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Abstract: Recently, there has been renewed interest in signed distance bound representations due to
their unique properties for 3D shape modelling. This is especially the case for deep learning-based
bounds. However, it is beneficial to work with polygons in most computer graphics applications.
Thus, in this paper, we introduce and investigate an asymptotically fast method for transforming
signed distance bounds into polygon meshes. This is achieved by combining the principles of
sphere tracing (or ray marching) with traditional polygonization techniques, such as marching
cubes. We provide theoretical and experimental evidence that this approach is of the O(N2 log N)

computational complexity for a polygonization grid with N3 cells. The algorithm is tested on both a
set of primitive shapes and signed distance bounds generated from point clouds by machine learning
(and represented as neural networks). Given its speed, implementation simplicity, and portability,
we argue that it could prove useful during the modelling stage as well as in shape compression
for storage.

Keywords: sphere tracing; marching cubes; signed distance bounds; neural shape representations

1. Introduction

A signed distance field (SDF) for some shape S is a function fS : R3 → R such that
fS(x, y, z) returns a geometric distance from the point (x, y, z) ∈ R3 to S. If (x, y, z) is within
S, then the returned distance is negative. In practice, we often cannot obtain the exact
distance to the shape but work with distance bounds that underestimate the distance some
of the time and never overestimate it. This enables us to efficiently represent a larger class
of shapes. J. C. Hart [1] (see also [2]) uses the definition that fS is a signed distance bound
(SDB) of S if and only if for all x ∈ R3 we have

| fS(x)| ≤ min
y∈ f−1

S (0)
||x − y||2

where f−1
S (0) = {z : fS(z) = 0}. The earlier mentioned sign rule applies to the interior of

S. It should be noted that the term SDF is often used in the literature even though SDB is
more appropriate [1,2].

Signed distance bound representations show significant potential due to their render-
ing speed, storage efficiency, implementation simplicity and shape distribution modelling
capabilities. They are powerful tools which are used in computer graphics, simulation, and
medical imaging domains. Here are some typical applications:

• Shape compression—it may be more storage-efficient to store a signed distance bound
(e.g., represented by a small neural network [3]) than the shape as a triangle mesh;

• Statistical shape representations for generative modelling—sampling from such a
representation [4,5] can potentially help add variety to virtual worlds;

• Shape recovery from point clouds and noisy measurements [6,7];
• Shape manipulation—such as in the paper by Hao et al. [8];
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• Computer-aided design (CAD).

In most graphics applications (e.g., classical 3D game engines), due to GPU hardware
specifics and well-developed prior practices, it is beneficial to work with polygons even
though some assets are encoded as SDBs. Therefore, converting a signed distance bound
into a polygon mesh warrants investigation (the inverse process has been studied more
extensively, e.g., [4,9]).

The objective of this paper is to present and evaluate a method for transforming signed
distance bounds into polygon meshes. The contributions are as follows:

1. We describe a fast algorithm for polygonizing SDBs based on sphere tracing (ray
marching).

2. We theoretically show that this algorithm is asymptotically faster than the obvious
approaches (e.g., marching cubes [10] over the whole grid).

3. We empirically confirm this in practice for signed distance bounds encoded with deep
neural networks.

The next section provides context, basic definitions, and related prior work. The
description of our method and its analysis/comparisons follow after that.

2. Basic Definitions and Related Work

In our case, the polygonization volume is an axis-aligned cube centered at the origin.
The shape represented by its SDB is withing this cube. This cube is partitioned into a
rectangular grid with N3 cells by subdividing each of its sides into N intervals of equal size.
If we assume we are not dealing with fractals, only O(N2) cells asymptotically contain
the surface of our shape. Thus, the only triangles that need to be computed are passing
through these cells. This puts the lower bound on the complexity of the triangularization
algorithm. However, the challenge is to isolate just these O(N2) cells.

The simplest solution, which leads to O(N3) complexity, is to check each of the N3

cells. This process is called enumeration [11] (Section 4.2.2 in the book), and for some
purposes it is too slow. The original applications of the marching cubes algorithm [10]
applied this slow approach. However, these applications usually dealt with real-world data
obtained through measurements (e.g., CT scans), not well defined mathematical objects.

