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Abstract: Resource Constraint Project Scheduling Problems with Discounted Cash Flows (RCPSPDC)
focuses on maximizing the net present value by summing the discounted cash flows of project
activities. An extension of this problem is the Payment at Event Occurrences (PEO) scheme, where
the client makes multiple payments to the contractor upon completion of predefined activities,
with additional final settlement at project completion. Numerous approximation methods such
as metaheuristics have been proposed to solve this NP-hard problem. However, these methods
suffer from parameter control and/or the computational cost of correcting infeasible solutions.
Alternatively, approximate dynamic programming (ADP) sequentially generates a schedule based
on strategies computed via Monte Carlo (MC) simulations. This saves the computations required
for solution corrections, but its performance is highly dependent on its strategy. In this study, we
propose the hybridization of ADP with three different metaheuristics to take advantage of their
combined strengths, resulting in six different models. The Estimation of Distribution Algorithm
(EDA) and Ant Colony Optimization (ACO) were used to recommend policies for ADP. A Discrete
cCuckoo Search (DCS) further improved the schedules generated by ADP. Our experimental analysis
performed on the j30, j60, and j90 datasets of PSPLIB has shown that ADP–DCS is better than ADP
alone. Implementing the EDA and ACO as prioritization strategies for Monte Carlo simulations
greatly improved the solutions with high statistical significance. In addition, models with the EDA
showed better performance than those with ACO and random priority, especially when the number
of events increased.

Keywords: approximate dynamic programming; net present value; discounted cash flows;
Discrete Cuckoo Search; Estimation of Distribution Algorithm; Ant Colony Optimization; Payment at
Event Occurrences

1. Introduction

In project management, the precise timing for initiating project jobs within the con-
straints of available resources plays a crucial role in optimizing outcomes across sectors
such as fleet management, supply chains, and service delivery. One such problem in this
area is the Resource Constraint Project Scheduling with Discounted Cash flows (RCPSPDC),
where the objective is to maximize the sum of discounted cash flows from the activities.

RCPSPDC is a crucial problem to consider when dealing with long-term projects
with significant financial implications [1]. These projects usually involve two parties: the
contractor, who is responsible for executing the project, and the client, who outsources
the project to the contractor and provides the financing [2]. The details of the financial
transactions are usually negotiated when the project’s contract is signed [3]. For long-term
projects, there are several payment schemes that the two parties can agree upon. Available
payment options include Payment at Activities’ Completion Times (PAC) [4–6], Progress
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Payments (PP) [7], and Payment at Event Occurrences (PEO) [5,6]. Although PAC ensures
a consistent cash flow for the contractor, it may pose logistical challenges when processing
invoices for each individual activity. In PP, payments are made at regular intervals, and
the final payment is disbursed upon completion of the project. PP may not be desirable for
the client, as it provides little incentive for the contractor to complete the project on time.
In contrast, PEO can be seen as an irregular variant of PP. Under PEO, a specific number
of project tasks are treated as events, and payments are made to the contractor as soon as
these events are completed. During contract negotiations, the number of events and the
corresponding payment amounts can be mutually agreed upon to ensure a Pareto-optimal
outcome for both the client and the contractor [8–11].

For seamless project execution, the contractor must maintain a consistent cash inflow of
funds to effectively manage expenses such as payroll, equipment costs, and expenditures on
raw materials and resources. This study focuses on Resource Constraint Project Scheduling
with Discounted Cash flows and Payment at Event Occurrences (RCPSPDC–PEO) from the
contractor’s perspective. In this scenario, the contractor aims to maximize the Net Present
Value (NPV) of the project under the condition that m + 1 payments are made throughout
the project’s duration. These payments are triggered as soon as m predefined activities are
completed, with the final settlement upon project completion.

For instance, construction of a new residential complex is one of the practical examples
of RCPSPDC–PEO. The contractor is faced with the difficult challenge of sequencing and
scheduling a multitude of interdependent and dependent tasks under various resource
constraints, ranging from the foundational work to the final utility installations. The
allocated budget is usually not paid all at once to prevent unforeseen risks for the client; on
the other hand, withholding payment at the completion of the project would also jeopardize
the success of the project. Payments are therefore made according to the PEO principle.
To optimize the financial outcome of this venture, the contractor aims to maximize the
project’s NPV, a key variable that determines the project’s profitability considering the
time value of money. Under the PEO scheme, the company must skillfully manage its
limited resources against a backdrop of financial constraints, with cash inflows tied to the
achievement of specific project milestones. This requires a judicious planning strategy that
aligns task completion with the stipulated payment events to ensure a steady cash flow
and, ultimately, the financial success of the project.

RCPSPDC is proven to be NP-hard [12]. Both exact (for smaller problems) and
approximate solutions (metaheuristics) have been explored in research [13] that could
also tackle RCPSPDC–PEO. The metaheuristics approach takes a set of feasible solutions
(i.e., scheduled projects) called population and employs various exploration and exploita-
tion techniques to find quasi-optimal solutions in a reasonable time [14]. Studies have
demonstrated that hybrid approaches, intelligently combining different methods (meta-
heuristics or other exact methods), outperform standalone metaheuristics by leveraging
their collective strengths and mitigating individual limitations [14,15]. This preference for
hybridization [15,16] resonates with the No Free Lunch Theorem (NFLT) [17], which argues
against the feasibility of a universal standalone metaheuristic.

Alternatively, in combinatorial problems like RCPSP and RCPSPDC, the scheduling
scheme can be viewed as a Markov process [18]. That is, at any decision point in a schedul-
ing process, a job is scheduled using a certain policy derived from the information available
at the current state. In this sense, a determination of scheduling policy, also known as
closed-loop policy [19], can be seen as a Markov decision process (MDP) [18,20]. How-
ever, computing the optimal closed-loop policy in this setting as Dynamic Programming
(DP) suffers from the curse of dimensionality [19]. The approximation of the cost-to-go
or the benefit-to-go function [21] to approximate the decision policy [22] to resolve this
intractability issue results in an approximate dynamic programming (ADP). To solve a
deterministic RCPSPDC–PEO, ADP can be embedded into the schedule generation scheme
(SGS) [1,23,24]. SGS then decides based on a derived scheduling policy [22] when there are
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multiple activities to be executed, but the quality of the final schedule is highly dependent
on the policy it utilized.

Motivated by these facts, this study proposes a novel architecture: a hybridization
of approximate dynamic programming (ADP) [19,22,25] with the Discrete Cuckoo Search
(DCS) [26–28], Estimation of Distribution Algorithm (EDA) [29,30], and Ant Colony Opti-
mization (ACO) [31,32] to solve the RCPSPDC–PEO. Applications of ADP to solve RCP-
SPDC or RCPSPDC–PEO have not been explored so far, especially in combination with
metaheuristic approaches [11]. In addition, this proposal is driven by several compelling
reasons. First, ADP’s dynamic and Markov properties enables us to progressively explore
solutions, markedly reducing computation time by eliminating the need to revisit previ-
ously executed jobs, a common occurrence in metaheuristic approaches. Second, ADP’s
policy approximation through Monte Carlo (MC) simulations is inherently parallelizable,
leveraging the capabilities of multi-core CPU computers to our advantage. Third, the
historical data derived from MC simulations can be efficiently integrated into powerful
distribution-based metaheuristics such as EDA and ACO, allowing for the reuse of infor-
mation. Fourth, unlike the often-challenging parameter management in metaheuristics
hybrid systems, ADP offers the convenience of independent parameter control. Finally,
the refined solutions produced by ADP are ideal for application in DCS, which signifi-
cantly benefits from the high-quality solutions it employs. Thus, this study makes the
following contributions:

1. Review and proposal of 13 different heuristics for RCPSPDC–PEO;
2. Proposal of ADP scheduling based on MC and MDP for RCPSPDC–PEO, which can

be implemented on multi-core CPU computers;
3. Proposal of DCS as a solution improvement to ADP for RCPSPDC–PEO; and
4. Proposal of path estimation methods based on EDA and ACO.

This endeavor results in six models based on ADP and ADP with DCS. To compare
their performance, we first customized the j30, j60, and j90 project instances of PSPLIB [33].
Our experimental analysis performed on these customized datasets designed to investigate
the effectiveness of the six different models showed that ADP–DCS provided better results
than ADP alone. Using EDA and ACO as priorities for MC simulations further improved
the solutions. Also, the performance of EDA was relatively better than that of ACO,
and it showed improvement as the number of events increased. Our customized dataset
and experimental results are available online to compare with the contributions from
other researchers.

This study is of great value to both finance and project managers alike. Finance
managers select projects for an organization based on the NPV as a capital budgeting
technique. Project managers execute projects with the goal of maximizing the NPV and
thereby boosting shareholders’ wealth. This study combines a series of different techniques
to maximize the NPV of a project. In addition, the methods presented in this study can be
adapted for use across various industries and project categories.

