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Abstract: Questionnaires on health-related quality of life (HRQoL) play a crucial role in managing
patients by revealing insights into physical, psychological, lifestyle, and social factors affecting well-
being. A methodological aspect that has not been adequately explored yet, and is of considerable
potential, is causal discovery. This study explored causal discovery techniques within HRQoL, as-
sessed various considerations for reliable estimation, and proposed means for interpreting outcomes.
Five causal structure learning algorithms were employed to examine different aspects in structure
estimation based on simulated data derived from HRQoL-related directed acyclic graphs. The perfor-
mance of the algorithms was assessed based on various measures related to the differences between
the true and estimated structures. Moreover, the Resource Description Framework was adopted to
represent the responses to the HRQoL questionnaires and the detected cause–effect relationships
among the questions, resulting in semantic knowledge graphs which are structured representations
of interconnected information. It was found that the structure estimation was impacted negatively
by the structure’s complexity and favorably by increasing the sample size. The performance of the
algorithms over increasing sample size exhibited a similar pattern, with distinct differences being
observed for small samples. This study illustrates the dynamics of causal discovery in HRQoL-related
research, highlights aspects that should be addressed in estimation, and fosters the shareability and
interoperability of the output based on globally established standards. Thus, it provides critical
insights in this context, further promoting the critical role of HRQoL questionnaires in advancing
patient-centered care and management.

Keywords: causal discovery; directed acyclic graph; health-related quality of life; resource description
framework; semantic knowledge graphs

1. Introduction

Health-related quality of life (HRQoL) questionnaires are standardized instruments
designed to assess individuals’ perceptions of their well-being and health status. HRQoL
questionnaires cover various aspects of life, including physical, psychological, emotional,
and social dimensions, and they are commonly used in clinical research and healthcare to
measure the impact of health conditions and treatments on individuals’ lives.

The EuroQol questionnaire with five dimensions and five levels (EQ-5D-5L) is one of
the most widely used HRQoL questionnaires [1]. It was designed to assess individuals’
overall health across five dimensions: mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression [1]. Each dimension has five response levels, providing a more
informative evaluation compared to the original EQ-5D-3L that included three response
levels [2,3]. The MOS 36-Item Short-Form Health Survey (SF-36) assesses eight health
domains, including physical functioning, role limitations due to physical health, body pain,
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general health perceptions, vitality, social functioning, role limitations due to emotional
problems, and mental health [4]. The World Health Organization Quality of Life—Brief
Version (WHOQOL-BREF) was developed by the World Health Organization [5] and is
an abbreviated version of the WHOQOL-100 quality of life assessment [6–8]. It produces
scores for four dimensions: physical health, psychological health, social relationships,
and environment.

Health-related quality of life questionnaires specifically tailored for cancer patients
aid healthcare professionals in better understanding the broader implications of cancer
beyond traditional clinical measures and in tailoring supportive care strategies to enhance
the overall well-being of cancer patients. Thus, they emerge as an integral tool in man-
aging cancer patients. One of the most widely utilized HRQoL questionnaires in cancer
research is the European Organization for Research and Treatment of Cancer Quality of
Life Questionnaire-C30 (EORTC QLQ-C30) [9]. It assesses the HRQoL of cancer patients
across physical, emotional, and social functioning domains, and symptoms such as fatigue
and pain [9]. The EORTC QLQ-CLL17 is a module designed as an extension of EORTC
QLQ-C30, specifically focusing on symptoms, treatment side effects, and disease-related
issues unique to patients with chronic lymphocytic leukemia (CLL) [10]. By combining
QLQ-C30 with QLQ-CLL17, a more enhanced understanding of the impact of CLL and its
treatment on a patient’s overall well-being can be obtained. Other HRQoL questionnaires
that delve into disease-specific symptoms and treatment-related concerns, thus offering a
more targeted approach for specific cancer types, are included in the Functional Assess-
ment of Cancer Therapy (FACT) measurement system [11]. The FACT system comprises a
widely used set of instruments that are designed for various cancer types, such as breast
cancer (FACT-B) [12], lung cancer (FACT-L) [13], colorectal cancer (FACT-C) [14], leukemia
(FACT-Leu) [15], and vulvar cancer (FACT-V) [16].

There are multiple examples in the literature where HRQoL questionnaires have
been employed. For example, EQ-5D-5L has been employed by the authors of [17–20],
SF-36 by [21–24], WHOQOL-BREF by [25–27], EORTC QLQ-C30 by [28–31], QLQ-CLL17
by [31], and FACT-based questionnaires by [32–36]. The analysis of HRQoL data is most
frequently based on descriptive statistics, standard correlation analysis, and inferential
statistics (see, e.g., [37]). For instance, the correlation (Pearson, Spearman) between HRQoL
scores and demographic, clinical, biological, and other parameters was assessed by the
authors of [18,23,25–27,29,35,36]. HRQoL scores were compared either among different
subgroups of patients [17,18,21,22,24,30,32] or between the subgroups of patients and
controls [20,22,23,25,27,31]. Regression models have also been used to assess the correlation
of HRQoL scores with various participants’ characteristics (e.g., [18,19,21,24,27,30]).

An aspect that has been so far inadequately explored in the HRQoL-related literature is
causal discovery. While standard statistical correlation measures the strength and direction
of a relationship between two variables, it does not necessarily imply a cause-and-effect
relationship, i.e., that one of the variables is the cause of the other variable, which is con-
sidered to be the effect. Correlation does not distinguish between whether changes in
one variable cause changes in another, whether both variables are influenced by a third
variable, or whether the observed association is coincidental. Causal discovery goes beyond
correlation analysis, aiming to infer causal relationships between variables [38]. It is a tool
with wide potential that may aid to validate and/or reveal new knowledge in diverse
fields (see, e.g., [39–46]). Common methods in causal discovery include causal Bayesian
networks (BNs), which are graphical models representing and describing the causal rela-
tions between random variables through a directed acyclic graph (DAG), and structural
equation modeling (SEM), which investigates the relationships between constructs relative
to a certain phenomenon [47].

The efficient detection, assessment, and in-depth interpretation of the cause-and-effect
relationships among specific HRQoL questionnaire items related to physical, psycholog-
ical, lifestyle, and social parameters could offer valuable insights into patient care and
management. This critical perspective motivated the current study. More specifically, un-
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derstanding the causal relationships between these parameters could validate and reinforce
current knowledge and/or reveal hidden aspects, thus enabling the design and imple-
mentation of more targeted strategies in patient management. For instance, if worrying
about future health issues is the cause and feeling depressed is the effect, taking action
to address these worries might aid to alleviate depression. A potential strategy could
be to educate patients about their disease to better understand the diverse implications.
Assessing the structure of the causal relationships among the questionnaire items could
additionally result in understanding which are the most critical items. Namely, a specific
item/node that is revealed to be the cause of several other items (thus exhibiting a high
degree of centrality) stands as an important parameter to address in priority. In the previous
example, if worrying about future health issues is, additionally, the cause of irritation, sleep
deterioration, social alienation, etc., then it could be deducted that addressing these worries
is a priority, and efforts and means should be dedicated primarily in this direction.

A few efforts have been made within the literature to examine causal relationships in
HRQoL questionnaires. For instance, Krethong et al. [48] used SEM to investigate the causal
relationships among bio-physiological status, social support, symptoms, functional status,
general health perception, and HRQoL for Thai patients with heart failure. Structural
equation modeling was also employed to examine the causal relationships between age, an-
tiretroviral treatment, social support, symptom experience, self-care strategies, and HRQoL
of people living with HIV/AIDS in the northern region of Thailand [49]. Gąsior et al. [50],
on the other hand, developed a causal diagram of sport participation for children and
adolescents with heart disease based on the use of an HRQoL questionnaire [51,52] by
employing the Greedy Fast Causal Inference technique for continuous variables, which
is a BN-based structure learning algorithm. However, the authors mentioned a limita-
tion concerning the dataset used for identifying the DAG, since this study was based on
121 patients, which is a small sample size.

Extensive comparisons of algorithms used for causal discovery have been performed.
More specifically, Scutari et al. [53] examined how different classes of causal structure learn-
ing algorithms performed in terms of the speed and accuracy of network reconstruction for
both discrete BNs (involving discrete multinomial variables) and Gaussian BNs (involving
continuous variables). The classes of algorithms that were assessed were constraint-based
algorithms, which employ conditional independence tests, score-based algorithms, which
use goodness-of-fit scores as objective functions to maximize, and hybrid algorithms, which
combine the two approaches. Farnia et al. [47] similarly performed an assessment of all
three classes of structure learning algorithms based on the criteria that the algorithms
should be implemented by R packages, be able to analyze continuous data, and be rea-
sonably computationally fast. To the best of our knowledge, there is no available study
in the literature that focuses on the comparison of the performance of causal structural
learning algorithms on discrete BNs with ordinal variables, let alone within the context of
HRQoL data.