An improvement to this basic enumeration scheme is known as continuation [11]
(Section 4.2.3 in the book). The idea of this approach is quite simple. Starting from a single
“seed” cell that intersects the surface of the shape, new cells are propagated across the
surface until the entire surface is enclosed. The complexity of this algorithm is O(N2)
because only the surface cells are analyzed. Thus, we also call it surface tracing/crawling.
Its main disadvantage is that it produces a single mesh component for each seed cell,
i.e., we need a separate seed cell to polygonize all disjoint shape components. This can
be problematic in practice. Another issue with this approach is caused by the limited
numerical precision of digital computers when representing seed cell parameters (e.g., their
center point coordinates)—this complicates the positioning of the seed cell. Of course, these
problems only show up for high grid resolutions, i.e., large values of N.

We also mention the unpublished work of Christopher Olah [12,13]. This method
aims at similar goals (transform an SDB into a triangle mesh) but uses a different sub-
division strategy over the grid (recursive partitioning instead of sphere tracing), and
no detailed complexity analysis was performed. It is not a formal academic work but
an implementation.

Besides the mentioned work that warrants a direct experimental comparison (enu-
meration and continuation [11], marching cubes [10]) to our method, we also mention
more broad work for additional context. There are a number of algorithms for speeding
up isosurface extraction (as polygon meshes) from real-world data such as MRI and CT
scans, e.g., based on octrees [14] or other, more exotic data structures [15,16]. However,
these methods assume that data points on the grid are already known (sampled). Thus,
direct application of these algorithms to polygonizing SDBs is not possible.
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There is also a large body of work on generative models for geometry. In this context,
we mention those that directly output polygons. Gao et al. [17] represent geometry as a
signed distance field defined on a deformable tetrahedral grid and incorporate this into a
learning framework. Their end result is a neural representation that can directly generate
polygonal models from the training data distribution. In the PolyDiff paper [18], the authors
introduce a mesh generator based on a denoising diffusion process [19,20]. In the MeshGPT
paper [21], the authors use a decoder-only transformer neural network to directly output
the polygons of a mesh. All these works are learning-based, i.e., require a large dataset in
order to be effective, are not easy to implement/use in a production system like a game
engine, and require significant computational resources.

The next section provides a detailed (mathematical, algorithmic) description of the
gridhopping method to enable its analysis.

3. Method

Another way to speed up the triangularization process is to apply a variant of ray
marching called sphere tracing (described by John C. Hart [1,2]). Note that sphere tracing
is originally a 3D rendering scheme. However, we repurpose it here for polygonization.
The basic idea is to define a ray and move along its direction until we find the intersection
with the shape or exit the rendering volume. In sphere tracing, the marching step is set
to be equal to the (estimated) distance of the current point to the shape. This approach
greatly speeds up the process of finding the intersection. However, unlike in the ray
marching-based rendering of images, we do not stop the marching process at the surface.
The marching along the ray in continued (starting at the next cell along the direction of
the ray) until the end of the polygonization volume is reached. Let us call this method
gridhopping. This process enables us to efficiently isolate the O(N2) cells that contain the
surface of the shape: we present theoretical and experimental evidence that this method
extracts a triangle mesh from a signed distance bound in O(N2 log N) steps for a grid with
N3 cells. Note that this is a significant speed improvement over the basic approach that
analyzes each of the N3 cells, leading to O(N3) complexity.

Without loss of generality, we assume that our polygonization volume is a unit cube
centered at the origin. The grid resolution is specified by N: there are N3 cubic cells in
the grid, each with a volume equal to 1

N3 . Each cell is assigned a triplet of integers (i, j, k),
with i, j, k ∈ {0, 1, 2, . . . , N − 1}. The centroids of the cells are computed according to the
following rules:

xi = −1
2
+

1
2N

+
i
N

yj = −1
2
+

1
2N

+
j

N
(1)

zk = −1
2
+

1
2N

+
k
N

A total of N2 rays are cast in the +z direction from the plane z = −0.5 + 1
2N . Such

rays have the following vector parameterization for λ ≥ 0:

Rij . . . r = oij + λd (2)

where oij = (xi, yj,−0.5 + 1
2N )T is the origin of ray Rij and d = (0, 0, 1)T is its direction.

The (xi, yj) pairs (N2 of them) are computed according to Equation (1).
We move along each ray using the ray marching (sphere tracing) [1,2] method. If the

polygonization volume contains a shape S described by its signed distance bound fS, the
following iteration describes this process:

rn+1 = rn + | fS(rn)|d (3)
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The iteration starts at r0 = oij and continues until | fS(rn)| is sufficiently small (indi-
cating we are very close to the surface of S, by definition of fS). In our case, we are only
interested in moving close enough to the surface to determine the (i, j, k) triplet determining
the cell. Simple algebra shows that a cell possibly intersects the surface of S, and we have
to call it a polygonization routine if the distance | fS| is less than or equal to√(

1
2N

)2
+

(
1

2N

)2
+

(
1
N

)2
=

√
6

2N
(4)

The pseudocode in Algorithm 1 contains the details, and Figure 1 provides a visual
summary/illustration.