The remainder of the paper is organized as follows: Section 2 presents the problem
statement with a brief literature review. The methods we propose are explained in detail
in Section 3. Section 4 presents the experimental results and performance comparisons of
the different methods. In Section 5, we present the discussion of the study followed by its
conclusion, and we also outline our future research options.

2. Problem Definition and Literature Review

In a deterministic and non-preemptive project scheduling, we determine the starting
time sj for each activity from a series of activities numbered from 1 through J. Each activity j
has a processing time dj as well as precedence constraints with the immediate predecessors
Pj, which must be finalized before beginning an activity j as denoted by Equation (1), and
resource demand of qj units (i.e., qj ∈ Q) in its active duration as denoted by Equation (2).
The vector Q contains the different resources required by each activity. All data points
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are assumed to be fixed, known beforehand, and quantified as non-negative integers.
Mathematically, this is formulated as [12,34]:

si ≤ sj − di , ∀i ∈ Pj (1)

qj . ≤ Qrj (2)

In Equation (2), the vector Qrj denotes the available resources to be used by activity j
and . ≤ checks for the availability of all corresponding resources. In Equation (1), an activity
j is made available for execution immediately after all its preceding jobs are completed in a
zero time-lag fashion.

For RCPSPDC–PEO, a contractor receives cash whenever itcompletes the pre-specified
activities and at the project completion time f J+1; the objective function is expressed as:

Max. Z = I f J+1 e−d f J+1 +
J

∑
j=1

Cje
−d f j +

m

∑
v=1

Ive−d fv (3)

In Equation (3), the completion of activity j is defined as f j = sj + dj, where project
completion time is f J+1 = max

({
f j : j = 1 . . . J

})
. d, Cj and Ij denote the discount factor,

cost, and income for executing job j, respectively. It is worth mentioning that the non-
linearity of Equation (3) has further increased the complexity of RCPSPDC–PEO from
RCPSP which is already NP-hard. Equation (3) maximizes the sum of various cash flow
types discounted by the factor d.

There are two mostly used SGS [35–38] in the literature: These are the Parallel Gen-
eration Scheme (PSGS) and the Serial Generation Scheme (SSGS). SSGS operates on an
activity-incrementation basis, essentially constructing a schedule without a real-time vari-
able. The scheme proceeds through {1, . . . , J} stages, with one activity being selected for
scheduling during each stage from the pool of eligible activities. In this selection process,
eligibility is determined primarily by the precedence constraints, while resource constraints
are factored in later when determining the activity schedule time. The authors of [19,22]
applied SSGS for stochastic scheduling with ADP in non-deterministic RCPSP.

Conversely, PSGS operates using timeline incrementation and is particularly well-
suited for tackling hard problems [23]. PSGS excels at generating non-delay schedules [23].
Hence, for the novelty of this study and for its advantages over SSGS, we have employed
the PSGS method to generate project schedules. The PSGS with MDP formulation is
explained in Section 3.1.

RCPSP (RCPSPDC) can be divided into two categories: deterministic and non-deterministic.
In deterministic RCPSP (RCPSPDC), details about resource and activity duration are known
beforehand. In non-deterministic or uncertain RCPSP (RCPSPDC), this information is only
partially or fully unknown. In the literature, the deterministic RCPSPDC has attracted
more attention than its non-deterministic counterpart. This is primarily because non-
deterministic introduces an additional layer of complexity with its inherent uncertainty,
rendering the determination of cash flows associated with the project highly challenging.
Consequently, our literature review focuses on the deterministic RCPSPDC, which is also
the focus of our study. The simplest way to solve the deterministic RCPSPDC is using
heuristics, where jobs are ranked and executed based on certain heuristics or policies [1,2];
however, this method does not yield quality solutions [39]. The recent research efforts
have resulted in the proposal of various metaheuristics and their hybrids to solve RCP-
SPDC. Metaheuristics and their hybrids typically can produce near-optimal solutions in a
reasonable time due to their exploration and exploitation capabilities [14]. Mika et al. [4]
employed the renowned simulated annealing (SA) and tabu search (TS) methods to address
the multi-mode RCPSPDC. Zhao et al. [40] utilized the EDA, The authors of [41] integrated
a genetic algorithm (GA) with a local search strategy, and [42] implemented ACO. However,
better solutions were generated using hybrids of metaheuristics. Vanhoucke [24] merged
forward-backward iterations (FBI) with scatter search heuristics, while Gu et al. [43] com-
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bined FBI with Lagrangian relaxation and constraint programming. Asadujjaman et al. [23]
created a hybrid model combining IGA and neighborhood search with FBI. Leyman and
Vanhoucke [12] used parallel GAs without information sharing to solve RCPSPDC. Though
these methods were not explicitly studied for RCPSPDC–PEO, they can be adapted to
solve the problem. One of the drawbacks of metaheuristics and their hybrids for RCPSP
(RCPSPDC), in general, is the loss of feasible solutions in the state transition. For in-
stance, consider GA with single point crossover [23,41]; when two parents of GA cross
over to produce an offspring, the precedence conditions (i.e., Equations (1) and (2)) are
usually perturbed, leading to an infeasible solution. This necessitates extra processing
and computation to rectify the schedule. Additionally, in hybrid systems where multi-
ple metaheuristics are employed either in parallel or sequentially, managing and tuning
parameters pose a considerable challenge. This can sometimes diminish the system’s
overall effectiveness [14–16].

An alternative approach is borrowing the techniques from stochastic scheduling [44].
The stochastic RCPSP (SRCPSP) is a category of non-deterministic RCPSP characterized by
uncertainty in project parameters like job execution times and resource availabilities and
are represented through distributions. One of the methods used in SRCPSP is sequential
generation of a schedule based on an open- or closed-loop policy [19,45]. The open-
loop policy aims to devise a complete project schedule before the project’s initiation,
while the closed-loop policy optimizes the schedule dynamically and adaptively as the
project unfolds [46]. Greedy randomized adaptive search procedure (GRASP) [47], genetic
algorithm (GA) [45] pre-processing procedure with a two-phase GA [44] and 17 priority-rule
heuristics with the justification technique [48] are some of the proposed open-loop policy
based techniques for SRCPSP. As the open-loop policy is static in nature, a more flexible
policy based on closed-loop policy through dynamic programming (DP) [46] garnered
attention for SRCPSP. A closed-loop policy [49] aims to find an optimal decision rule (i.e.,
policy) to execute a job at each decision point, given knowledge on the current state. If
the decision or policy in the closed-loop policy is random, this is similar to any of the
SGS methods [35–38] with random scheduling for the classical RCPSP (RCPSPDC). In
SGS for the classical RCPSP (RCPSPDC), an activity is scheduled as soon as precedence
and resource conditions (i.e., Equations (1) and (2)) are met. If there are multiple eligible
activities, SGS schedules an activity based on a certain predefined priority or heuristic
value [26,30,32,50]. The main distinction between SGS methods and closed-loop is that the
latter uses an optimal policy.

Despite its effectiveness, the closed-loop method is limited by the curse of dimension-
ality [19] caused by Bellman’s recursive approach in the MDP [18]. Thus, this method is
applicable to only small problem sets [51]. For instance, the authors [51], used stochastic
DP method to solve projects that involved only 17 activities. To address this issue in an
uncertain or stochastic RCPSP, the authors of [19,22] utilized rollout algorithms [49] to
approximate the policy functions for DP, thus converting it to ADP. Their conversion of
DP to an ADP algorithm was based on three core techniques. First, in each decision stage,
the sub-problem is constructed by approximating the recursive cost-to-go function in DP.
Second, sample paths from MC simulations were used for forward iteration, bypassing the
exhaustive state enumeration in traditional DP. Finally, deterministic scheduling techniques
were applied within each iteration of ADP. It is should be noted that the efficiency of
ADP is highly dependent on the policy (or rollout policy). An analysis of the method
combining rollout and lookup table algorithms, including look-back and look-ahead using
the idea of parallel rollout [49], was explored in [19]. Constraint programming [52] to
solve sub-problems was also explored as the quality of a sub-problem influenced the policy
estimation. For combinatorial problems like RCPSP (RCPSPDC), it is recommended to
use some heuristic based policy [32] in place of exact cost/benefit-to-go function [53] as
promising results have been reported in [54,55].

The dynamic and Markov nature of ADP enables several advantages for RCPSP
(RCPSPDC–PEO). First, it always maintains a feasible schedule as the scheduled jobs
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are not disturbed. Second, as it sequentially schedules jobs in the forward iteration, the
computation complexity reduces as the project progresses. Finally, MC simulation of it
can be parallelized on multi-core machines. Although the lookup table as explored in [19]
serves basic requirements, it is our belief that using distribution-based algorithms would
improve the solution further. However, the policies generated in ADP are approximate,
leading to sub-optimal solutions.