The aim in the current study was to delve into causal discovery by utilizing BNs
and DAGs, specifically within the context of HRQoL questionnaire data, pinpoint the
most significant considerations required for attaining reliable findings in practical HRQoL
applications, and explore a comprehensive view of how to interpret the obtained results.
The focus was on discrete BNs with ordinal variables, since in most cases the questions
in HRQoL questionnaires require respondents to rate their perception of different aspects
of their quality of life on a Likert scale. Five causal structure learning algorithms were
employed on simulated data, and their performance in estimating the underlying causal
structure was assessed based on diverse measures related to the complexity (number of
nodes/edges) of the structure and the sample size (number of participants). The reason
that we opted to use only constraint-based causal structural learning algorithms was the
existence of conditional independence tests for discrete BNs with ordinal variables. Next,
to elaborate further on the implications and interpretation of causal discovery results in
this context, a framework is proposed for facilitating their shareability and interoperability
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based on the Resource Description Framework (RDF) and the relevant ecosystem of globally
established standards. Efficient estimation aspects of the causal structure within the HRQoL
context and the proposed interpretation perspectives have not been yet addressed in the
literature, to the best of our knowledge. Exploiting these methodological tools in future
HRQoL-related real-data applications could further elevate the critical role of HRQoL
questionnaires in advancing patient-centered care and management.

2. Materials and Methods
2.1. Directed Acyclic Graph

A DAG is a mathematical structure comprising nodes (also known as vertices) and
directed edges (or arcs). Within the graph, there exist paths, which are sequences of adjacent
edges. If an arrow connects variable X to Y, then X serves as a parent (referred to as a cause)
of Y, while Y is a child (termed an effect) of X. Directed paths within the graph signify
causal relationships from a starting variable to an ending variable, implying that variables
act as causes for their children and effects for their parents [54]. DAGs are acyclic, namely,
they lack loops or sequences of edges starting and ending at the same node. The skeleton of
a DAG is the undirected graph that is formed by removing the directions of all the edges in
the DAG. A v-structure is an ordered triplet of nodes (x, y, z), such that the DAG contains
the edges x → y and y ← z, and does not contain an edge between x and z. All DAGs
that share the same skeleton and the same v-structures belong to the same equivalence
class, called Markov equivalence class, that is represented by a completed partially directed
acyclic graph (CPDAG) [55].

2.2. Methodology
2.2.1. Synthetic Directed Acyclic Graphs

The interest in this study concerns discrete BNs involving ordinal variables. Seven
distinct synthetic DAGs were specified, representing the causal structures related to
seven hypothetical HRQoL questionnaires (Figure 1). Both a wide range of number of
questions/nodes and diverse node/edge configurations were involved, aiming to re-
flect the structures of causal relationships that could be encountered in real HRQoL data.
Each of these HRQoL questionnaires and the corresponding DAGs involved only ques-
tions/variables that were ordinal with 4 levels. The selection of the levels was arbitrary
and reflected the fact that the questions found in HRQoL questionnaires typically feature
3 to 5 answers. On the other hand, the ordered nature reflected the increasing health bur-
den typically encountered in HRQoL questions. The aforementioned DAGs varied in the
number of questions/nodes involved (ranging from 5 to 26) and the quantity of direct
relationships/edges among them (ranging from 5 to 19).

The tailored parameter specifications for each DAG were defined using the R package
“bnlearn” [56] (Version 4.9) and can be found at a dedicated GitHub repository (https://
github.com/teomoi/Causal-HRQoL) that has been developed for this study. The seven
synthetic DAGs have not been used before in the literature in any causal-discovery-related
or other context.

2.2.2. Simulations

The seven synthetic DAGs were then used to generate simulated data using the R
package “bnlearn” [56]. In particular, the “rbn” function was used to simulate random
samples from each DAG. The sample size, namely the number of simulated participants
(completed questionnaires), was denoted by n. For each DAG and for different values of n
(100, 500, 1000, 2000, 5000, 10,000), 1000 samples were generated. Next, for each DAG, each
simulated sample of size n was used to estimate the underlying causal structure and, in
particular, its equivalence class, represented by a CPDAG, by employing five constraint-
based causal structural learning algorithms that used conditional independence tests to
learn the dependence structure of the data. All five algorithms were implemented with the
R package “bnlearn” [56].

https://github.com/teomoi/Causal-HRQoL
https://github.com/teomoi/Causal-HRQoL
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In particular, the constraint-based algorithms were as follows:

• PC [57], employing the “pc.stable” function: A modern implementation of the PC
algorithm, the first practical constraint-based structure learning algorithm, with PC
standing for Peter Spirtes and Clark Glymour [58,59].

• Grow–Shrink (GS) [60], employing the “gs” function: This is based on the Grow–Shrink
Markov blanket, which is a Markov blanket detection algorithm.

• Incremental Association (IA) [61], employing the “iamb” function: This is based on
the Markov blanket detection algorithm of the same name.

• Interleaved Incremental Association (Inter-IA) [62], employing the “inter.iamb” func-
tion: This is a variant of the IA algorithm, which differentiates in using gradual
forward selection to avoid false positives in the Markov blanket detection phase.

• Fast Incremental Association (Fast-IA), employing the “fast.iamb” function: This
is another variant of the IA algorithm that employs speculative stepwise forward
selection to reduce the number of conditional independence tests.

For all the above algorithms, the default arguments were employed. The conditional
independence test that was used by default for ordered factors within the “bnlearn” R
package was the Jonckheere–Terpstra test.

The performance of the algorithms regarding accuracy in structural reconstruction
was assessed with measures related to (i) the Hamming distance (HD), which computes the
differences between the skeletons of two DAGs, and (ii) the structural Hamming distance
(SHD), which is based on the comparison between the corresponding CPDAGs of two
DAGs [63]. In particular, SHD accounts for the number of operations required to make two
CPDAGs match, or more specifically, to add or delete an undirected edge, and add, remove,
or reverse the orientation of an edge. The computation of HD and SHD was performed with
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the R functions “hamming” [56] and “shd” [56], respectively. More specifically, for each
DAG and each n, represented by the corresponding 1000 iterations, and for each algorithm,
the following measures were used to compare the estimated and the underlying/true
causal structures:

• The mean HD between the estimated and the true DAG across the 1000 iterations.
• The mean relative HD across the 1000 iterations, defined as the mean HD between the

estimated and the true DAG, divided by the number of edges of the true DAG.
• The number of the cases where the HD between the estimated and the true DAG was

zero across the 1000 iterations.
• The mean SHD between the estimated and the true DAG across the 1000 iterations.
• The mean relative SHD across the 1000 iterations, defined as the mean SHD between

the estimated and the true DAG, divided by the number of edges of the true DAG.
• The number of cases where the SHD between the estimated and the true DAG was

zero across the 1000 iterations.

The two relative measures were used in order to account for the differences in network
size and complexity, and assumed values between 0 and 1. All analyses were performed
with R, v.4.2.1. The R code used for the simulations is available at (https://github.com/
teomoi/Causal-HRQoL).

2.2.3. Shareability and Interoperability

In order to facilitate the shareability and interoperability of our findings, we adopted
the Resource Description Framework [64] to represent the responses to the HRQoL question-
naires, as well as the cause–effect relationships among the questions. The RDF constitutes a
core technology in the ecosystem of semantic technologies endorsed by the World Wide
Web Consortium (W3C) and serves as the backbone for creating semantic knowledge
graphs (KGs). Semantic KGs are structured representations of interconnected information
and enhance understanding and retrieval for both humans and machines [65].

In essence, a semantic KG assumes the form of a directed graph, where the nodes
represent the various entities of the domain of interest and the edges represent their
interrelationships. The graph becomes “semantic” when the meanings (i.e., semantics) of
every node and edge are explicitly specified in a human- and machine-understandable
format like the RDF. This way, the KG constitutes a model of the domain at hand that can
be easily shared/exchanged, but also effortlessly processed by programs and automated
(intelligent) tools, like AI agents.

Specifically, for the representation of HRQoL questionnaires as RDF KGs, as well as
the involved questions, the patients’ responses, and the cause–effect relationships between
questions, we relied on DDI-RDF [66], a vocabulary for publishing metadata about datasets
(research and survey data). Moreover, in HRQoL questionnaires, every question typically
corresponds to a facet, and each facet can be further categorized in a domain (e.g., phys-
ical, psychological, emotional, social, etc.). In our approach, we represented facets and
domains as SKOS concepts, where SKOS (Simple Knowledge Organization System) is a
W3C standard for representing knowledge organization systems [67]. Additionally, SKOS
also allows the representation of narrower–broader relationships between concepts, and
this facilitated the representation of the associations between facets and domains, resulting,
in essence, in a two-level taxonomy. All KGs discussed in this work are serialized in RDF
Turtle, which represents knowledge as <subject-predicate-object> triples.

