panoptic segmentation that combines both semantic and instance segmentation is
presented. Some of the important advances to panoptic segmentation along with some
noteworthy research such as the Panoptic FPN, Attention-guided unified network for
PS, Seamless Scene Segmentation, Panoptic Deep lab, Unified PS network, and Efficient
PS is discussed. Of these models, some evaluate semantic and instance segmentation as
separate entities and combine the joint results to produce panoptic segmentation, while
some evaluate this as one unified model for PS. The PQ on the COCO and Cityscapes
datasets (around 48% and 60% in each case) were seen to perform significantly better than
all other models. But still there is room for further performance improvement. PS can
provide support to numerous real-time applications such as bio-medical image analysis,
pedestrian monitoring, online surveillance, self-driving cars, to name a few.

In addition, the field of PS seeks significant improvement especially in areas relating
to complex scene backgrounds, issues pertaining to cluttered scenes, the dataset quality
utilized and its associated computational costs [91]. Overlapping and occlusion is another
intriguing issue as discussed under Section 3.3.1, wherein the issue of determining the
extent of overlap between the two object instances in the absence of sufficient contextual
information becomes difficult when merging them by using a heuristic approach. This is
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challenging as the current approaches make use of two independent models which do not
share features and therefore the pipeline implementation becomes labor intensive. In PS,
a class label and an instance id are assigned to prevent the overlapping phenomenon by
using an NMS that primarily sorts the predicted segments with respect to its confidence
scores. While resolving the overlapping issue, it is also important to view the instances
sorted in descending fashion using detection scores and then placing the objects on some
material canvas such that objects with higher scores are placed higher. This approach
can fail because of occlusion, and it is inferred how OANet for PS can be utilized at the
post-processing step to predict the ‘stuff’ and instance segmentation in a single network,
thereby resolving the problem of occlusion between the predicted segments to a certain
extent. Some improvements on PS include incorporating the information exchange module,
certain attention-based methods [92], and improvements on the loss function, to name a
few, as seen in the literature. Moreover, concentrating on the performance improvements
of various PS models may aid several applications in healthcare, autonomous self-driving
vehicles, and many others.
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