In summary, various metaheuristics and their hybrids were proposed in the literature
to solve RCPSPDC, which can be customized to solve RCPDPDC–POE. In addition, ADP
was successfully used in non-deterministic RCPSP, which can also be customized to solve
our problem. However, there are numerous drawbacks to both sets of methods. The main
reason for our proposed hybrid architecture is to overcome these challenges. A detailed
explanation of our hybrid algorithm is presented in the following section.

3. Proposed Methods

Figure 1 presents a high-level overview of our proposed method. In contrast to the
literature for non-deterministic RCPSP, this study embeds ADP inside PSGS for RCPSPDC–PEO.
ACO and EDA are alternatively used in addition to random in MC simulation to build
priority rules for ADP. The rollout policies are selected by combining two phases using MC
simulations. In the first phase, a policy for a state is approximated in advance by steps look-
ahead. The second phase further refines the policy using a one-step look-ahead. At any
given state in an ADP, an optimal policy is derived from 13 different heuristics mentioned
in Section 3.3. In addition, we have applied three priority rules in MC simulations to
improve the policy optimality. We have further improved our solutions using the DCS
technique, focusing on local search.

Algorithms 2024, 17, 180 6 of 28 
 

The dynamic and Markov nature of ADP enables several advantages for RCPSP 
(RCPSPDC–PEO). First, it always maintains a feasible schedule as the scheduled jobs are 
not disturbed. Second, as it sequentially schedules jobs in the forward iteration, the com-
putation complexity reduces as the project progresses. Finally, MC simulation of it can be 
parallelized on multi-core machines. Although the lookup table as explored in [19] serves 
basic requirements, it is our belief that using distribution-based algorithms would im-
prove the solution further. However, the policies generated in ADP are approximate, lead-
ing to sub-optimal solutions. 

In summary, various metaheuristics and their hybrids were proposed in the literature 
to solve RCPSPDC, which can be customized to solve RCPDPDC–POE. In addition, ADP 
was successfully used in non-deterministic RCPSP, which can also be customized to solve 
our problem. However, there are numerous drawbacks to both sets of methods. The main 
reason for our proposed hybrid architecture is to overcome these challenges. A detailed 
explanation of our hybrid algorithm is presented in the following section. 

3. Proposed Methods 
Figure 1 presents a high-level overview of our proposed method. In contrast to the 

literature for non-deterministic RCPSP, this study embeds ADP inside PSGS for RCP-
SPDC–PEO. ACO and EDA are alternatively used in addition to random in MC simulation 
to build priority rules for ADP. The rollout policies are selected by combining two phases 
using MC simulations. In the first phase, a policy for a state is approximated in advance 
by steps look-ahead. The second phase further refines the policy using a one-step look-
ahead. At any given state in an ADP, an optimal policy is derived from 13 different heu-
ristics mentioned in Section 3.3. In addition, we have applied three priority rules in MC 
simulations to improve the policy optimality. We have further improved our solutions 
using the DCS technique, focusing on local search. 

 
Figure 1. Flowchart of ADP using MC with ACO or EDA followed by DCS. Figure 1. Flowchart of ADP using MC with ACO or EDA followed by DCS.



Algorithms 2024, 17, 180 7 of 28

We have chosen ACO and EDA due to their capabilities for preserving historical
information in the form of distribution. ACO and EDA have also shown effectiveness for
RCPSP and RCPSPDC [29–32]. DCS was employed to improve the ADP solution. Our
choice of DCS was due to its capability to search for solution space in the levy flight scheme.
The levy flight characteristics allowed us to employ various search techniques. DCS was
also found to produce quality solutions for RCPSPDC [26]. A thorough treatment of each
part of our method is made in the following subsections.

3.1. PSGS and MDP Formulation

For deterministic scheduling, the MDP of RCPSPDC–PEO must be embedded into the
SGS; in our case, we employ PSGS. Our MDP has the following five components:

1. Stages: We denote the stages by v ∈ [0, . . . , F]; v gets incremented whenever a job is
scheduled. In other words, whenever the number of unscheduled jobs decreases, v
gets incremented. v = 0 corresponds to no job being scheduled and v = F corresponds
to the stage where all the jobs are being scheduled. The number of stages therefore
corresponds to the size of the project.

2. States: The state of stage v is described as Sv =
{

Av, Cv, Qrv, Avt , tv
}

. In Sv, the
elements Av, Cv, Qrv are the vectors containing the active jobs at time v, the completed
jobs at v, and the resources available at v, respectively. The vector Avt contains the
completion time of the active jobs, and tv denotes the completion time of the jobs that
are completed immediately before the state Sv. The initial and final states are given by
S0 = {∅, ∅, Qr0, ∅, 0} and SF =

{
∅, {1 . . . J}, QrF, ∅, f J+1

}
, where Qr0 . = QrF . = Q;

Q is the vector containing the total resources available when no job is being executed
and . = denotes the element wise comparison in the vectors.

3. Decision sets: Suppose Ev := χ(Sv) consists of eligible activities, that is, jobs that
fulfill Equations (1) and (2), then the decision space xv ⊆ χ(Sv) contains jobs that are
feasible for execution.

4. Transition process: The transition from stage v to v+ 1 takes place with Sv+1 = SM(Sv, xv)

using the transition function SM(·). The transitions of different components are
presented in Equations (4a) to (4k):

if qj. ≥ Qrj, ∀j ∈ Ev or Ev = ∅ (4a)

tv+1 = min
({

f j : j ∈ Av, f j ∈ Avt

})
(4b)

Cv+1 = Cv ∪
{

j : f j ≤ tv+1, ∀j ∈ Av, f j ∈ Avt

}
(4c)

Qrv+1 = Q . −
|q|

∑
k=1

[
q1 . . . qj . . . ql

]−1
, j = [1, . . . , l] ∈ Av (4d)

Av+1 =
{

j : f j > tv+1, ∀j ∈ Av, f j ∈ Avt ∪ xv′
}

(4e)

if qj . ≤ Qrj , ∃j ∈ Ev or Av = ∅ (4f)

tv+1 = tv (4g)

Cv+1 = Cv (4h)

Av+1 = Av ∪ xv (4i)

Qrv+1 = Q . −
|q|

∑
k=1

[
q1 . . . qj . . . ql

]−1
, j = [1, . . . , l] ∈ Av (4j)

A(v+1)t
=

{
tv+1 + dj : j ∈ Av+1

}
(4k)

In this transition, the process must follow a logical control flow. That is, if Equation (4a)
is true, Equations (4b)–(4e) are executed, followed by Equation (4k). Equation (4a)
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checks whether Ev, an eligible set at state Sv, is empty or whether the resources
required by each activity of Ev are less than the balance resources if Ev is not empty.
Equation (4a) assesses whether the set of eligible activities at state Sv, denoted as Ev, is
empty. If Ev is not empty, the equation further evaluates whether the resources required
for each activity within Ev exceed the available balance of resources. Equation (4b)
determines the times associated with state Sv+1 by taking the minimum of the finish
times of the active jobs from the state Sv. In Equation (4c), the completion set Cv+1
of Sv+1 is set to the union of Cv and the set containing jobs whose finish times are
less than equal to tv+1. The balance resources for state Sv+1 are calculated using
Equation (4d) or (4j). For each resource, the remaining resource is the difference of
the total resource and the sum of the resources currently being used by active jobs at
state Av. Finally, an active set Av+1 is updated by adding the decision set to active
set Av whose finish times are greater than tv+1. In Equations (4d) and (4j), the value
of |q| =

∣∣∣qj

∣∣∣, ∀j ∈ {1, .., J}, as this indicates the different types of resources required
by an activity j. If Ev ̸= ∅ in Equation (4a), then Equation (4e) is executed before
Equation (4d) by setting xv′ = xv; if Ev = ∅, a new Ev+1 is determined directly after
Equation (4d), and we set xv′ = xv+1. The set xv is determined using Equation (6). If a
statement given by Equation (4f) is true, then Equations (4g)–(4k) are executed. That
is, if there is no active job being processed or there exists at least one job in the eligible
set Ev in which the resources required are less than the balance resources checked
by Equation (4f), then the time tv+1 and completion set Cv+1 of Sv+1 are the copies
from the previous state. Equation (4i) determines the active set Av+1 by including the
decision set. Finally, Equation (4k) determines the completion times of the activities in
the active set Av. We see that the state Sv+1 depends only on state Sv, which indicates
that the process is a Markov process [56].

5. Benefit function: Let π =
{
ωπ

0 (S0), . . . ,ωπ
F (SF)

}
be the policy containing a sequence

of decisions, where ωπ
v (Sv) : Si → xπ

v . Let ψ(Sv, xπ
v , Sv+1) be the change in the NPV

of the project as a result of decision xπ
v at Sv that leads to state Sv+1. We define the

benefit-to-go function with the policy π starting from stage v with state Sv as follows:

Bv(Sv) = E
[

F
∑

j=v
ψ(Sv, xπ

v , Sv+1)

]
= E[ψ(Sv, xπ

v , Sv+1) + Bv+1(Sv+1)]

(5)

The benefit-to-go function Bv(Sv) is the expectation of the sum of ψ(·) from states v to
F. Bv(Sv) can then be re-written as the expectation of ψ(Sv, xπ

v , Sv+1) and Bv+1(Sv+1).