Our motivation behind this whole endeavor was twofold: (a) to facilitate collaboration
with potentially interested third parties towards developing extensions of mutual interest
across research studies and healthcare institutions, and (b) to drive knowledge discovery
from HRQoL data towards developing decision support systems that leverage semantic
technologies in the context of patient management.

https://github.com/teomoi/Causal-HRQoL
https://github.com/teomoi/Causal-HRQoL
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2.2.4. Available Resources

To facilitate the reproducibility of the methodology, detailed documentation is pro-
vided at https://github.com/teomoi/Causal-HRQoL, a repository that has been developed
specifically for this study. In particular, the R script “2024 Causal Discovery-HRQoL-7
DAGs_github.R” refers to Section 2.2.1 and the development of the seven synthetic DAGs.
The R script “2024 Causal Discovery-HRQoL-Simulation_github.R” refers to Section 2.2.2
and includes the customized function that was used for random sample simulation, causal
structure estimation using the five constraint-based causal structural learning algorithms,
an assessment of the algorithms’ performance, and a specific usage example. The GitHub
repository also contains the schema (i.e., the “ontology”) of the KG discussed in this work,
along with supplementary descriptions.

3. Results
3.1. Simulation Findings

The analytical results of all the assessment measures considered for causal structure
estimation based on the PC, the Grow–Shrink, the Incremental Association, the Interleaved
Incremental Association and the Fast Incremental Association algorithms are available in
Appendix A (Tables A1–A5, respectively).

By assessing Tables A1–A5, it was observed that the mean values corresponding to
the Hamming distance and the structural Hamming distance increased in most cases as the
structure complexity increased, and decreased as the sample size increased. For example, in
Table A2 (GS algorithm), at n = 100, the HD increased from 1.48 to 11.89 as the complexity
of the DAGs increased, at n = 500, it increased from 0.31 to 4.83, at n = 1000, the HD
increased from 0.14 to 3.07 as the DAGs’ complexity increased, and similarly at n = 2000,
the HD increased from 0.13 to 2.16. At n = 5000, it increased from 0.15 to 1.55, and at
n = 10, 000, the HD increased from 0.11 to 1.37. It is easy to observe that the HD values
were larger for smaller values of n, while they gradually decreased as n increased. This
behavior was observed in almost all cases, but it was less pronounced in the case of the
Fast-IA algorithm (Table A5).

At the same time, the values corresponding to the HD were, in general, lower than the
ones corresponding to the SHD. In the same example of the GS algorithm, it is shown in
Table A2 that, at n = 100, the SHD increased from 3.60 to 16.65 as the complexity of the
DAGs increased, at n = 500, it increased from 1.03 to 10.37, at n = 1000, it increased from
0.37 to 6.16 as the DAGs’ complexity increased, at n = 2000, the SHD increased from 0.35
to 3.26, at n = 5000, it increased from 0.41 to 2.13, and at n = 10, 000, the SHD increased
from 0.29 to 1.76. Similarly, as in the case of the HD, the SHD values were larger for
smaller values of n, and they decreased as n increased. In the case of the Fast-IA algorithm
(Table A5), it was observed that the less complex DAGs #1, 2, 3, and 4 exhibited, for some
values of the sample size n, comparable or even higher SHD values, compared to the more
complex DAGs #5, 6, and 7 (see, e.g., n = 2000, 5000 in Table A5).

The assessment results regarding the mean relative HD and the mean relative SHD
are visually displayed in Figures 2 and 3, respectively. In particular, by assessing the mean
relative HD (Figure 2), it is shown that the PC (Figure 2A) and the Inter-IA (Figure 2D)
algorithms exhibited the best performance, since both of them demonstrated a mean relative
HD less than or equal to 0.15 for all DAGs, even at n = 500, and less than or equal to
0.10 for all DAGs at n = 1000 or higher. The PC algorithm exhibited slightly lower values
compared to the Inter-IA algorithm for large sample sizes (n = 2000, 5000, 10, 000). The
GS (Figure 2B) and IA (Figure 2C) algorithms both required the sample size to be at least
1000 in order for the mean relative HD to be less than or equal to 0.15 for all DAGs, and it
was less than or equal to 0.10 for all DAGs at n = 2000 or higher (with the exception of the
IA algorithm, DAG #6, at n = 2000). The Fast-IA (Figure 2E) was the only algorithm that
required at least n = 2000 in order for the mean relative HD to be less than or equal to 0.15
for all DAGs.

https://github.com/teomoi/Causal-HRQoL
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By assessing the mean relative SHD (Figure 3), it was observed that the algorithms
PC, GS, IA, and Inter-IA (Figure 3A–D) exhibited similar behavior across all values of n
with a mean relative SHD being less than or equal to 0.30 for all DAGs at n = 1000, less
than or equal to 0.20 for all DAGs at n = 2000, and less than or equal to 0.15 for all DAGs
at n = 10, 000. The Fast-IA algorithm (Figure 3E) exhibited large values of mean relative
SHD even for n = 5000.

The number for successfully estimating the whole causal structure across the 1000 iter-
ations, represented by the number of zero values in either the HD or the SHD, was observed
to be higher for simpler structures and increased as the number of participants n increased.
For instance, in the case of the PC algorithm (Table A1), even at n = 500, for the simpler
DAGs #1 and 2, the number of zero values in HD across 1000 iterations was 532 and 491,
respectively, while for the more complex DAGs #5, 6, and 7, the corresponding numbers
were 45, 84, and 142, respectively (Table A1). At n = 10, 000, DAGs #1 and 2 exhibited
905 and 885, respectively, as the number of zero values in HD across 1000 iterations, while
DAGs #5, 6 and 7 exhibited 445, 249, and 232, respectively. The numbers of zero values in
the SHD case were in general lower than the corresponding ones in the HD case. In the
previous example, it is shown in Table A1 that at n = 500, for the simpler DAGs #1 and 2,
the numbers of zero values in SHD across 1000 iterations were 526 and 479, respectively,
while for the more complex DAGs #5, 6, and 7, the corresponding numbers were 8, 20,
and 48, respectively. At n = 10, 000, however, the values were almost identical with the
HD case, with DAGs #1 and 2 exhibiting 905 and 885, respectively, and DAGs #5, 6, and 7
exhibiting 390, 249, and 232, respectively. Similar results apply for all the algorithms.

Additionally, it was observed that the difference in zero values among the least
complex and most complex DAGs was in most cases very large. For example, when
assessing the SHD considering the Inter-IA algorithm, at n = 500, DAGs #1 and 2 exhibited
737 and 479 for the number of zeros in SHD across 1000 iterations, while for DAGs #5, 6,
and 7, the corresponding numbers were 8, 0, and 6, respectively (Table A4). At n = 1000,
DAGs #1 and 2 exhibited 871 and 797, respectively, while the number of zeros in SHD in
DAGs #5, 6, and 7 was 46, 22, and 85, respectively. Finally, at n = 10, 000, DAGs #1 and
2 exhibited 864 and 885, respectively, while the number of zeros in SHD in DAGs #5, 6,
and 7 was 390, 177, and 238, respectively. This level of difference was observed across all
algorithms for both HD and SHD.

In addition, more complex structures, such as DAGs #5, 6, and 7, exhibited higher
values of relative HD/SHD compared to less complex structures such as DAGs #1, 2, and 3,
or even #4. This was particularly evident in the case of the relative HD (Figure 2), in which
the values corresponding to DAGs #5, 6, and 7 were in almost all cases higher than those
corresponding to the remaining DAGs for all algorithms apart from the Fast-IA algorithm.
In particular, at n = 1000 or higher, a clear distinction is observed at the level of the values
corresponding to the group of DAGs #5, 6, and 7 and the group of DAGs #1, 2, 3, and 4.
For instance, in the case of the GS algorithm (Figure 2B, Table A2), at n = 1000, the relative
HD values for DAGs #1, 2, 3, and 4 were 0.03, 0.03, 0.05, and 0.04, while for DAGs #5, 6,
and 7 the corresponding values were much higher (0.11, 0.15, and 0.12). At n = 2000, the
relative HD values for DAGs #1, 2, 3, and 4 were 0.03, 0.02, 0.03, and 0.02, while for DAGs
#5, 6, and 7 the corresponding values were 0.07, 0.10, and 0.09. Even at n = 10, 000, the
values’ level differences between these two groups were still observed, since the relative
HD values for DAGs #1, 2, 3, and 4 were 0.02, 0.02, 0.03, and 0.02, while for DAGs #5, 6, and
7 the corresponding values were 0.04, 0.07, and 0.07. Similar differences in the relative HD
values between the groups of DAGs #1, 2, 3, and 4 and DAGs #5, 6, and 7 were observed in
the case of the PC, IA, and Inter-IA algorithms (Figure 2A,C,D).