Algorithm 1 Pseudocode for the gridhopping method

// inputs:
// * ‘eval_sdb ‘ is the signed distance bound represeting a shape
// * ‘N‘ is the grid resolution
function apply_grid_hopping(eval_sdb , N)
{

for (int i=0; i<N; ++i)
for (int j=0; j<N; ++j)
{

int k=0;
while (true)
{

// set the origin of the ray
float x= -1.0/2.0+1.0/(2.0*N)+i/N;
float y= -1.0/2.0+1.0/(2.0*N)+j/N;
float z= -1.0/2.0+1.0/(2.0*N)+k/N;
// use ray marching to determine how much to move along the ray
float t = trace_ray(

[x, y, z], // origin of the ray
[0.0, 0.0, 1.0], // direction of the ray
eval_sdb , // signed distance bound
1.05*(1.0/2.0 - z), // max distance to travel
Math.sqrt (6.0)/(2.0*N) // distance to surface we require

);
// set the new value of z and its associated cell , (i, j, k)
z = z + t;
k = Math.floor(N*(z + 1.0/2.0 - 1.0/(2.0*N)));
// are we outside the polygonization volume?
if (k>N-1 || z >1.05/2.0)

break;
// polygonize cell (i, j, k)
... // <- polygonizaiton code goes here , e.g., Marching cubes
// move further along the z direction
++k;

}
}

}

If the ray intersects the surface and we denote the closest intersection to r0 with r∗,
then the above iteration converges to r∗. This is because of the following:

1. | fS(rn)| ≥ 0;
2. On the ray between r0 and r∗, fS(r) = 0 only for r = r∗;
3. The iteration will never “overshoot” r∗ because fS is a signed distance bound.

See [1] for additional analysis.
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z

xy

Figure 1. A 2D illustration of the gridhopping method: grid cells are dashed gray squares, the shape
with an SDF is in red, and the z axis and the xy plane are in black. The dashed green line (parallel
to the z axis) represents one of the rays along which sphere tracing is applied. Since the SDF of
the red shape is known, we can compute the maximum step size along the ray (green circles). The
green dots are locations obtained from these calculations. The marching cubes polygonization is first
applied to the light-blue cell since it is the first one along the ray that satisfies the condition related to
Equation (4).

4. Theoretical Analysis of Computational Complexity

We analyze the asymptotic number of steps required by the method from the previous
section to polygonize a shape defined through its signed distance bound. For nonfractal
shapes, there are at most O(N2) cells that contain polygons. The challenge is to isolate
these cells in a fast manner. The trivial way is to check all N3 cells. This may be too slow
for some applications when high resolution (large N) is required. Our claim is that the
algorithm from the previous section is faster than that: its complexity is O(N2 log N).

We provide evidence for this in the following steps:

1. Provide a proof for polygonizing planes;
2. Provide a proof for polygonizing axis-aligned boxes;
3. Argue that any nonfractal shape can be approximated as a union of boxes.

These steps are explained in the following three subsections.

4.1. Polygonizing Planes

A plane is a flat, two-dimensional surface that extends infinitely far. Of course, we are
interested in polygonizing only the part that intersects with the polygonization volume.

The exact signed distance from a point r to a plane P is given by the following
Equation [22]:

DP(r) = nT
P · (r − rP), (5)

where rP is some point lying on P and nP is P’s normal vector such that nT
P · nP = ||nP||22 = 1.

We analyze three different cases: two cases of axis-aligned planes and one case for a
plane in a general position. The first case is when the plane and the rays are perpendicular.
In our case, since the rays are cast in the +z direction, this corresponds to the plane z = C
for some constant C. The second case is when the plane and the rays are parallel (plane
specified by x = C or y = C). The third case is the plane in a general position.