To maximize the objective function given by Equation (3), we employ the Bellman
equation [57,58] to determine an optimal policy:

xπ∗
v = argmax

xv⊂χ(Sv)

E[ψ(Sv, xv, Sv+1) + Bv+1(Sv+1)] (6)

Solving Equation (6) is computationally difficult due to the well-known curse of
dimensionality. Given the permutation nature of our problem, we use a rollout-policy-
based [22,59] ADP to approximate xπ∗

v . In this scheme, we approximate Bv+1(Sv+1) using
a certain heuristic hv+1 from a set of heuristics H = {h1, . . . , hk}. Because there are a large
number of states and trajectories, we employ forward iteration with MC [45] to select the
hv+1. In this study, we use two-stage look-ahead to guide the selection of the one-stage
look-ahead heuristic and approximate the benefit-to-go value. That is, to select hv+1 at
state Sv+1, we run multiple trajectories using hi ∈ H′ ⊂ H and keep track of heuristics
hj ∈ H at S′

v+2. The state S′
v+2 is the state in each trajectory of the MC simulation (we call it

the simulation stage) and is different from the actual Sv+2. Let Θ be the set of simulated
trajectories starting at Sv; we set hv+1 ∈ H′,which has the highest average value of the NPV
of Θ. We then update H′ using the heuristics from H that yielded the highest mean NPV of
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Θ. This process is further explained in PSGS algorithm, which uses an MDP as shown in
Algorithm 1.

Algorithm 1 PSGS algorithm with ADP

Input: Sv, A, C , t, |Θ|, H′,H, Q, ADP (Boolean value), h, priority rule
1. If ADP
2. Extract values of A, C, t and At from Sv
3. End If
4. Calculate Qr using Equation (4d)
5. While |C| <|{1, . . . , J}| or A ̸= ∅
6. E =

{
j : ∀Pj ∈ C, qj. ≤ Qr

}
7. While E ̸= ∅
8. If ADP
9. For ∀h ∈ H′

10. For _ in 1 :|Θ|
11. Execute PSGS algorithm given in Algorithm 1 with “ADP = false”.
12. End For
13. End For
14. Update state using Equations (4a)–(4k)
15. Update H′ using Equation (7)
16. Else
17. If |C| = |Cv|+ 1
18. Select e ∈ E based on h
19. Else if |C| = |Cv|+ 2
20. Select e ∈ E based on hi ∈ H
21. Else
22. Select e ∈ E based on priority rule.
23. End If
24. Update A := A ∪ {e}
25. Update At :=

{
j → t + dj : j ∈ A

}
26. Update Qr using step (4)
27. Update E using Equation (6)
28. End While
29. If ! ADP and A ̸= ∅
30. t := min( f ∈ { ft : j → ft ∈ At})
31. Update C := C ∪ {j : f ≤ t : f ∈{ ft : j → ft ∈ At}}
32. A := A\C
33. Update At using step (26)
34. Update Qr using step (4)
35. End If
36. End While
37. Output: Schedule, NPV, hi

For a project, we execute the algorithm in Figure 1 with the inputs: S0, ∅, ∅, 0, |Θ|,
H, H, Q, ADP (= true), h (= random(H)), priority rule. If we initialize with (ADP = false),
the algorithm results in a schedule with the usual generic PSGS. The priority rule can be
random, or it can be devised based on certain heuristic or meta-heuristic algorithms. In
this study, we use three different priority rules as explained in Section 3.4. Because the
MC simulations are independent, we take advantage of multi-core computers for parallel
execution. That is, given |Θ| the size of the MC and the number of cores (nc), we distribute
the simulations |Θ| to the nc cores as |Θ|

nc .

3.2. Discrete Cuckoo Search (DCS)

After a schedule has been generated by the ADP, we further try to improve it using
various local search techniques. Although there are many local search techniques [60–62],
in this study we use DCS [26,50], which systematically switches between different types
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of search steps based on certain predefined paths. DCS mimics a cuckoo bird searching
for a host nest to lay eggs. The Lévy flight [63,64] is one of the search paths the cuckoo
birds follow to explore a viable nest. In the Lévy phenomenon, there are many short hops
and only rarely long hops. In this study, we set the stability parameter of the stable Lévy
distribution (α = 1), which corresponds to the Cauchy distribution [65], and consider the
following search techniques corresponding to different step lengths as indicated in the
algorithm shown in Algorithm 2:

1. Swap mutation [66]: In this swap mutation, two activities are picked randomly and
their order is swapped if possible. Swapping positions is not always possible due
to precedence constraints. Nevertheless, we try to mutate as much as possible. For
instance, we select activities a and b such that fa < fb, then the schedule up to a
being executed remains unchanged. The partial schedule is completed using SGS by
delaying a as far as possible and prioritizing b as soon as possible.

2. k− swap mutation: In this search, we perform the swap mutation k times in a row. In
this study, we set k = ⌊0.15 × J⌋, where J denotes the project size.

3. Scramble mutation [66]: In this mutation, n jobs are randomly selected, and their execu-
tion times are scrambled based on cost. For instance, we randomly select a1, a2, . . . , an
such that sa1 < sa2 < · · · < san , then we take the partial schedule just before the
execution of a1 and complete the schedule using SGS by prioritizing the activities
which have the minimum costs. In our study, we set n = ⌊0.15 × J⌋.

4. Inverse mutation [66]: In this mutation, n jobs are randomly selected, and their
execution times are inverted. For example, we randomly select b1, b2, . . . , bn such that
sb1 < sb2 < · · · < sbn , followed by completing the partial schedule containing the
original schedule just before b1 is executed. We set n the same as scramble mutation.

Algorithm 2 DCS algorithm applying various mutations

Input: schedule, τ (maximum number of steps)
1. Set w = (τ + 1)−1 , λ ∈ [2, τ].
2. Generate τ number of step lengths from Lévy distribution with α = 1 and set it to L.
3. Normalize L such that value of L are between 0 and 1.
4. For each i in L
5. If i ∈ [0, w]
6. Perform swap mutation search.
7. Update the schedule with better NPV.
8. Else If i ∈ [(λ − 1)× w, λ × w]
9. Perform k − swapmutation.
10. Update the schedule with better NPV.
11. Else
12. If random (0,1) < 0.5
13. Perform inverse mutation.
14. Update the schedule with better NPV.
15. Else
16. Perform scramble mutation.
17. Update the schedule with better NPV.
18. End If
19. End If
20. End For
21. Output: Updated schedule with NPV

3.3. Heuristics

One of the inputs to ADP is H, a set containing a list of heuristics. These heuristics are
defined as follows:

1. hij = argmin
i∈Pj

dj
∑l∈Si

dl
, which favors the shortest processing time;
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2. hij = argmin
i∈Pj

∑ qjk
∑l∈Si ∑ qlk

, which choses the minimum amount resources required first;

3. hij = argmax
i∈Pj

∑ qjk
∑l∈Si ∑ qlk

, which favors the maximum amount of resources required;

4. hij = argmin
i∈Pj

∑ vjk
∑l∈Si ∑ vlk

, such that v = ([qi > 0])|q|i=1 where qi ∈ q, which considers the

activity with the minimum number of resources required;

5. hij = argmax
i∈Pj

∑ vjk
∑l∈Si ∑ vlk

, where v is as defined in heuristics number 4 that considers the

maximum number of resources required first;

6. hij = argmin
i∈Pj

|Sj|
∑l∈Si

|S l|
, which prioritizes an activity with the minimum number of successors;

7. hij = argmax
i∈Pj

|Sj|
∑l∈Si

|S l |
, which favors an activity with the maximum number successors;

8. hij = argmin
i∈Pj

|Pj|
∑l∈Si

|P l |
, which prioritizes an activity with the minimum number

of predecessors;

9. hij = argmax
i∈Pj

|Pj|
∑l∈Si

|P l|
, which favors an activity with the maximum number of predecessors;

10. hij = argmax
i∈Pj

Ci, which favors an activity with the maximum cashflow;

11. hij = argmax
i∈Pj

[Cie
−d fi + Iie−d fi ], which favors an activity with the maximum dis-

counted cashflow;
12. hij = argmax

i∈Pj

f fi, which prioritizes the maximum free floats; and

13. hij = random combinations of any of the two heuristics (i.e., pick any two from
1 through 12).