In the case of the relative SHD (Figure 3), the difference between the groups of more
complex and less complex DAGs was less pronounced. Still, the values corresponding to
DAGs #5, 6, and 7 were in general higher than those corresponding to the remaining DAGs
for all algorithms apart from the Fast-IA algorithm. However, this distinction was more
evident for higher values of sample size compared to the case of relative HD, in particular,
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at n = 2000 or higher. Assessing, for instance, the case of the GS algorithm (Figure 3B,
Table A2), at n = 1000, the relative SHD values for DAGs #1, 2, 3, and 4 were 0.07, 0.12,
0.16, and 0.24, while for DAGs #5, 6, and 7 the corresponding values were 0.26, 0.29, and
0.23, i.e., in the case of DAG #4, the value is comparable to DAGs #5, 6, and 7. At n = 2000,
the relative SHD values for DAGs #1, 2, 3, and 4 were 0.07, 0.06, 0.09, and 0.08, while for
DAGs #5, 6, and 7 the corresponding values were 0.19, 0.16, and 0.14. At n = 10, 000, the
relative SHD values for DAGs #1, 2, 3, and 4 were 0.06, 0.05, 0.06, and 0.03, while for DAGs
#5, 6, and 7 the corresponding values were 0.09, 0.08, and 0.09.
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On the other hand, despite the differences between algorithms, the pattern evolution
of the measures’ values over the sample size was similar in each algorithm. Namely, the
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performance of each algorithm based on the HD, the SHD, and the number for successfully
estimating the whole causal structure across the 1000 iterations improved in a similar
manner with increasing sample size for all the seven structures considered (see, e.g.,
Figures 2 and 3A–D). The only exception was the Fast-IA algorithm in the case of the mean
relative SHD (Figure 3E). In addition, the algorithms PC, GS, IA, and Inter-IA exhibited a
similar pattern evolution among each other as well, both in the case of HD (Figure 2A–D)
and in the case of SHD (Figure 3A–D).
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3.2. Resource Description Framework Knowledge Graph
3.2.1. Representing Questionnaires and Responses

A hypothetical HRQoL questionnaire corresponding to DAG #6 (Figure 1(6)) was used
as an example, and was represented according to the proposed methodology as a semantic
model (i.e., as an RDF KG) based on DDI-RDF. Figure 4 illustrates a representation of a
fragment of this hypothetical questionnaire in RDF Turtle serialization.
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Figure 4. Serialization of a fragment of a health-related quality of life questionnaire as a Resource
Description Framework Turtle.

The namespace prefixes at the top of the Turtle excerpt correspond to existing semantic
models available on the Web; the “disco” prefix corresponds to DDI-RDF, while prefix “:”
refers to the base prefix corresponding to a fictional namespace devised for the purposes of
this example.

With regard to the structure of the KG, we note the following points:

# The excerpt shown in the figure only includes three sample hypothetical questions for
illustration purposes. The representation of an actual HRQoL questionnaire would
include all the questions.

# In order to also represent the order of questions in the questionnaire, every question
contains information about the previous one via predicate “:isAfter”.

# The association of questions to facets (see Section 2.2.3) is materialized via DDI-RDF
predicate “disco:concept”.

# The association of facets to domains is materialized via SKOS predicate “skos:broader”,
which represents a narrower–broader interrelationship.

In a similar fashion, the patients’ responses were serialized in RDF Turtle, as seen in
Figure 5.

The excerpt represents a sample hypothetical patient and their responses to questions
“O” and “P”, which are specified in Figure 4. In this case, the responses assume integer
values ranging from 1 to 4.
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Resource Description Framework Turtle.

3.2.2. Representing Cause–Effect Relationships

Still remaining within the RDF realm, the cause–effect relationships among the ques-
tions were also represented in the same manner. Figure 6 illustrates a subset from synthetic
DAG #6 (see Figure 1(6)) where the cause–effect relationship between questions (red nodes)
was represented via the property “isCauseOf”. The order of questions in the questionnaire
via the predicate “:isAfter” was not displayed in Figure 6, since in this example it was trivial
and corresponded to the alphabetical order of the questions (e.g., T is after S). Figure 6
also includes hypothetical facets corresponding to each question along with respective
hypothetical second-level domains (both facets and domains are illustrated as cyan nodes).
For instance, question Q is the cause of question R. Moreover, question Q has a facet of
“Activities of daily living”, question R has a facet of “Work capacity”, and both of the facets
belong to the same second-level domain “Physical health”.
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Q, R, S, T, U, V, W, X, Y, and Z), while the cyan nodes represent the respective hypothetical facets
and second-level domains of the questions. The labels over the edges reflect the respective semantics
including the cause–effect relationships between questions. For instance, over the edge that connects
questions S and T, the label “is cause of” shows that question S is the cause of question T. Moreover,
question S has a facet of “Self-esteem” that belongs to the second-level domain “Psychological”.

Next, Table 1 indicates the respective intensities of the inter-domain associations based
on sample DAG #6. Associations of a specific domain to itself were not taken into account.
For instance, “Environment” was observed to be the cause domain of “Physical Health”
three times; namely, a cause–effect relationship with the cause variable belonging to the
domain of “Environment” and the effect variable belonging to the domain of “Physical
Health” was observed three times in total. On the other hand, a cause–effect relationship
with the cause variable belonging to the domain of “Social relationships” and the effect
variable belonging to the domain of “Environment” was observed only once.

Table 1. Intensities of the inter-domain associations based on sample DAG #6.

Cause Domain Effect Domain Count

Environment Physical health 3

Environment Psychological 2

Environment Social relationships 2

Physical health Environment 1

Physical health Social relationships 1

Psychological Environment 1

Psychological Social relationships 1

Social relationships Environment 1

4. Discussion
4.1. Causal Discovery

In order to achieve reliable results in a real-data HRQoL application, several aspects
should be taken into account. The simulation results in this study indicated that the per-
formance of different constraint-based algorithms was influenced by both the complexity
of the underlying causal structures and the sample size. Overall, the mean values corre-
sponding to both the HD and the SHD (and the corresponding relative measures) generally
increased as the number of nodes/edges increased, and decreased as the sample size in-
creased, with the HD values being lower, in general, compared to the corresponding SHD
values. Similarly, the number of zero values in both HD and SHD across the 1000 iterations
was observed to be lower for more complex structures and increased as the sample size
increased, with the numbers of zero values in the SHD case being in most cases lower than
the corresponding ones in the HD case. The pattern evolution of the measures’ values over
the sample size was similar in each algorithm across all DAGs considered. In addition, the
algorithms PC, GS, IA, and Inter-IA exhibited a similar pattern evolution among each other
in the cases of both HD and SHD.

In the more complex DAGs #5, 6, and 7, which demonstrated a range of 21–26 in the
number of nodes and 17–21 in the number of edges, compared to the simpler DAGs #1,
2, 3, and 4, which demonstrated a range of 5–25 in the number of nodes and 5–16 in the
number of edges, higher mean values were exhibited in both HD and SHD in almost all
cases, and for all algorithms, excluding the Fast-IA algorithm. Similarly, by assessing the
number of successful estimations of the whole causal structure across the 1000 iterations,
the algorithms exhibited the best performance in the simpler DAGs #1 and 2, and the worst
in the more complex DAGs #5, 6, and 7. On the other hand, by increasing the sample size,
the performance of the algorithms, considering all measures of assessment, improved and
usually started to converge for values of n equal to or higher than 2000.



Algorithms 2024, 17, 138 14 of 24

These results were expected to some extent, since, intuitively, a more complex underly-
ing causal structure is harder to estimate in an efficient manner compared to a less complex
structure, while a larger sample size is connected, in general, to more robust estimation.
A similar result regarding the performance improvement when the sample size is larger
was observed by Farnia et al. [47], although in that study the impact of the sample size was
assessed for continuous variables in the presence/absence of latent confounders. Regarding
the complexity of the structure/network, Scutari et al. [53] concluded that by comparing
small networks (less than 50 nodes) versus large networks (more than 50 nodes), no system-
atic differences in the accuracy of network reconstruction were observed in the rankings
of the learning algorithms that were assessed. Although this seems to be contradictory to
the results in our study, it should be noted that networks of similar size may demonstrate
large differences in the number of parameters and thus large differences in their levels of
complexity, as is stated as well by Scutari et al. [53]. Therefore, the distinction based on the
number of nodes does not represent an explicit distinction in structure complexity. On the
other hand, in our study, the complexity of the structure is reflected in both the number of
nodes and edges. In addition, in the simulation study [53], a concept of relative sample
size was employed (n/|Θ|), accounting for the number of network parameters (|Θ|).
To sustain the same relative sample size, larger values of absolute sample size (n) were
required for more complex networks. Thus, although the structure learning algorithms did
not exhibit differences in their accuracy rankings between small and large networks, the
comparison was based, in general, on larger absolute sample size values for more complex
networks compared to less complex networks. Thus, these results are in accordance with
our results, since the values of the measures considered were comparable between more
complex networks for larger absolute sample size and less complex networks for smaller
absolute sample size.

The observation that the HD values were, in general, lower than the corresponding
SHD values is mainly attributed to the fact that HD only accounts for differences in the
skeletons of DAGs, while SHD refers to the direction of the relationships as well.