Case #1: plane P and rays are perpendicular. First, notice that the orientation of
the plane does not matter since the ray marching always uses the absolute value of the
computed distance bound. Thus, we have two subcases: approaching the plane and
escaping the vicinity of its surface. The approaching phase is performed in a single step
for each ray since DP provides the exact distance estimate. Hence, its complexity is O(1),
independent of N, the position of the plane along the z axis, and the starting point. Since
there are N2 rays, the complexity of the approaching phase is O(N2). Escaping the plane’s
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surface requires more work, and the following analysis holds for each of the N2 rays that
need to be cast. Let r0 denote the starting point in the vicinity of P’s surface. Note that
DP(r0) is about 1

N in size immediately after the polygonization routines for P’s cells have
been invoked (at most two in this case, only one containing polygons). Analyzing the
iteration (3), it is easy to see that DP(r1) = 2 · DP(r0), and in general, the following holds:

DP(rn) = 2n · DP(r0), (6)

i.e., the method escapes the surface in steps of exponentially increasing size. If DP(r0) is
about 1

N , then the number of steps required to exit the polygonization volume is O(log N).
Given that there are N2 such rays, the complexity of the escaping phase is O(N2 log N).
The approaching and escaping phase are performed sequentially. Thus, the complexity of
polygonizing a plane in this scenario is O(N2 log N).

Case #2: plane P and rays are parallel. First, notice that if the distance between a
ray and P is equal to k

N in this case, then the method exits the polygonization volume
in approximately N

k steps. There are N rays marching through cells that contain P. The
algorithm takes approximately N steps along each of these rays before terminating. Next,
notice that there are N rays above and N rays below P, parallel to P, and of distance
approximately k

N to P for some integer k < N. These rays require about N/k steps before
exiting the polygonization volume. Thus, a conservative estimate for the number of steps S
for all N2 rays is

S ≤ N2 + 2
(

N2 +
N2

2
+

N2

3
+ · · ·+ N2

N − 1
+ N

)
= N2 · (1 + 2HN), (7)

where HN is Nth partial sum of the harmonic series [23]: HN = ∑N
n=1

1
n . The number HN

is about as large as log N. The reason for this comes from the comparison of HN and the
integral

∫ N
1

1
x dx, which can be solved analytically. Thus, it follows that S ∈ O(N2 log N)

and the complexity of case #2 is O(N2 log N).
Case #3: the general case. Due to easier exposition and without loss of generality, we

assume that the plane passes through origin (i.e., rP = 0). Combining this assumption with
Equations (3) and (5), we obtain the following iteration for the z coordinate:

zn+1 = zn +
∣∣nxx0 + nyy0 + nzzn

∣∣ (8)

where (nx, ny, nz)T is the unit normal of the plane and (x0, y0, z0)
T is the origin of the ray.

Let us denote with z∗ the intersection of the ray and the plane:

z∗ = −
nxx0 + nyy0

nz
(9)

Without loss of generality, we assume that nz < 0. There are two subcases: (1) the
method approaches the plane along the ray and (2) the method moves away from the plane
along the ray. In the first subcase, we have nxx0 + nyy0 + nzzn > 0. In this scenario, it is
easy to see that

z∗ − zn = (1 + nz) · (z∗ − zn−1) = · · · = (1 + nz)
n(z∗ − z0) (10)

Since 1 + nz is between 0 and 1, we have that the number of iterations n has to be
about O(log N) so that DP(rn) becomes less than

√
6

2N (at which point the polygonization
routine is invoked and we can move to the other side of the plane). In the second subcase,
we have nxx0 + nyy0 + nzzn < 0. Now the following holds:

zn − z∗ = (1 − nz) · (zn−1 − z∗) = · · · = (1 − nz)
n(z0 − z∗) (11)
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Since 1 − nz is greater than 1, at most O(log N) iterations along the ray are needed to
exit the polygonization volume. Given that there are N2 rays in total, the complexity of
case #3 is O(N2 log N).

4.2. Polygonizing Rectangular Boxes

A rectangular box can be obtained by intersecting six axis-aligned planes. Let d1, d2, . . . , d6
be the distances from point (x, y, z) to each of these planes. Then the distance to the box is
bounded by

f (x, y, z) = max{d1, d2, d3, d4, d5, d6} (12)

Since polygonizing each of the box sides takes O(N2 log N) steps, this is also the total
complexity of polygonizing a box.

This can also be justified by the fact that the max operation partitions the polygo-
nization volume into several regions. In each of these regions, only the distance to one
particular plane is relevant (largest di). All the rays passing through this region require at
most O(N2 log N) steps before exiting the region. The conclusion about the total complexity
follows from the fact that the number of such regions is finite.