Given an activity j, free float ( f f j) denotes the amount of time an activity can be
delayed without hampering the project completion time. The free float is calculated as:

f f j = ESi − EFj, i ∈ Sj (7)

where ESi and EFj are called early start of activity i and early finish of activity j. To compute
these values, we set ES0 = EF0 = 0 (i.e., the early start and early finish of no activity), then
ESi and EFj are solved recursively as:

ESi = max{EFk : k ∈ Pi}; EFj = ESj + dj (8)

3.4. Priority Rules

In each state Sv of ADP, we use MC and simulate |Θ| schedules. These schedules are
usually forgotten when we try to approximate policy functions for the subsequent states.
Such a technique can be called random prioritization. In contrast, we can also learn from
the schedules generated by MC simulations to promote exploitation in the subsequent
MC simulations. In this study, we explore two techniques based on metaheuristics: EDA
and ACO. EDA [29] involves the estimation of the distribution model based on selected
elite ancestral generations. The distribution model can be represented in a matrix form.
An element aij ∈ PJ×J denotes the probability of activity i being scheduled at position j.
We initialized this matrix as PJ×J(0) such that aij(0) = 1

J , ∀i, j ∈ [1, J] represents a uniform
probability for the execution of each activity at each position. Given a schedule s in state Sv,
we update the elements of P as:

aij := (1 − γ)aij + γ[Ii − C i
]
[s[i] = j] (9)
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where γ ∈ (0, 1], Ii and Ci are defined as in Equation (3). [S[i] = j] is in Iverson bracket no-
tation, which returns 1 whenever the job at position i in schedule s equals j and 0 otherwise.
Once the elements are updated, a column normalization is performed. Given |Θ| schedules,
only the top ⌊0.25×|Θ|⌋ solutions are selected to update P because our distribution must
represent the best values of the NPVs. In this study, we set γ = 0.3 to give more importance
to the historical information. To use P in ADP, we substitute the “priority” by P as an input
to the “PSGS algorithm with ADP”, as shown in Figure 1. The algorithm then schedules
an activity i at position j, which has the highest value of aij in P in an Epsilon-Greedy
Algorithm [67,68] fashion with (1 − ϵ = 0.90) when it has multiple options. Alternatively,
we can use the information generated by ACO [42] as the priority rule. ACO depicts the
foraging phenomenon of ants. In this study, the pheromone information of the ants is
stored in a matrix ϕ(Sv) := ϕ(Sv)J×J . The elements of ϕ(S0) are set to:

τij = aij(s0) := |Si|−1[i ∈ Pj
]

(10)

where
[
i ∈ Pj

]
is in the Iverson bracket notation checking the existence of job i in the

precedence of j. Si is the set of successors of an activity i. Given a schedule s, the pheromone
is updated as:

τij := (1 − µ)τij + µ
Zsi

(ϑ× Zb − Zs)
[s → (i, j)] (11)

where µ ∈ [0, 1], Zsi is the cumulative objective value of schedule s up to activity i calculated
using Equation (3) are the final objective values of the historical best schedule and schedule
s, respectively. In this study, we set ϑ = 2, and s → (i, j) denotes the job i schedule
immediately before activity j in schedule s. To use this priority rule in our ADP, we
substitute ϕ(Sv) for “priority” as an input to the “PSGS algorithm with the ADP” shown
in Figure 1. In the MC simulations, an activity with the minimum value of uij given by
Equation (12) is selected from the eligible set with a certain probability (1−ϵ = 0.90) [67,68].

uij :=
τω

ij h1−ω
ij

∑l∈Si
τω

il h1−ω
ij

[
i ∈ Pj

]
(12)

For each simulation in Θ, we first choose the parameter control ( ω) of the pheromone
and then a heuristic. We randomly set ω to any value from {0, 0.2, 0.4, 0.6, 0.8, 1}, and the
heuristic is randomly selected from Section 3.3. We also set µ in Equation (11) to 0.3 to
give more weight to the historical information. As with EDA, we update the Equation (11)
given Θ, using only elite solutions in each state Sv. The size of the elite solution is set to
en = ⌊0.25×|Θ|⌋. To minimize the computation, updates for EDA and ACO are made only
for jobs that are not scheduled (i.e., {1, . . . , J}\C ∪ A).

4. Experimental Results

In this study, we used j30 (projects with 30 jobs), j60 (projects with 60 jobs), and j90
(projects with 90 jobs), each set containing 480 instances from PSPLIB [69] for analysis.
The project instances in PSPLIB have been generated by the standard project generator
ProGen [69] by authors of [70]. Tables 1 and 2 contain the summary of the parameters
used by the ProGen software to generate the project instances of single-mode RCPSP with
renewable resources.

Table 1. Base parameter setting for ProGen.

Range dj |Q| UQ KQ S1 Sj PJ Pj

Min 1 4 1 1 3 1 3 1

Max 10 4 10 2 3 3 3 3
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Table 2. Variable parameter setting for ProGen.

Parameter Levels

NC 1.50 1.80 2.10

RF 0.25 0.50 0.75 1.00

RS 0.20 0.50 0.70 1.00

The base parameters are adjusted individually for each benchmark set, and variable
parameters are varied within each benchmark set. As usual, dj,|Q|, UQ, KQ, S1, Sj, PJ , and
Pj in Table 1 denote processing time for activity j, total number of unique resources, per-
period usage of particular resource, number of different categories of resources consumed,
number of start activities, number of successors of an activity j, number of finish activities,
and number of predecessors of an activity j, respectively. In Table 2, the abbreviations
NC, RF, and RS correspond to network complexity, resource factor, and resource strength,
respectively, for resources belonging to category k within KQ. NC is quantified as the
average number of unique arcs for each node, considering dummy nodes as well. The RF
represents the average proportion of resources from category k ∈ KQ that are utilized. It can
be seen as an average measure of how much resource is typically used by the activities in a
project. Meanwhile, resource strength RS refers to the robustness of the resource constraints
for the specified resource category k ∈ KQ. It measures the scarcity or abundance of
a resource relative to the demand for that resource in a project. If a resource has high
strength, it means there is plenty of it available in relation to how much is needed for
the project. For each project set, 480 instances were created using the full factorial design
of variable parameters with 10 replications (i.e., 3 × 4 × 4 × 10 = 480). A file named
J9040_9.SM, corresponds to project set j90, with variable combination 40 and replication
number 9 of single-mode.

In the experimental design of [70], the authors have used four steps to generate a
project in the form of an acyclic directed graph employing a number of fundamental graph
theories. The first three steps generate the base project, and the fourth step is repeated until
conditions imposed by the combination sought from the parameters in Table 2 are met.
For instance, to generate J9001 (i.e., project with 90 jobs and combination 01) the steps are
as follows:

Step 1: Generate a random integer for each of S1 and PJ using the range from Table 1. In
our case, a random integer numbers from a closed interval ( |S 1|:= rand[3, 3] = 3)

for S1 and ( |P J

∣∣∣:= rand[3, 3] = 3) for PJ are generated. Then, |S 1| number of nodes
are connected by an arc to a dummy node (source) denoted by 1. These |S 1| nodes
are then numbered from 2 to |S 1|+1 and are called starting activities. Similarly, |PJ |
nodes are connected by an arc to a dummy node (sink) denoted by (90 + 1) where
|PJ | are numbered (90 − |PJ |) to 90. These nodes are then called finish-activities.

Step 2: A random predecessor node (activity) is assigned starting with the lowest indexed
(non-start) node until all the jobs (i.e., |S1|+ 2 to (90 − |PJ | − 1) are assigned.

Step 3: If any node has no successor, a random node is assigned as the successor to the node.

In step 2 and step 3, the Sj and Pj range values indicated in Table 1 are maintained.
Also, for each job j, dj is determined using the random integer value from the closed interval
from the corresponding range values given by Table 1. We then proceed to the final step.

Step 4: After randomly determining the resource allocations made based on Table 1 (i.e., after
generating random integers from the closed intervals of |Q|, UQ, KQ in a similar
process to step 1), the values of NC, RF, and RS of the network are determined.
The additional arcs are further added randomly in the network to reach a desired
NC, and resource allocations for each job are further tuned to achieve the needed
combination value. For J9001, NC = 1.50, RF = 0.25, and RS = 0.20 must be
achieved by tuning the number of arcs and resource values. Readers may refer
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to [70] for simple formulas to calculate these values and a detailed description of
the parameters and their realizations.