On the other hand, the similarities in the pattern evolution of the assessment mea-
sures’ values over the sample size across the seven different structures in each algorithm
indicate that the structure complexity did not constrain the improvement of the algorithms’
performance as the sample size increased. On the contrary, the improvement pattern was
observed to be independent of the complexity and mainly dependent on the sample size
at hand. The only exception was the Fast-IA algorithm, which, particularly in the case
of SHD, demonstrated different evolution patterns across the seven DAGs (Figure 3E). It
should be noted, however, that despite the fact that the algorithms exhibited, in general,
similar pattern evolutions regarding both HD and SHD and all algorithms performed quite
well for large sample sizes, they exhibited noticeable differences for small sample sizes,
more specifically at n = 500. It is shown in Figure 2 that the PC and the Inter-IA algorithms
exhibited clearly lower mean relative HD values at n = 500 compared to all the remaining
algorithms. This behavior was observed as well in the case of SHD (Figure 3). In addition,
the level of complexity of the initial structure had an impact on the value level of relative
HD and relative SHD; namely, in more complex structures such as DAGs #5, 6, and 7, the
observed values were higher compared to less complex structures.

4.2. Knowledge Representation via Semantic KGs

By representing the derived outcomes from this work as a KG that complies with glob-
ally established W3C standards, three important aspects were facilitated: (a) shareability, by
allowing potentially interested third parties to easily adopt our work and possibly extend
it, (b) collaboration, by laying the groundwork for forming a community of stakeholders
with shared interests that “speak the same language” with the proposed RDF-KG, and
(c) interoperability with third-party applications and AI agents that may capitalize on our
outputs to reach their own research goals.
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Additionally, by representing this work using semantic technologies, its impact is
elevated by providing a framework that makes the data actionable, namely, facilitating the
extraction of insights that can be readily used to make informed decisions. For instance,
Figure 6 showcases, on top of the cause–effect relationships, the facets corresponding to
each question, along with the corresponding second-level domains. Having the latter in the
KG allows for a degree of deeper semantic analysis of the DAG. For instance, a cause–effect
relationship can be additionally explained based on the facets and/or broader domains
that correspond to the questions involved. Moreover, the total number of cause–effect
associations between domains can be easily retrieved, providing an additional layer of
interpretation. For the example of DAG #6 (Figure 1(6)), Table 1 summarizes the total count
of the inter-domain associations. By obtaining this information in a real-data application, it
can be inferred which broad domains are strongly connected to each other and in which di-
rection, at the specific instance that the questionnaires were completed by the participating
individuals. In this specific hypothetical example, the environment seems to have a strong
effect on the physical health, psychological, and social relationships domains. It should be
noted that, in general, not all questions in an HRQoL questionnaire have a facet and/or
a second-level domain, and relevant interpretations are strongly related to the HRQoL
questionnaire choice.

Despite its increased utility in data representation, the RDF is arguably challenging to
work with, especially for non-specialists who could benefit from a user-friendly approach
that would enhance accessibility and understanding while visualizing and traversing the
KG. Fortunately, several software tools exist that address those needs and capitalize on the
graph representation intrinsic to the RDF model [68]. Some representative examples include
OntoGraf, a visualization plugin contained in the popular KG management tool Protégé
v5.6.3 [69], as well as SemSpect, a flexible tool that deploys visual aggregation to solve the
“hairball problem” looming in visualizing large graphs [70]. Figure 7 illustrates the use of
the latter tool for visualizing a sample KG; users can freely move in both directions of the
cause–effect relationships between responses to questions in an HRQoL questionnaire.

Through user-friendly visual representations like the ones discussed above, users can
intuitively navigate and interact with the KG in a “follow your nose” fashion, leveraging
features like zooming, filtering, and interactive exploration. As a result, the integration of
visualization methods fosters greater engagement and participation from diverse stakeholders.
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The numbers in parenthesis indicate the counts of respective entities (e.g., the bigger cluster in the
middle contains 26 questions). The node in red corresponds each time to the selected node for
investigation, while the arrows next to the predicates indicate the directionality of the respective
properties; for instance, the sample questionnaire (red node) contains 26 questions in total.

4.3. Impact, Limitations, and Future Work

Overall, the purpose of this study was to highlight the dynamics of applying causal
discovery using BNs and DAGs specifically within the HRQoL context, the most impor-
tant aspects that should be taken into account in a real HRQoL application in order to
reach reliable results, and the wide possibilities of results’ interpretations. The selected
causal structure learning algorithms were assessed under different specifications of sam-
ple size, number of nodes, number of edges, and, in general, network structure. The
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results in this study could be used as a guide for researchers opting to employ causal
discovery in a real-data application involving HRQoL data. Namely, this study could aid
the choice/design of HRQoL questionnaires (number of items involved), appropriately
setting the sample size by exploiting scientific intuition regarding the underlying causal
structure, and assessing different algorithm options. An additional layer for when sample
size limitations exist, which is often the case in real-data applications, could be to perform
a preliminary assessment. More specifically, a preliminary analysis could be employed in
order to estimate the performance of an algorithm under a specific HRQoL questionnaire
(number of items), the prior knowledge regarding its underlying causal structure, and
the existent limitations concerning the number of participants that could be included in
the study. Globally established W3C-endorsed semantic technologies can be employed
to further enrich the results of causal discovery and to provide the basis for deeper in-
terpretations. To facilitate the interested user to apply the methods covered in this study,
a dedicated GitHub repository has been developed, including detailed documentation
(https://github.com/teomoi/Causal-HRQoL).

Causal discovery within the HRQoL questionnaire context is a highly promising
tool. Efficient estimation of the causal structure among HRQoL items and the elaborate
interpretation of the obtained results could boost the vital role of HRQoL questionnaires
in better understanding the different aspects of an individual patient’s well-being and
promoting patient-centered care and management.

A limitation of the study is that the algorithms have not been tested on real data.
However, a real-data application was beyond the purpose of this manuscript that aimed at
assessing simulated data in which the true structure is known. Employing causal discovery
on real HRQoL data and capitalizing on the herein proposed aspects is one of our future
research endeavors. Within this context, future aims include semantically analyzing the
actual text of each question and contributing to further assessing and understanding their
cause–effect relationships. Moreover, we are also considering the application of graph
analytics algorithms on top of KGs to extract deeper insights on the comparative importance
of specific nodes.

Author Contributions: Conceptualization, M.G., E.K. and T.M.; Data curation, M.G., E.K. and
T.M.; Formal analysis, M.G. and E.K.; Funding acquisition, T.M.; Investigation, M.G. and D.K.;
Methodology, M.G., E.K. and T.M.; Project administration, T.M.; Resources, T.M.; Software, M.G.,
E.K. and T.M.; Supervision, T.M.; Validation, K.F., L.A. and I.K.; Visualization, M.G., E.K. and T.M.;
Writing—original draft, M.G., E.K. and T.M.; Writing—review and editing, K.F., L.A., I.K. and T.M.
All authors have read and agreed to the published version of the manuscript.

Funding: The research project was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers”
(Project Number: 553).

Data Availability Statement: Resources and code related to the analysis are available at the GitHub
repository: https://github.com/teomoi/Causal-HRQoL.

Conflicts of Interest: Author Efstratios Kontopoulos was employed by the company Foodpairing NV.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

https://github.com/teomoi/Causal-HRQoL
https://github.com/teomoi/Causal-HRQoL


Algorithms 2024, 17, 138 17 of 24

Appendix A

Table A1. The mean Hamming distance (HD) across 1000 iterations, the mean relative HD (rHD)
across 1000 iterations, the number of cases the HD was zero across 1000 iterations (0’s in HD), the
mean structural Hamming distance (SHD) across 1000 iterations, the mean relative SHD (rSHD)
across 1000 iterations, and the number of cases the SHD was zero across 1000 iterations (0’s in SHD)
based on estimations with the PC algorithm are displayed. The notations DAG #1, 2, 3, 4, 5, 6, and 7
correspond to the seven synthetic directed acyclic graphs that are described in Section 2.2.1 and are
displayed in Figure 1.

PC DAG # 1 2 3 4 5 6 7

# of nodes 5 10 11 15 21 26 26

Sample size n # of edges 5 9 11 16 17 21 19

100

HD 2.01 2.70 4.89 8.84 7.12 8.86 7.66
rHD 0.40 0.30 0.44 0.55 0.42 0.42 0.40

0’s in HD 13 11 0 0 0 0 0
SHD 3.33 5.41 8.60 12.99 10.78 14.56 11.89
rSHD 0.67 0.60 0.78 0.81 0.63 0.69 0.63

0’s in SHD 5 3 0 0 0 0 0

500

HD 0.52 0.60 1.25 1.85 2.33 2.14 1.82
rHD 0.10 0.07 0.11 0.12 0.14 0.10 0.10

0’s in HD 532 491 226 107 45 84 142
SHD 0.95 1.16 4.05 5.62 6.24 5.42 3.91
rSHD 0.19 0.13 0.37 0.35 0.37 0.26 0.21

0’s in SHD 526 479 85 19 8 20 48

1000

HD 0.18 0.21 0.50 0.56 1.63 1.50 1.48
rHD 0.04 0.02 0.05 0.04 0.10 0.07 0.08

0’s in HD 832 805 603 561 157 220 220
SHD 0.30 0.42 1.72 3.14 4.85 3.28 2.92
rSHD 0.06 0.05 0.16 0.20 0.29 0.16 0.15