As noted, Equation (12) bounds the distance to the box. The exact distance function
can be constructed, and this leads to more efficient marching in practice (a constant speed-
up, not in the asymptotic sense) (for example, see https://www.youtube.com/watch?v=62
-pRVZuS5c (accessed on 26 February 2024)).

4.3. Polygonizing Other Shapes

A shape can be approximated by K axis-aligned boxes. See Figure 2 for an illustration
of this process.

Figure 2. One possible approximation of a shape (red) as a union of axis-aligned boxes (blue).
Note that the approximation would be much more efficient if non-axis-aligned planes are used on
the boundary.

Of course, we can improve the quality of approximation by increasing K. It is important
to note that K does not depend on grid resolution N. The efficiency of approximation can
be increased by using non-axis-aligned planes at the boundary of the shape. This process is
not unlike the use of triangle meshes in modern computer graphics.

Approximating the shape as a union of K boxes keeps the O(N2 log N) polygonization
complexity. This is because the union of K boxes (and, in general, shapes) can be obtained
by applying the min operation to combine all the individual distance bounds. The number
of steps the method has to make in this case is asymptotically no worse than polygonizing
each box on its own. Thus, the total number of steps scales as O(N2 log N) since the grid
resolution N does not depend on K.

5. Experimental Analysis

In this section, we experimentally compare the three methods (refer to Section 2 for
the overview of the methods): gridhopping (ghop), enumeration (enum), and continuation

https://www.youtube.com/watch?v=62-pRVZuS5c
https://www.youtube.com/watch?v=62-pRVZuS5c
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(cont). The goal is to show that the enum method is asymptotically slower than cont
and ghop.

The polygonization of a cell is obtained with the marching cubes algorithm. To
achieve this, we implement all methods and run them on different scenes for varying grid
resolutions. It is important to note that all implementations produce exactly the same
meshes when polygonizing signed distance bounds.

5.1. Primitives and Simple Shapes

We use four different scenes in this batch of experiments. The first scene contains
seven basic primitives: sphere, cube, cone, cylinder, torus, hexagonal prism, and capsule.
All these primitives have simple and efficient signed distance bounds. The second scene
is a surface of genus 2 given by the implicit equation 2y(y2 − 3x2)(1 − z2) + (x2 + y2)2 −
(9z2 − 1)(1 − z2) = 0. The third scene contains a knot with an explicit signed distance
bound. The fourth scene contains the Sierpinski tetrahedron. These scenes are visualized
in Figure 3.

Figure 3. The four scenes used in our experiments from Section 5.1.

Figure 4 shows the times needed to polygonize the scenes with the slow and the
fast algorithms.

Note that the axes in the graphs have logarithmic scale.
We can see that the measured times for both methods appear as lines. This is expected

since the computed theoretical complexities are polynomial (∼ N3 and ∼ N2). However,
the fast method becomes significantly faster for large N, i.e., asymptotically. This aligns
with the predictions from Section 4.

5.2. Experiments on Learned SDBs

There has been considerable interest in learning-based methods for signed distance bound
modelling. Furthermore, this is lately especially true in the area of deep learning [3–5,7,8,24–27]
(see section “Implicit representation” at https://github.com/subeeshvasu/Awsome_Deep_
Geometry_Learning (accessed on 26 February 2024) for more (and updated) examples).

https://github.com/subeeshvasu/Awsome_Deep_Geometry_Learning
https://github.com/subeeshvasu/Awsome_Deep_Geometry_Learning
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Let us constrict our analysis to a set of methods that use a neural network (NN) to
approximate an SDB of a shape:

NNθ(x, y, z) ≈ dS(x, y, z), (13)

where (x, y, z) ∈ R3 is a point in 3D space and dS(x, y, z) denotes its Euclidean distance to
the surface of the shape S. The parameters of the NN are denoted with θ. These parameters
have to be tuned to make the approximation as best as possible.
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Figure 4. Elapsed times plotted against grid resolution for the four different scenes from Figure 3.
The legend for all graphs is plotted in the top left one. Note that all axes are logarithmic.

Our hypothesis is that gridhopping is a faster algorithm for transforming such neural
SDBs to triangle meshes than the basic enumeration technique is. This should especially be
true for higher grid resolutions.

To experimentally test our claim, we take six shapes from the Thingi10K dataset [28]
(see Figure 5a).