This process (i.e., steps 1–4) was computed using ProGen software as it is compu-
tationally expensive. In addition, in this study, to meet the practicality of the data, two
additional values (i.e., cost and income) were determined. The monetary cost of executing
each activity is determined as follows:

Ci :=
di∑ qi

∑J
k=1 dk∑ qk

× 100 (13)

In Equation (13), di and qi have the same meanings as defined in Equations (1) and (2).
For each project, we randomly select a set of three, four, five, and six activities as events.
For each set of events, we assign an income from performing these activities to random
positive numbers such that the total income always comes to 100. (Files containing detailed
information regarding each income for each event for all projects can be downloaded along
with the dataset and associated results using the link provided at the end of this paper).
Using just cost and incomes in this setting has no reward for a contractor as the sum of
costs equals the income without taking into account the time value of money. To reward a
contractor, a final settlement of CJ+1 is computed using Equation (14):

CJ+1 :=
30 × J
|E| (14)

where |E| denotes the total number of events or jobs that generate income for the con-
tractor, in our case, |E| ∈ {3, 4, 5, 6}. The client pays the contractor without any delay
whenever the contractor executes activities specified in the event set. In this study, we
set |Θ|= 2(J − |C ∪ A|) where C and A denote the completed and active jobs, respectively.
That is, |Θ| = 2J when the state is S0 and |Θ| = 0 when the state is SF, and |Θ| decreases
linearly as a function of the state Sv. The numerical experiment is designed to investigate
the effectiveness of six different models developed in this study. These models include:
1. ADP with random priority rule, 2. ADP with EDA as priority rule, 3. ADP with ACO as
priority rule, 4. ADP–DCS with random priority rule, 5. ADP–DCS with EDA as priority
rule, and 6. ADP–DCS with ACO as priority rule. ADP–DCS indicates the improvements
made by DCS after the ADP process.

The experiments were conducted on an AMD Ryzen Threadripper 3970X 32-core
processor, 128GB RAM machine in the Julia language. We note that a direct comparison
between models associated with ADP and ADP–DCS cannot be made as ADP–DCS tries
to make improvements on ADP solutions by generating additional schedules. Therefore,
our study aims to show whether it is possible to improve the APD-generated solutions
by applying DCS. However, comparisons within the same group of models can be made
because they share the same parameters and have the same number of solutions. To allow
fair comparisons within the models of ADP–DCS, all models in this family are terminated
after DCS has generated 500 individuals. The computational results are shown in Table 1
for j30, j60, and j90.

Table 3 shows the average values of the NPV for the j30, j60, and j90 project sets
corresponding to the six models for different numbers of event sets. The results show that
the mean values of ADP–DCS are better than ADP for all three project sets. We also see
that the mean values produced by EDA and ACO as priorities for MC are better than the
mean values of the random priority for MC. In particular, EDA priority has generated the
highest average values in the majority of the cases. Figures 2 and 3 show the bar charts of
the mean values of the NPV plotted against different job sets by varying the size of event
occurrences. We see that ADP(–DCS)–EDA consistently outperforms the other methods.
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Table 3. Experimental results containing average values of j30, j60, and j90 projects for six different
algorithms in terms of |E|.

Algorithm Priority Rule |E| Z * for j30 Z * for j60 Z * for j90 Overall Z *

ADP

Random

3 25.18 132.47 212.65 123.43

4 −17.05 64.72 126.22 57.96

5 −43.29 24.95 74.68 18.78

6 −61.31 −1.85 41.01 −7.38

EDA

3 29.05 141.05 223.39 131.16

4 −13.73 71.95 134.82 64.35

5 −40.16 30.07 81.84 23.92

6 −58.10 2.90 47.77 −2.48

ACO

3 27.56 137.84 219.88 128.43

4 −14.95 68.99 132.07 62.04

5 −41.12 28.32 79.84 22.35

6 −59.09 1.32 45.59 −4.06

ADP–DCS

Random

3 30.80 142.79 225.73 133.11

4 −12.14 73.28 137.20 66.11

5 −37.66 32.15 84.52 26.34

6 −53.37 5.11 49.71 0.48

EDA

3 31.16 143.92 226.67 133.92

4 −11.85 73.42 137.75 66.44

5 −37.03 32.22 84.47 26.55

6 −52.19 5.13 50.54 1.16

ACO

3 30.03 141.12 223.80 131.65

4 −12.72 72.10 135.70 65.03

5 −37.73 31.10 82.92 25.43

6 −53.42 4.08 48.67 −0.22

* The objective value is given by Equation (3). Z denotes the average value of Z.
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Figure 3. Bar chart of the mean values of the NPV corresponding to each job set against each priority
rule for ADP–DCS in terms of |E|.

Table 4 presents the average values of the NPV for the j30, j60, and j90 project sets
corresponding to the six models for different levels of NC. As NC increases, the average
value decreases for each project size, which is logical because, as the complexity of the
network increases, it becomes harder for each algorithm to find the best NPV. We see that
EDA and ACO used as priority for MC have increased the NPV. We can also note that
EDA variant is much resistant to changes in NC. Similarly, Figures 4 and 5 confirm our
observation from Table 4.

Table 4. Average values of the NPV for j30, j60, and j90 projects for six different algorithms in terms
of NC.

Algorithm Priority Rule NC Z for j30 Z for j60 Z for j90 Overall Z

ADP

Random

1.5 −88.82 247.42 511.69 223.43

1.8 −97.04 217.01 443.85 187.94

2.1 −103.53 196.45 408.15 167.02

EDA

1.5 −73.86 274.41 548.44 249.66

1.8 −83.38 242.47 476.26 211.78

2.1 −91.56 218.32 438.76 188.51

ACO

1.5 −78.57 240.97 536.95 233.12

1.8 −87.90 211.98 467.86 197.31

2.1 −96.34 192.60 427.35 174.54

ADP–DCS

Random

1.5 −62.48 283.69 558.86 260.02

1.8 −72.34 250.34 485.65 221.22

2.1 −82.35 225.94 446.97 196.85

EDA

1.5 −59.62 286.08 561.93 262.80

1.8 −69.97 251.91 487.49 223.14

2.1 −80.13 226.09 448.88 198.28

ACO

1.5 −63.90 279.09 552.46 255.88

1.8 −73.65 245.00 480.23 217.19

2.1 −83.97 221.09 440.60 192.57

Z denotes the average value of Z.
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Figure 4. Bar chart of the mean values of the NPV corresponding to each job set against each priority
rule for ADP in terms of NC.
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Figure 5. Bar chart of the mean values of the NPV corresponding to each job set against each priority
rule for ADP–DCS in terms of NC.

Table 5 presents the average values of the NPV for the j30, j60, and j90 project sets
corresponding to the six models for different levels of RF. The efficacy of all algorithms
decreases as the RF increases except for EDA. Again, we see that EDA and ACO used as
priority for MC have increased the NPV. Figures 6 and 7 again show that ADP(-DCS)-EDA
demonstrates superior performance over other methods in terms of RF.

Table 6 shows the average values of the NPV for the j30, j60, and j90 project sets
corresponding to the six models for different levels of RS. As the RS increases, the average
values of all algorithms increase. In this case, we see that APD_DCS using MC with random
priority generated better solutions than with ACO as priority; however, EDA maintained its
superiority. The robustness of ADP(-DCS)-EDA in terms of RS is confirmed by Figures 8 and 9
as it consistently outperforms other methods in all different project sizes.
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Table 5. Average values of the NPV for the j30, j60, and j90 projects for six different algorithms in
terms of RF.

Algorithm Priority Rule RF Z for j30 Z for j60 Z for j90 Overall Z

ADP

Random

0.25 −94.42 242.17 503.54 217.10

0.50 −94.79 223.66 459.50 196.12

0.75 −100.79 210.90 418.82 176.31

1.00 −95.87 204.44 436.40 181.66

EDA

0.25 −81.94 265.69 536.65 240.13

0.50 −81.43 250.52 494.32 221.14

0.75 −87.34 234.15 451.11 199.31

1.00 −81.03 299.904 469.18 229.35

ACO

0.25 −84.32 239.36 526.28 227.11

0.50 −86.06 221.01 484.56 206.50

0.75 −93.46 201.69 440.58 182.94

1.00 −86.59 198.68 458.11 190.07

ADP–DCS

Random

0.25 −69.54 277.07 550.84 252.79

0.50 −71.90 258.76 503.66 230.17

0.75 −77.61 241.69 458.55 207.54

1.00 −70.51 235.77 475.59 213.62

EDA

0.25 −67.11 277.85 551.04 253.93

0.50 −69.67 258.54 505.59 231.49

0.75 −74.97 243.67 461.72 210.14

1.00 −67.89 238.69 479.39 216.73

ACO

0.25 −69.06 273.40 544.29 249.54

0.50 −72.89 253.55 497.70 226.12

0.75 −80.14 235.21 452.63 202.57

1.00 −73.29 231.42 469.76 209.30

Z denotes the average value of Z.
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Figure 6. Bar chart of the mean values of the NPV corresponding to each job set against each priority
rule for ADP in terms of RF.
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Figure 7. Bar chart of the mean values of the NPV corresponding to each job set against each priority
rule for ADP–DCS in terms of RF.

Table 6. Average values of the NPV for j30, j60, and j90 projects for six different algorithms in terms of RS.