0’s in SHD 828 797 378 171 46 141 149

2000

HD 0.10 0.11 0.20 0.30 0.97 1.26 1.35
rHD 0.02 0.01 0.02 0.02 0.06 0.06 0.07

0’s in HD 909 896 820 747 373 270 231
SHD 0.12 0.19 0.68 2.02 3.32 2.20 2.49
rSHD 0.02 0.02 0.06 0.13 0.20 0.10 0.13

0’s in SHD 905 888 716 325 144 252 211

5000

HD 0.10 0.12 0.22 0.28 0.77 1.26 1.40
rHD 0.02 0.01 0.02 0.02 0.05 0.06 0.07

0’s in HD 903 889 807 757 456 272 226
SHD 0.11 0.18 0.37 1.07 2.29 2.12 2.37
rSHD 0.02 0.02 0.03 0.07 0.13 0.10 0.12

0’s in SHD 903 889 803 573 299 271 226

10,000

HD 0.10 0.12 0.22 0.33 0.78 1.27 1.36
rHD 0.02 0.01 0.02 0.02 0.05 0.06 0.07

0’s in HD 905 885 801 712 445 249 232
SHD 0.12 0.23 0.33 0.59 1.60 2.06 2.39
rSHD 0.02 0.03 0.03 0.04 0.09 0.10 0.13

0’s in SHD 905 885 801 692 390 249 232
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Table A2. The mean Hamming distance (HD) across 1000 iterations, the mean relative HD (rHD)
across 1000 iterations, the number of cases the HD was zero across 1000 iterations (0’s in HD), the
mean structural Hamming distance (SHD) across 1000 iterations, the mean relative SHD (rSHD)
across 1000 iterations, and the number of cases the SHD was zero across 1000 iterations (0’s in SHD)
based on estimations with the Grow–Shrink (GS) algorithm are displayed. The notations DAG #1,
2, 3, 4, 5, 6, and 7 correspond to the seven synthetic directed acyclic graphs that are described in
Section 2.2.1 and are displayed in Figure 1.

GS DAG # 1 2 3 4 5 6 7

# of nodes 5 10 11 15 21 26 26

Sample size n # of edges 5 9 11 16 17 21 19

100

HD 1.48 2.27 4.42 9.04 8.62 11.89 10.02
rHD 0.30 0.25 0.40 0.56 0.51 0.57 0.53

0’s in HD 49 17 0 0 0 0 0
SHD 3.60 5.68 8.76 13.37 11.62 16.65 14.41
rSHD 0.72 0.63 0.80 0.84 0.68 0.79 0.76

0’s in SHD 28 1 0 0 0 0 0

500

HD 0.31 0.40 1.15 2.22 3.17 4.83 3.58
rHD 0.06 0.04 0.10 0.14 0.19 0.23 0.19

0’s in HD 714 645 241 65 11 2 18
SHD 1.03 2.45 3.69 7.73 6.28 10.37 7.58
rSHD 0.21 0.27 0.34 0.48 0.37 0.49 0.40

0’s in SHD 703 283 38 2 0 0 0

1000

HD 0.14 0.18 0.50 0.70 1.92 3.07 2.26
rHD 0.03 0.02 0.05 0.04 0.11 0.15 0.12

0’s in HD 870 832 580 498 94 52 116
SHD 0.37 1.05 1.71 3.76 4.44 6.16 4.32
rSHD 0.07 0.12 0.16 0.24 0.26 0.29 0.23

0’s in SHD 866 602 228 101 3 20 62

2000

HD 0.13 0.17 0.32 0.38 1.23 2.16 1.67
rHD 0.03 0.02 0.03 0.02 0.07 0.10 0.09

0’s in HD 877 841 731 679 264 145 195
SHD 0.35 0.54 0.96 1.28 3.25 3.26 2.59
rSHD 0.07 0.06 0.09 0.08 0.19 0.16 0.14

0’s in SHD 877 789 565 444 43 130 175

5000

HD 0.15 0.18 0.26 0.35 0.94 1.55 1.39
rHD 0.03 0.02 0.02 0.02 0.06 0.07 0.07

0’s in HD 857 820 769 701 414 203 225
SHD 0.41 0.52 0.54 0.55 2.02 2.13 1.97
rSHD 0.08 0.06 0.05 0.03 0.12 0.10 0.10

0’s in SHD 857 816 760 674 268 201 220

10,000

HD 0.11 0.18 0.31 0.36 0.75 1.37 1.26
rHD 0.02 0.02 0.03 0.02 0.04 0.07 0.07

0’s in HD 889 836 732 687 475 245 275
SHD 0.29 0.48 0.63 0.50 1.50 1.76 1.67
rSHD 0.06 0.05 0.06 0.03 0.09 0.08 0.09

0’s in SHD 889 831 727 680 375 326 345
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Table A3. The mean Hamming distance (HD) across 1000 iterations, the mean relative HD (rHD)
across 1000 iterations, the number of cases the HD was zero across 1000 iterations (0’s in HD), the
mean structural Hamming distance (SHD) across 1000 iterations, the mean relative SHD (rSHD)
across 1000 iterations, and the number of cases the SHD was zero across 1000 iterations (0’s in SHD)
based on estimations with the Incremental Association (IA) algorithm are displayed. The notations
DAG #1, 2, 3, 4, 5, 6, and 7 correspond to the seven synthetic directed acyclic graphs that are described
in Section 2.2.1 and are displayed in Figure 1.

IA DAG # 1 2 3 4 5 6 7

# of nodes 5 10 11 15 21 26 26

Sample size n # of edges 5 9 11 16 17 21 19

100

HD 1.54 2.21 4.32 8.06 7.85 11.03 9.93
rHD 0.31 0.25 0.39 0.50 0.46 0.53 0.52

0’s in HD 44 25 0 0 0 0 0
SHD 3.66 5.68 8.72 12.79 11.17 16.72 14.32
rSHD 0.73 0.63 0.79 0.80 0.66 0.80 0.75

0’s in SHD 25 2 0 0 0 0 0

500

HD 0.27 0.37 1.05 1.73 2.79 4.14 3.01
rHD 0.05 0.04 0.10 0.11 0.16 0.20 0.16

0’s in HD 747 665 280 124 23 15 37
SHD 0.89 2.29 3.49 7.35 5.97 9.96 7.00
rSHD 0.18 0.25 0.32 0.46 0.35 0.47 0.37

0’s in SHD 736 290 46 5 1 0 2

1000

HD 0.10 0.20 0.50 0.60 1.95 2.85 2.11
rHD 0.02 0.02 0.05 0.04 0.11 0.14 0.11

0’s in HD 898 819 589 553 122 36 118
SHD 0.30 1.10 1.80 3.50 4.56 6.06 4.14
rSHD 0.06 0.12 0.16 0.22 0.27 0.29 0.22

0’s in SHD 898 581 255 111 10 12 50

2000

HD 0.12 0.18 0.32 0.40 1.22 2.30 1.63
rHD 0.02 0.02 0.03 0.03 0.07 0.11 0.09

0’s in HD 887 837 713 655 271 69 202
SHD 0.34 0.62 0.94 1.29 3.14 4.26 2.53
rSHD 0.07 0.07 0.09 0.08 0.18 0.20 0.13

0’s in SHD 887 787 532 395 176 60 180

5000

HD 0.14 0.21 0.34 0.41 1.04 2.00 1.18
rHD 0.03 0.02 0.03 0.03 0.06 0.10 0.06

0’s in HD 867 808 694 665 325 90 250
SHD 0.36 0.57 0.69 0.58 2.06 3.38 2.17
rSHD 0.07 0.06 0.06 0.04 0.12 0.16 0.11

0’s in SHD 867 799 687 643 200 86 194

10,000

HD 0.12 0.18 0.33 0.43 1.05 1.90 1.13
rHD 0.02 0.02 0.03 0.03 0.06 0.09 0.06

0’s in HD 879 837 715 638 352 121 305
SHD 0.30 0.48 0.63 0.60 1.60 2.30 1.63
rSHD 0.06 0.05 0.06 0.04 0.09 0.11 0.09

0’s in SHD 879 834 713 633 308 113 310
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Table A4. The mean Hamming distance (HD) across 1000 iterations, the mean relative HD (rHD)
across 1000 iterations, the number of cases the HD was zero across 1000 iterations (0’s in HD), the
mean structural Hamming distance (SHD) across 1000 iterations, the mean relative SHD (rSHD)
across 1000 iterations, and the number of cases the SHD was zero across 1000 iterations (0’s in SHD)
based on estimation with the Interleaved Incremental Association (Inter-IA) algorithm are displayed.
The notations DAG #1, 2, 3, 4, 5, 6, and 7 correspond to the seven synthetic directed acyclic graphs
that are described in Section 2.2.1 and are displayed in Figure 1.