These shapes are represented as triangle meshes, and we need their SDBs. We
first sample a dataset of point–distance pairs around each shape (sampling algorithm
by Park et al. [5], implementation: https://github.com/marian42/mesh_to_sdf (accessed
on 26 February 2024)):

{((xi, yi, zi), di)}S
i=1 (14)

An example can be seen in Figure 5b.
Next, we use the Adam stochastic gradient descent technique to tune θ (from

Equation (13)) so that NNθ(xi, yi, zi) ≈ di. The NN architecture is very simple: eight
layers, each with an embedding dimension equal to 64, and the ReLU is set as the activation
function. To speed up training, we also use batch normalization in all layers except the
last one. This results in about 30, 000 network weights (120 kB of memory). By modern
standards, this is a tiny network, but it is capable of accurately representing the shapes used
in our experiments. Note that our methodology trivially extends to other NN approaches
for SDB modelling. We decided to go with this one to keep things as simple as possible.

https://github.com/marian42/mesh_to_sdf
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(a) (b)
Figure 5. Figures to help understand our experiments with deep learning-based SDBs. (a) Shapes
from Section 5.2. (b) A generated point cloud.

Recall that if certain criteria are not met (e.g., Lipschitz continuity), sphere tracing
might “miss” parts of the surface of the shape, and we obtain an incomplete mesh with grid-
hopping [1]. In practice, this means that the NN overestimates the surface distance for some
points (e.g., due to the imperfection of the learning algorithm). To circumvent these prob-
lems, we shrink the signed distance approximation by factor λ: SDB(x, y, z) = NNθ(x,y,z)

λ .
This procedure slows down gridhopping and has no effects on the speed of the complete
enumeration algorithm. We empirically found that λ = 1.5 works well. This (or a smaller)
value results in perfect mesh reconstructions for all shapes, i.e., all methods produce
identical meshes.

We compare the times needed to polygonize the prepared SDBs for the complete enu-
meration algorithm and gridhopping. The grid resolution N varies from 64 to 512. First, all
computations are performed on an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz. Batching
the NN evaluations in chunks of size ≈ 10, 000 leads to significant speed improvements for
both methods. The results can be seen in Figure 6.
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Figure 6. CPU experiments: elapsed times plotted against grid resolution for the six different shapes
from Figure 5a. The legend for all graphs is plotted in the top left one. Note that all axes are logarithmic.
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Even though the enumeration method is sometimes faster for small grid resolutions,
we can clearly observe that gridhopping has a significant asymptotic advantage. The
results are in accordance with the theoretically predicted ones in Section 4: ∼ N3 vs. ∼ N2

computational complexity.
We also performed experiments when computations are performed on an Nvidia

GeForce RTX 2060 Mobile GPU. Batching the NN computations in chunks of size ≈100,000
seems best, and we report timings in this setting, Figure 7.
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Figure 7. Same setting as in Figure 6 except the computations are performed on the GPU.

The theoretical complexity results hold in this setting as well. Furthermore, GPU
computations are significantly faster than CPU ones. However, gridhopping is somewhat
slower for smaller grid resolutions. We attribute this fact to the constant overhead needed
to prepare the gridhopping run.

6. Conclusions

In this work, we described and evaluated gridhopping—a method for transforming
shapes defined by signed distance bounds into triangle meshes. Its main advantages are
simplicity, ease of implementation, and processing speed. We confirmed this in theory and
experiments by comparing the method to the enumeration and continuation variants of
the marching cubes algorithm [10], which are the standard approaches for polygonizing
signed distance bounds in practical applications. We used both simple shapes defined by
short equations/code and more complicated ones defined through neural networks. We
also showed that these conclusions hold when the computations are performed on a CPU
and on a GPU, which is a further confirmation of the practicality of the method.

The main limitations of gridhopping are the Lipschitz continuity requirement; that
it works only with abstract, mathematically defined shapes and not real-world data like
point clouds; and the fact that it generates too many triangles for some simple shapes. Note
that the last limitation also holds for marching cubes, as both methods produce identical
triangle meshes. Furthermore, within the context of this paper, we would like to mention
that the marching cubes-based pipelines (gridhopping included) might be competing
with deep learning-based methods that generate triangle meshes [18,21], especially if the
texture is included [17]. However, these deep learning-based approaches are not practical
in many situations due to their implementation complexity, large processing speed, and
the requirement for high-quality training data to be effective. Therefore, gridhopping is
still relevant for the wider engineering community.

Our implementation of the gridhopping method is available at https://github.com/
nenadmarkus/gridhopping (accessed on 26 February 2024).

https://github.com/nenadmarkus/gridhopping
https://github.com/nenadmarkus/gridhopping
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