Algorithm Priority Rule RS Z for j30 Z for j60 Z for j90 Overal Z

ADP

Random

0.20 −115.18 113.49 261.08 86.46

0.50 −88.25 241.39 476.89 210.01

0.70 −95.49 258.23 524.38 229.04

1.00 −86.94 268.06 555.91 245.68

EDA

0.20 −100.47 144.72 302.29 115.51

0.50 −72.93 276.19 523.70 242.32

0.70 −80.76 281.97 558.67 253.29

1.00 −77.59 277.39 566.61 255.47

ACO

0.20 −108.06 107.51 293.79 97.75

0.50 −78.70 232.58 506.16 220.01

0.70 −85.32 252.59 544.02 237.10

1.00 −78.35 268.06 565.58 251.76

ADP–DCS

Random

0.20 −91.48 151.22 309.74 123.16

0.50 −64.38 280.27 528.21 248.03

0.70 −68.95 290.07 567.03 262.72

1.00 −64.77 291.74 583.66 270.21

EDA

0.20 −88.38 152.33 310.85 124.93

0.50 −62.39 282.69 532.31 250.87

0.70 −67.16 291.13 569.31 264.43

1.00 −61.70 291.63 585.27 271.73

ACO

0.20 −93.05 144.51 302.47 117.98

0.50 −66.85 272.76 518.77 241.56

0.70 −71.36 285.45 560.22 258.10

1.00 −64.11 290.88 582.94 269.90

Z denotes the average value of Z.
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Figure 8. Mean bar chart of the NPV corresponding to each job set against each priority rule for ADP
in terms of RS.
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Figure 9. Mean bar chart of the NPV corresponding to each job set against each priority rule for
ADP–DCS in terms of RS.

From Tables 3–6, we observe the performance of each model is corelated to the param-
eter under consideration with ADP–DCS using EDA as priority, producing superior results
in most of the cases. As the focus of our study is on PEO, we further investigate the effect
of different values of |E| by performing a series of statistical tests to compare their means.

Table 7 shows Anderson’s normality test for all project sets. In view of the sample size
of 480, the Anderson’s test is more suitable than the Shapiro–Wilk test. All the p-values
except ADP-random with |E| = 5 are less than 0.05. This indicates that the objective values
are not normally distributed except for ADP-random with |E| = 5. To compare the mean
values, we therefore perform a non-parametric test with the Mann–Whitney U test for
each case.
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Table 7. Anderson’s normality test for all project sets in terms of |E|.

Algorithm Priority Rule |E| A, p-Value
for j30

A, p-Value
for j60

A, p-Value
for j90

ADP

Random

3 1.704, 0.0002 4.545, 0.0000 5.342, 0.0000

4 0.982, 0.0135 3.906, 0.0000 4.305, 0.0000

5 0.541, 0.1641 1.985, 0.0000 3.292, 0.0000

6 0.772, 0.0444 1.436, 0.0011 2.0934, 0.000

EDA

3 1.496, 0.0007 4.903, 0.0000 6.135, 0.0000

4 0.856, 0.0277 4.824, 0.0000 4.627, 0.0000

5 0.751, 0.0502 2.812, 0.0000 3.786, 0.0000

6 1.458, 0.0009 1.374, 0.0015 2.311, 0.0000

ACO

3 2.066, 0.000 4.509, 0.0000 5.224, 0.0000

4 1.193, 0.0041 3.719, 0.0000 3.969, 0.0000

5 0.828, 0.0325 1.923, 0.0000 3.291, 0.0000

6 1.337, 0.0017 1.132, 0.0058 1.801, 0.0001

ADP–DCS

Random

3 1.664, 0.0003 5.037, 0.0000 6.363, 0.0000

4 0.904, 0.0210 4.569, 0.0000 4.770, 0.0000

5 1.332, 0.0019 2.635, 0.0000 4.140, 0.0000

6 1.454, 0.0009 1.633, 0.0003 2.589, 0.0000

EDA

3 1.884, 0.0000 4.965, 0.0000 6.515, 0.0000

4 0.923, 0.0189 5.059, 0.0000 4.849, 0.0000

5 1.469, 0.0008 2.905, 0.0000 3.941, 0.0000

6 1.537, 0.0006 1.294, 0.0023 2.922, 0.0000

ACO

3 1.603, 0.0003 5.111, 0.0000 5.366, 0.0000

4 0.663, 0.0826 5.010, 0.0000 4.239, 0.0000

5 1.394, 0.0013 2.679, 0.0000 3.862, 0.0000

6 1.066, 0.0083 1.4319, 0.0011 2.539, 0.0000
The p-value 0.0000 indicates that the value is smaller than five decimal places.

Table 8 shows the mean difference between ADP and ADP–DCS using MC with
random priority. Because all the p-values are below 0.05, we conclude that there is a
statistically significant difference between the mean values of ADP and ADP–DCS. Based
on the values in Table 1, it can be concluded that ADP–DCS is better than ADP when MC
with random priority is used.

Table 8. A non-parametric test using the Mann–Whitney U test between ADP and ADP–DCS for
random priority.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 92,689, 0.0000 96,618, 0.0000 99,976, 0.0000

4 85,251, 0.0000 92,772, 0.0000 98,027, 0.0000

5 72,734, 0.0000 90,775, 0.0000 93,704, 0.0000

6 54,287, 0.0000 84,734, 0.0000 91,958, 0.0000
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Table 9 shows the mean differences between ADP and ADP–DCS using MC with EDA
priority. Their mean values are statistically significantly different for all j30 instances and
for |E| = 6 for j60 and j90. For j60 and j90, the p-value improves as |E| increases. In this case,
ADP–DCS is better than ADP for smaller projects and when |E| increases for larger projects.

Table 9. A non-parametric test using the Mann–Whitney U test between ADP and ADP–DCS for
EDA priority.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 105,902, 0.0304 110,006, 0.1879 110,887, 0.3154

4 103,263, 0.0055 108,726, 0.1066 110,142, 0.2391

5 89,583, 0.0000 107,760, 0.06605 209,112, 0.1565

6 68,310, 0.0000 105,614, 0.01949 107,070, 0.05843

Similarly, Table 10 presents the mean difference between ADP and ADP–DCS using
MC with ACO prioritization. We see that the p-values of both j30 and j60 are less than 0.05.
This indicates that ADP–DCS with ACO is statistically better than ADP with ACO for j30
and j60. The superiority of ADP–DCS improves for j90 as |E| increases.

Table 10. Non-parametric test using the Mann-Whitney U test between ADP and ADP–DCS for
ACO priority.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 105,452, 0.0233 97,082, 0.0000 109,940, 0.2208

4 101,898, 0.0019 92,158, 0.0000 108,898, 0.1424

5 88,290, 0.0000 90,745, 0.0000 107,896, 0.0890

6 69,670, 0.0000 84,909, 0.0000 106,188, 0.03591

Table 11 shows the mean difference between ADP with EDA and ADP–DCS with
ACO as their priorities. In many cases, the mean differences are not statistically significant.
However, the p-value improves with increasing value of |E| for all project groups.

Table 11. A non-parametric test using the Mann–Whitney U test between ADP with EDA and
ADP–DCS with ACO is their priority.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 110,909, 0.3179 115,377, 0.9439 114,834, 0.9321

4 108,934, 0.1447 112,690, 0.4877 113,998, 0.7796

5 95,083, 0.0000 111,910, 0.3816 112,744, 0.5675

6 77,254, 0.0000 110,352, 0.2162 112,499, 0.5296

Table 12 shows the mean difference between ADP with ACO and ADP with EDA as
their priorities. Again, it shows that most of the means of j30 and j90 are not statistically
different; however, for j60, the means are different with high statistical significance. In
addition, the p-values decrease as |E| increases. This suggests that for ADP, using EDA is
slightly better for j60 but does not make much of a difference for smaller |E| for j30 and j90.
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Table 12. Non-parametric test using the Mann–Whitney U test between ADP with ACO and ADP
with EDA as their priorities.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 120,671, 0.2028 134,082, 0.0000 120,046, 0.2593

4 122,326, 0.0971 136,325, 0.0000 120,164, 0.2478

5 122,504, 0.0890 137,435, 0.0000 120,058, 0.2581

6 124,479, 0.0308 141,544, 0.0000 121,506, 0.1422

Table 13 shows the mean difference between ADP–DCS with ACO and ADP–DCS
with EDA as their priorities. For ADP–DCS, the choice between EDA and ACO is not
meaningful as the mean differences are not statistically significant.

Table 13. Non-parametric test using the Mann–Whitney U test between ADP–DCS with ACO and
ADP–DCS with EDA as their priorities.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 119,980, 0.2658 120,907, 0.2252 119,037, 0.3718

4 120,758, 0.1957 119,508, 0.3745 118,965, 0.3808

5 121,192, 0.1631 119,678, 0.3535 118,796, 0.4025

6 125,314, 0.0185 120,348, 0.2787 120,376, 0.2283

Finally, Table 14 shows the mean difference between ADP with ACO and ADP–DCS
with EDA as their priorities. The mean differences are statistically highly significant for
all job sets. Based on Table 3, we can conclude that ADP–DCS with EDA is better than
ADP–ACO.