Inter-IA DAG # 1 2 3 4 5 6 7

# of nodes 5 10 11 15 21 26 26

Sample size n # of edges 5 9 11 16 17 21 19

100

HD 1.52 2.70 4.89 7.90 7.12 10.34 8.68
rHD 0.30 0.30 0.44 0.49 0.42 0.49 0.46

0’s in HD 63 11 0 0 0 0 0
SHD 3.65 5.41 8.60 12.74 10.78 16.46 14.19
rSHD 0.73 0.60 0.78 0.80 0.63 0.78 0.75

0’s in SHD 35 3 0 0 0 0 0

500

HD 0.27 0.60 1.25 1.69 2.33 2.83 2.05
rHD 0.05 0.07 0.11 0.11 0.14 0.13 0.11

0’s in HD 742 491 226 176 45 37 99
SHD 0.93 1.16 4.05 7.34 6.24 8.53 5.85
rSHD 0.19 0.13 0.37 0.46 0.37 0.41 0.31

0’s in SHD 737 479 85 10 8 0 6

1000

HD 0.14 0.21 0.50 0.55 1.63 1.94 1.50
rHD 0.03 0.02 0.05 0.03 0.10 0.09 0.08

0’s in HD 875 805 603 584 157 77 208
SHD 0.38 0.42 1.72 3.40 4.85 4.76 3.31
rSHD 0.08 0.05 0.16 0.21 0.29 0.23 0.17

0’s in SHD 871 797 378 103 46 22 85

2000

HD 0.14 0.11 0.20 0.38 0.97 1.94 1.28
rHD 0.03 0.01 0.02 0.02 0.06 0.09 0.07

0’s in HD 865 896 820 684 373 83 249
SHD 0.40 0.19 0.68 1.27 3.32 3.63 1.97
rSHD 0.08 0.02 0.06 0.08 0.20 0.17 0.10

0’s in SHD 865 888 716 421 144 69 228

5000

HD 0.13 0.12 0.22 0.42 0.77 1.83 1.32
rHD 0.03 0.01 0.02 0.03 0.05 0.09 0.07

0’s in HD 877 889 807 649 456 113 247
SHD 0.35 0.18 0.37 0.67 2.29 3.10 1.88
rSHD 0.07 0.02 0.03 0.04 0.13 0.15 0.10

0’s in SHD 877 889 803 611 299 110 241

10,000

HD 0.14 0.12 0.22 0.40 0.78 1.58 1.33
rHD 0.03 0.01 0.02 0.03 0.05 0.08 0.07

0’s in HD 864 885 801 669 445 179 241
SHD 0.35 0.23 0.33 0.59 1.60 2.38 1.81
rSHD 0.07 0.03 0.03 0.04 0.09 0.11 0.10

0’s in SHD 864 885 801 656 390 177 238
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Table A5. The mean Hamming distance (HD) across 1000 iterations, the mean relative HD (rHD)
across 1000 iterations, the number of cases the HD was zero across 1000 iterations (0’s in HD), the
mean structural Hamming distance (SHD) across 1000 iterations, the mean relative SHD (rSHD)
across 1000 iterations, and the number of cases the SHD was zero across 1000 iterations (0’s in SHD)
based on estimations with the Fast Incremental Association (Fast-IA) algorithm are displayed. The
notations DAG #1, 2, 3, 4, 5, 6, and 7 correspond to the seven synthetic directed acyclic graphs that
are described in Section 2.2.1 and are displayed in Figure 1.

Fast-IA DAG # 1 2 3 4 5 6 7

# of nodes 5 10 11 15 21 26 26

Sample size n # of edges 5 9 11 16 17 21 19

100

HD 3.82 6.75 9.51 13.87 11.98 13.69 11.61
rHD 0.76 0.75 0.86 0.87 0.70 0.65 0.61

0’s in HD 0 0 0 0 0 0 0
SHD 4.23 7.21 10.23 14.26 13.10 16.28 14.36
rSHD 0.85 0.80 0.93 0.89 0.77 0.78 0.76

0’s in SHD 0 0 0 0 0 0 0

500

HD 2.85 3.09 5.04 7.81 5.04 6.78 6.81
rHD 0.57 0.34 0.46 0.49 0.30 0.32 0.36

0’s in HD 0 0 0 0 0 0 0
SHD 3.77 5.18 8.12 11.34 7.45 12.22 12.29
rSHD 0.75 0.58 0.74 0.71 0.44 0.58 0.65

0’s in SHD 0 0 0 0 0 0 0

1000

HD 2.82 3.09 5.06 7.64 4.89 6.56 6.58
rHD 0.56 0.34 0.46 0.48 0.29 0.31 0.35

0’s in HD 0 0 0 0 0 0 0
SHD 3.67 4.60 7.54 10.56 6.72 11.11 10.56
rSHD 0.74 0.51 0.69 0.66 0.40 0.53 0.56

0’s in SHD 0 0 0 0 0 0 0

2000

HD 0.09 0.96 1.14 1.90 1.23 2.17 1.26
rHD 0.02 0.11 0.10 0.12 0.07 0.10 0.07

0’s in HD 915 182 151 63 279 55 266
SHD 0.14 3.43 3.94 5.29 2.98 4.93 1.84
rSHD 0.03 0.38 0.36 0.33 0.18 0.23 0.10

0’s in SHD 915 176 117 32 86 50 238

5000

HD 0.08 1.06 1.21 1.85 1.00 1.76 1.26
rHD 0.02 0.12 0.11 0.12 0.06 0.08 0.07

0’s in HD 918 75 90 49 368 122 260
SHD 0.11 3.83 3.99 4.84 1.90 3.78 1.63
rSHD 0.02 0.43 0.36 0.30 0.11 0.18 0.09

0’s in SHD 918 75 89 48 262 122 258

10,000

HD 0.12 0.22 0.30 0.36 0.90 1.53 1.31
rHD 0.02 0.02 0.03 0.02 0.05 0.07 0.07

0’s in HD 882 804 740 688 388 211 249
SHD 0.34 0.56 0.61 0.50 1.39 2.15 1.76
rSHD 0.07 0.06 0.06 0.03 0.08 0.10 0.09

0’s in SHD 882 799 726 669 333 206 248

References
1. Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.F.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and Preliminary Testing

of the New Five-Level Version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [CrossRef] [PubMed]
2. Janssen, M.F.; Pickard, A.S.; Golicki, D.; Gudex, C.; Niewada, M.; Scalone, L.; Swinburn, P.; Busschbach, J. Measurement Properties

of the EQ-5D-5L Compared to the EQ-5D-3L across Eight Patient Groups: A Multi-Country Study. Qual. Life Res. 2013, 22,
1717–1727. [CrossRef] [PubMed]

https://doi.org/10.1007/s11136-011-9903-x
https://www.ncbi.nlm.nih.gov/pubmed/21479777
https://doi.org/10.1007/s11136-012-0322-4
https://www.ncbi.nlm.nih.gov/pubmed/23184421


Algorithms 2024, 17, 138 22 of 24

3. van Hout, B.; Janssen, M.F.; Feng, Y.-S.; Kohlmann, T.; Busschbach, J.; Golicki, D.; Lloyd, A.; Scalone, L.; Kind, P.; Pickard, A.S.
Interim Scoring for the EQ-5D-5L: Mapping the EQ-5D-5L to EQ-5D-3L Value Sets. Value Health 2012, 15, 708–715. [CrossRef]
[PubMed]

4. Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection.
Med. Care 1992, 30, 473–483. [CrossRef]

5. The Whoqol Group. Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychol. Med.
1998, 28, 551–558. [CrossRef] [PubMed]

6. Orley, J.; Kuyken, W. Quality of Life Assessment: International Perspectives; Springer: Berlin, Germany, 1994; ISBN 0387582053.
7. Group, W. Development of the WHOQOL: Rationale and Current Status. Int. J. Ment. Health 1994, 23, 24–56. [CrossRef]
8. Szabo, S.; On Behalf of the WHOQOL Group. The World Health Organization Quality of Life (WHOQOL) Assessment Instrument.

In Quality of Life and Pharmaeconomics in Clinical Trials, 2nd ed.; Lippincott-Raven Publisher: New York, NY, USA, 1996; pp. 355–362.
9. Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; De

Haes, J.C.J.M.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument
for Use in International Clinical Trials in Oncology. JNCI J. Natl. Cancer Inst. 1993, 85, 365–376. [CrossRef] [PubMed]

10. Oerlemans, S.; Efficace, F.; Kieffer, J.M.; Kyriakou, C.; Xochelli, A.; Levedahl, K.; Petranovic, D.; Borges, F.C.; Bredart, A.; Shamieh,
O.; et al. International Validation of the EORTC QLQ-CLL17 Questionnaire for Assessment of Health-related Quality of Life for
Patients with Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2022, 197, 431–441. [CrossRef] [PubMed]

11. Cella, D.F.; Tulsky, D.S.; Gray, G.; Sarafian, B.; Linn, E.; Bonomi, A.; Silberman, M.; Yellen, S.B.; Winicour, P.; Brannon, J.; et al. The
Functional Assessment of Cancer Therapy Scale: Development and Validation of the General Measure. J. Clin. Oncol. 1993, 11,
570–579. [CrossRef] [PubMed]

12. Brady, M.J.; Cella, D.F.; Mo, F.; Bonomi, A.E.; Tulsky, D.S.; Lloyd, S.R.; Deasy, S.; Cobleigh, M.; Shiomoto, G. Reliability and Validity
of the Functional Assessment of Cancer Therapy-Breast Quality-of-Life Instrument. J. Clin. Oncol. 1997, 15, 974–986. [CrossRef]

13. Cella, D.F.; Bonomi, A.E.; Lloyd, S.R.; Tulsky, D.S.; Kaplan, E.; Bonomi, P. Reliability and Validity of the Functional Assessment of
Cancer Therapy—Lung (FACT-L) Quality of Life Instrument. Lung Cancer 1995, 12, 199–220. [CrossRef] [PubMed]

14. Ward, W.L.; Hahn, E.A.; Mo, F.; Hernandez, L.; Tulsky, D.S.; Cella, D. Reliability and Validity of the Functional Assessment of
Cancer Therapy-Colorectal (FACT-C) Quality of Life Instrument. Qual. Life Res. 1999, 8, 181–195. [CrossRef] [PubMed]

15. Cella, D.; Jensen, S.E.; Webster, K.; Hongyan, D.; Lai, J.-S.; Rosen, S.; Tallman, M.S.; Yount, S. Measuring Health-Related Quality of
Life in Leukemia: The Functional Assessment of Cancer Therapy–Leukemia (FACT-Leu) Questionnaire. Value Health 2012, 15,
1051–1058. [CrossRef] [PubMed]

16. Janda, M.; Obermair, A.; Cella, D.; Perrin, L.C.; Nicklin, J.L.; Ward, B.G.; Crandon, A.J.; Trimmel, M. The Functional Assessment
of Cancer-Vulvar: Reliability and Validity. Gynecol. Oncol. 2005, 97, 568–575. [CrossRef] [PubMed]

17. Jackson, I.L.; Isah, A.; Arikpo, A.O. Assessing Health-Related Quality of Life of People with Diabetes in Nigeria Using the
EQ-5D-5L: A Cross-Sectional Study. Sci. Rep. 2023, 13, 22536. [CrossRef] [PubMed]

18. Xiao, Y.; Zhang, L.; Wei, Q.; Ou, R.; Hou, Y.; Liu, K.; Lin, J.; Yang, T.; Shang, H. Health-related Quality of Life in Patients with
Multiple System Atrophy Using the EQ-5D-5L. Brain Behav. 2022, 12, e2774. [CrossRef] [PubMed]

19. Claflin, S.; Campbell, J.A.; Norman, R.; Mason, D.F.; Kalincik, T.; Simpson-Yap, S.; Butzkueven, H.; Carroll, W.M.; Palmer, A.J.;
Blizzard, C.L.; et al. Using the EQ-5D-5L to Investigate Quality-of-Life Impacts of Disease-Modifying Therapy Policies for People
with Multiple Sclerosis (MS) in New Zealand. Eur. J. Health Econ. 2023, 24, 939–950. [CrossRef] [PubMed]

20. Zeng, X.; Sui, M.; Liu, R.; Qian, X.; Li, W.; Zheng, E.; Yang, J.; Li, J.; Huang, W.; Yang, H.; et al. Assessment of the Health Utility of
Patients with Leukemia in China. Health Qual. Life Outcomes 2021, 19, 65. [CrossRef] [PubMed]

21. Zhou, Z.; Yang, L.; Chen, Z.; Chen, X.; Guo, Y.; Wang, X.; Dong, X.; Wang, T.; Zhang, L.; Qiu, Z.; et al. Health-related Quality of
Life Measured by the Short Form 36 in Immune Thrombocytopenic Purpura: A Cross-sectional Survey in China. Eur. J. Haematol.
2007, 78, 518–523. [CrossRef] [PubMed]

22. Yang, R.; Yao, H.; Lin, L.; Ji, J.; Shen, Q. Health-Related Quality of Life and Burden of Fatigue in Chinese Patients with Immune
Thrombocytopenia: A Cross-Sectional Study. Indian J. Hematol. Blood Transfus. 2020, 36, 104–111. [CrossRef] [PubMed]

23. Cherchir, F.; Oueslati, I.; Yazidi, M.; Chaker, F.; Chihaoui, M. Assessment of Quality of Life in Patients with Permanent
Hypoparathyroidism Receiving Conventional Treatment. J. Diabetes Metab. Disord. 2023, 22, 1617–1623. [CrossRef] [PubMed]

24. Hossain, M.J.; Islam, M.W.; Munni, U.R.; Gulshan, R.; Mukta, S.A.; Miah, M.S.; Sultana, S.; Karmakar, M.; Ferdous, J.; Islam, M.A.
Health-Related Quality of Life among Thalassemia Patients in Bangladesh Using the SF-36 Questionnaire. Sci. Rep. 2023, 13, 7734.
[CrossRef] [PubMed]

25. Brzoska, P. Assessment of Quality of Life in Individuals with Chronic Headache. Psychometric Properties of the WHOQOL-BREF.
BMC Neurol. 2020, 20, 267. [CrossRef]

26. Bat-Erdene, E.; Hiramoto, T.; Tumurbaatar, E.; Tumur-Ochir, G.; Jamiyandorj, O.; Yamamoto, E.; Hamajima, N.; Oka, T.; Jadamba,
T.; Lkhagvasuren, B. Quality of Life in the General Population of Mongolia: Normative Data on WHOQOL-BREF. PLoS ONE
2023, 18, e0291427. [CrossRef] [PubMed]

27. Floris, F.; Comitini, F.; Leoni, G.; Moi, P.; Morittu, M.; Orecchia, V.; Perra, M.; Pilia, M.P.; Zappu, A.; Casini, M.R.; et al. Quality of
Life in Sardinian Patients with Transfusion-Dependent Thalassemia: A Cross-Sectional Study. Qual. Life Res. 2018, 27, 2533–2539.
[CrossRef] [PubMed]

https://doi.org/10.1016/j.jval.2012.02.008
https://www.ncbi.nlm.nih.gov/pubmed/22867780
https://doi.org/10.1097/00005650-199206000-00002
https://doi.org/10.1017/S0033291798006667
https://www.ncbi.nlm.nih.gov/pubmed/9626712
https://doi.org/10.1080/00207411.1994.11449286
https://doi.org/10.1093/jnci/85.5.365
https://www.ncbi.nlm.nih.gov/pubmed/8433390
https://doi.org/10.1111/bjh.18072
https://www.ncbi.nlm.nih.gov/pubmed/35255152
https://doi.org/10.1200/JCO.1993.11.3.570
https://www.ncbi.nlm.nih.gov/pubmed/8445433
https://doi.org/10.1200/JCO.1997.15.3.974
https://doi.org/10.1016/0169-5002(95)00450-F
https://www.ncbi.nlm.nih.gov/pubmed/7655830
https://doi.org/10.1023/A:1008821826499
https://www.ncbi.nlm.nih.gov/pubmed/10472150
https://doi.org/10.1016/j.jval.2012.08.2210
https://www.ncbi.nlm.nih.gov/pubmed/23244807
https://doi.org/10.1016/j.ygyno.2005.01.047
https://www.ncbi.nlm.nih.gov/pubmed/15863161
https://doi.org/10.1038/s41598-023-49322-8
https://www.ncbi.nlm.nih.gov/pubmed/38110447
https://doi.org/10.1002/brb3.2774
https://www.ncbi.nlm.nih.gov/pubmed/36124355
https://doi.org/10.1007/s10198-022-01518-x
https://www.ncbi.nlm.nih.gov/pubmed/36149605
https://doi.org/10.1186/s12955-021-01711-1
https://www.ncbi.nlm.nih.gov/pubmed/33639980
https://doi.org/10.1111/j.1600-0609.2007.00844.x
https://www.ncbi.nlm.nih.gov/pubmed/17419740
https://doi.org/10.1007/s12288-019-01124-7
https://www.ncbi.nlm.nih.gov/pubmed/32158092
https://doi.org/10.1007/s40200-023-01292-4
https://www.ncbi.nlm.nih.gov/pubmed/37975128
https://doi.org/10.1038/s41598-023-34205-9
https://www.ncbi.nlm.nih.gov/pubmed/37173392
https://doi.org/10.1186/s12883-020-01845-7
https://doi.org/10.1371/journal.pone.0291427
https://www.ncbi.nlm.nih.gov/pubmed/37773966
https://doi.org/10.1007/s11136-018-1911-7
https://www.ncbi.nlm.nih.gov/pubmed/29922915


Algorithms 2024, 17, 138 23 of 24

28. Nolte, S.; Liegl, G.; Petersen, M.A.; Aaronson, N.K.; Costantini, A.; Fayers, P.M.; Grønvold, M.; Holzner, B.; Johnson, C.D.;
Kemmler, G.; et al. General Population Normative Data for the EORTC QLQ-C30 Health-Related Quality of Life Questionnaire
Based on 15,386 Persons across 13 European Countries, Canada and the Unites States. Eur. J. Cancer 2019, 107, 153–163. [CrossRef]
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