Table 14. Non-parametric test using the Mann–Whitney U test between ADP with ACO and ADP–
DCS with EDA as their priorities.

|E| W, p-Value j30 W, p-Value j60 W, p-Value j90

3 100,706, 0.0000 92,147, 0.0000 106,220, 0.0365

4 96,530, 0.0000 88,793, 0.0000 105,306, 0.0213

5 83,050, 0.0000 86,859, 0.0000 104,550, 0.0317

6 61,439, 0.0000 80,468, 0.0000 101,088, 0.0010

It is important to recognize that for each cardinality of |E|, a total of 480 distinct
projects were analyzed for each project set (i.e., j30, j60, and j90). The average values of
the NPV corresponding to four different parameters are shown in Tables 3–6. To gain
further insights of the models’ performances, bar charts of the mean values of the NPV
in terms of four parameters for all possible models for various project sizes are shown in
Figures 2–9. For different values of |E|, after performing normality test, we compared the
mean difference using the Mann–Whiteney U test in seven different scenarios. ADP–DCS
leads to better results than ADP alone. This makes sense as DCS further improves the
solution of ADP. Using EDA and ACO for MC as a priority also improved the solution.
Although the choice between EDA and ACO is difficult, EDA performed relatively better,
and its performance improves with increasing |E|.

5. Discussion

The authors of [70] mention that the parameters considered for generation of projects
from ProGen reflect real-life practical projects. In this study, having made a comprehensive
analysis based on all important parameters, the observations and conclusions made above
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hold for project sizes between 30 and 90 jobs. That is, for each parameter we analyzed,
the performances of different models by varying values of parameters of interest resulted
in a sensitivity analysis. We observe that in all instances, ADP(–DCS)–EDA consistently
outperforms other models, indicating its robustness. Our statistical analysis performed on
varying cardinalities of E also confirms ADP(–DCS)–EDA’s superiority. We must also note
that by nature of our experimental design, the hybrid methods proposed are theoretically
superior to their standalone counterparts. Our analysis indicates that the approximation of
policy rule using distribution estimated by EDA is better than random approximation and
approximation by ACO. It can also be seen that policy approximation by ACO is relatively
better in most cases than random approximations.

However, considering the NP-hard classification of the problem at hand, the results
obtained may not represent the theoretical optimum, suggesting that there is room for the
further refinement and improvement of these values. Furthermore, the stochastic nature of
the algorithms under consideration means that repeated executions may lead to slightly
varying results. It is also important to note that no comparison of computation times was
made in this study, as such metrics are significantly affected by the computational capacity
of the processing machines used. Moreover, because our experiment involved j30, j60, and
j90, the results may not hold true for larger problem sets (projects with more than 90 jobs)
or smaller projects (less than 30 activities). An analysis of these models on larger projects
remains out of the scope of this study but is reserved for the future.

This study offers numerous practical implications. First, as RCPSPDC–PEO is the most
logical mode of agreement a contractor and a client can enter, practitioners can employ
our models off-the-shelves to maximize their profitability. As indicated in the introduction,
these models have multitude of advantages, including the capacity to execute parallelly
on multiple cores of computing systems. This not only enhances computational efficiency
but also makes our method accessible and scalable. Our models also offer customization
capabilities to meet the needs of practitioners. For instance, an user can only employ the
ADP part of the model in a quicker manner to determine a reasonably good schedule.
Customizable models like ours are also important tools for an agile project management,
which is prevalent in innovative product development. Second, though we have studied
RCPSPDC–PEO from the contractor’s perspective, it can be easily implemented from the
client’s perspective by swapping the cash flows (i.e., the cash inflow of the contractor
becomes the cash outflow of the contractor). Our models could then be used to guide
the formulation of pareto-optimal contract designs which foster fair and efficient con-
tracting practices that protect the interests of both contractors and clients. Third, as our
proposed models are versatile, they can be adapted for various industries such as soft-
ware development, manufacturing, and logistics, whose objectives may not necessarily be
financial optimization.

As ADP and Bellman’s equations underpin reinforcement learning (RL), our research
lays the foundation for integrating RL into project scheduling. An RL for project scheduling
will involve generating a schedule within a short time that optimizes certain pre-defined
objectives, given the project characteristics. Our proposed model generate schedules for
RCPSPDC–PEO consuming less computation time, but it is problem-specific as it has not
learned other project characteristics. RL that solves RCPSPDC–PEO can benefit from our
model in multiple ways. First, our model can help a model-free RL agent learn by using
the generated schedules to update value function estimates. Second, our model and meta-
heuristics can be used with policy iteration methods similar to our experimental design.

This study focused on the deterministic single-mode RCPSPDC–PEO. However, not
all project characteristics can fit into this scenario. Often, due to unavoidable situations,
the activity durations are disturbed or not known in advance. Moreover, some tasks can
be performed in one of several modes. These situations lead to stochastic and multi-mode
RCPSPDC–PEOs. Through stochastic RCPSP using ADP in the literature, a similar and
robust extension can be made using our model to solve stochastic RCPSPDC–PEO. Multi-
mode RCPSPDC–PEO can also benefit from our models as solving multi-mode version
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involves determining the mode and the job execution times. The dynamic nature of our
framework can determine both the mode and job execution times in one go using the
MC simulations. Thus, we plan to extend this approach to address robust and stochastic
single-mode and multi-mode RCPSPDC–PEOs.

Furthermore, we intend to explore more metaheuristics, in addition to EDA and ACO,
to enhance the priority rules. We will also consider alternative local search techniques
beyond DCS in the future.

Because our problem is NP-hard, potential improvements to our proposed method
could be to expand the policy decision space or improve the search techniques after the
base schedule is generated using PSGS–ADP. One promising approach to improve the
search technique could be to use another set of metaheuristics hybrids if computational
resources permit.

6. Conclusions

Studies have shown that integrating various algorithms into hybrid metaheuristics
can outshine singular techniques by drawing on their mutual advantages and balancing
their individual weakness. This preference for hybrid methods is in line with the NFLT.
This study proposed a hybridization of ADP with three different metaheuristics methods
(i.e., EDA, ACO, and DCS) to overcome their inherent weakness for RCPSPDC–POE. To
implement ADP within this problem context, we incorporated the MDP framework with
the PSGS. PSGS iteratively explores various MDP states by applying an optimal policy to
schedule an activity. Given the computational intractability of MDP to determine an exact
optimal policy due to the curse of dimensionality, we approximated the optimal policies
using heuristics-based MC simulations. This process resulted in a dynamic and adaptive
solution for RCPSPDC–PEO.

To guide and refine the MC simulations, we have introduced two priority rules derived
from EDA and ACO in addition to random search. These priority rules are applied within
the MC simulations using an Epsilon-Greedy algorithm to assist in the selection of policy.
This has enabled effective search strategies. The solutions of ADP are further enhanced
using DCS, which employs various local and global search techniques based on Lévy flight
paths, showcasing the potential for significant improvements in scheduling outcomes.
This process resulted in six hybrid architectures that use 13 distinct heuristics as a core
contribution of our work. The hybridization of conventional operations research techniques
(i.e., ADP) with metaheuristics (i.e., EDA, ACO, and DCS), a combination previously
unexplored within the literature for our problem, diminishes their individual weaknesses
and harnesses their collective strengths besides reducing computation burden due to the
dynamic nature of ADP. These hybrid approaches have demonstrated their capabilities for
yielding adequate solutions on practical benchmark problems, underscoring their relevance
and applicability to real-world project scheduling challenges.

In addition, we parallelized our architectures on a multi-core computer. This approach
not only enhances computational efficiency, but also makes our method accessible and
scalable, catering to the demands of large-scale project management scenarios. Moreover,
as ADP underpins reinforcement learning (RL), our research serves as a foundational
step towards integrating RL into project scheduling, opening new avenues for future
investigations and applications in adaptive and intelligent project management solutions.

The findings from the experiment on j30, j60, and j90 showed that using ADP–DCS
gives better results than using ADP alone, which is not surprising as DCS is known to
improve the solution of ADP. Additionally, incorporating EDA and ACO as priorities for
MC simulations further improved the solutions. While choosing between EDA and ACO
can be challenging, the performance of EDA was relatively better and showed improvement
with the increasing value of |E|. EDA also showed superior performance over ACO and
random priority in all three project characters. The validity of these findings for very large or
small projects, although it remains untested in the current study, will be our future endeavor.
This study’s scope was limited to deterministic single-mode RCPSPDC–PEO; future work
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will explore robust and stochastic versions, additional metaheuristics and alternative local
search strategies. Given the NP-hard nature of the problem, further enhancements could
include broadening the policy decision space or refining search techniques following initial
schedule generation with PSGS–ADP.
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