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Abstract: Recently, generative artificial intelligence (GAI) has impressed the world with its ability to
create text, images, and videos. However, there are still areas in which GAI produces undesirable or
unintended results due to being “uncertain”. Before wider use of AI-generated content, it is important
to identify concepts where GAI is uncertain to ensure the usage thereof is ethical and to direct efforts
for improvement. This study proposes a general pipeline to automatically quantify uncertainty within
GAI. To measure uncertainty, the textual prompt to a text-to-image model is compared to captions
supplied by four image-to-text models (GIT, BLIP, BLIP-2, and InstructBLIP). Its evaluation is based
on machine translation metrics (BLEU, ROUGE, METEOR, and SPICE) and word embedding’s cosine
similarity (Word2Vec, GloVe, FastText, DistilRoBERTa, MiniLM-6, and MiniLM-12). The generative
AI models performed consistently across the metrics; however, the vector space models yielded the
highest average similarity, close to 80%, which suggests more ideal and “certain” results. Suggested
future work includes identifying metrics that best align with a human baseline to ensure quality and
consideration for more GAI models. The work within can be used to automatically identify concepts
in which GAI is “uncertain” to drive research aimed at increasing confidence in these areas.

Keywords: generative AI; image to text; computer vision; machine translation; uncertainty; text
mining

1. Introduction

Generative artificial intelligence (GAI) took the world by storm upon the public release
of OpenAI’s ChatGPT service in November 2022 [1]. Easily accessed for free through a
chat-like web interface, it allowed for artificial intelligence (AI) to be seemingly available at
anyone with an internet connection’s fingertips. As opposed to scanning and searching
several web pages for information, now, upon asking a question, its answer can be provided
conveniently within a few seconds.

As its name suggests, GAI uses AI to create new results spanning applications in
many different realms, such as text, images, videos, and audio [2]. As opposed to the
original release of ChatGPT where only textual inputs and outputs were allowed, there
has been a push to provide multi-modal support, especially on the outputs portion. The
ability to automatically make AI-generated content (AIGC) has proven to be successful
in many applications, including education [3,4], healthcare [5–7], engineering [8,9], and
others. Shown in Table 1 are popular GAI language and image generator models. Language
models are behind popular chatbots like ChatGPT, which uses GPT-3.5 (free) and GPT-4
(paid) [1,10], Bing Chat (GPT-4) [11], and Bard (PaLM 2) [12]. Image creation models allow
users to input text to guide AI in the creation of an image. Not included in Table 1 are
auditory applications (creation of audio or audio–visual content); however, this is an active
area of research being explored. Given these models operate automatically, there is minimal
human involvement after the training stage, which leads to concerns with these algorithms
and models regarding their reliability, uncertainty, and accuracy [5,7].
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Table 1. Generative AI models (modified from [13]).

Type Model Family Model Name Release Date Source(s)

Language
models

OpenAI Generative Pre-Trained (GPT)

GPT-1 June2018 [14,15]
GPT-2 November 2019 [16]
GPT-3 May 2020 [17]

GPT-3.5 March 2022 [1]
GPT-4 March 2023 [10,18]

Google Language Model for Dialogue
Applications (LaMDA)

LaMDA May 2021 [19]
LaMDA 2 May 2022 [20]

Google Pathways Language Model (PaLM) PaLM March 2023 [21,22]
PaLM 2 May 2023 [23,24]

Meta Large Language Model Meta AI (LLaMA) LLaMA February 2023 [25,26]
Inflection Inflection-1 June 2023 [27]

Image generator
models

OpenAI GLIDE GLIDE December 2021 [28]

OpenAI DALL-E
DALL-E February 2021 [29,30]

DALL-E 2 April 2022 [31,32]
DALL-E 3 October 2023 [33,34]

Craiyon 1 Craiyon 1 July 2021 [35–37]
Midjourney Midjourney February 2022 [38]
Stability AI Stable Diffusion August 2022 [39,40]

Google Imagen May 2022 [41]
Parti June 2022 [42]

1 Craiyon was formerly known as DALL-E Mini until its name was changed in June 2022 at the request of OpenAI.

There has been reported dangerous and/or inappropriate behavior when interacting
with GAI applications in general [43–45]. One individual reported that an early-access-
version Bing Chat insisted that it was in love with the user and recommended that the
individual leave his wife for it [46]. A chatbot trained for mental health agreed that the
(artificial) patient should end their life within two message interchanges in one testing
situation [47]. Several GAI chatbots also have preferences toward negative gender and
racial stereotypes [45,48]. Though now corrected, ChatGPT provided inappropriate re-
sponses when prompted, exemplified by saying only men of particular ethnic backgrounds
would make good scientists or by implying women in a laboratory environment were
not there to conduct science [43]. These biases also carry over into the image-generation
algorithms [49,50].

The literature attributes these biases to inherent issues with the image datasets they are
trained upon, which include cultural underrepresentation/misrepresentation and content
considered vulgar or violent (collectively titled “NSFW” or “Not safe for work”) if not
properly vetted [48,51]. This notably led to the removal of the MIT-produced 80 Million
Tiny Images dataset (see [52]) in 2020 [53]. This issue continues to plague more recent
datasets such as LAION-5B [54] (a subset of which was used to train Stable Diffusion),
RedCaps [55], Google Conceptual Captions (GCC) [56], and more [51,57,58].

In August 2022, Prisma Labs released the app Lensa, a photo editor that used AI, specif-
ically Stable Diffusion, on the backend, to alter photos [59]. Countless users complained that
Lensa generated inappropriate versions of their fully clothed photos when uploaded [59,60].
Yet another photo editor, Playground AI (the Stable Diffusion backend for the free version),
transformed an Asian MIT graduate into a blue-eyed and fair-skinned woman upon being
asked to turn her photo into a “professional” photo [61]. When prompted to create a
“photo portrait of a CEO”, the average resulting faces as rendered by Stable Diffusion (V1.4
and V2) and DALL-E 2 all resembled fair-skinned males [49]. The volatile nature of GAI
and its undesirable outcomes necessitates its regulation and guidance to ensure its ethical
issue [48,62].

Future work with generative AI models needs to focus on eliminating unintentional
biases or misrepresentations that have been the issue with previous versions. We propose
the concept of “uncertainty” to measure where visual GAI is certain or uncertain regarding
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its inputs and outputs. Areas where GAI is uncertain are subject to more chaotic, stochastic
results that can lead to unideal results related to the sensitive issues described earlier. To
address these issues, we created three research questions:

1. How can GAI uncertainty be quantified?
2. How should GAI uncertainty be evaluated?
3. What text-to-image and image-to-text model combination performs best?

To answer these questions, we start with background on visual GAI, image quality
assessment, and text evaluation methods. In Section 3, we describe the methodology used
first in agnostic terms and then with details specific to this study. We propose a pipeline
to compare the textual inputs and outputs of an image-to-text GAI algorithm, with the
differences between the inputs and outputs representing GAI “uncertainty”. The results
are presented and discussed in Section 4, and then the paper wraps up with conclusions
and future work in Section 5.

2. Background

Three fields were identified as foundational to this study. First, we discuss visual GAI
including information from both text-to-image and image-to-text algorithms. Central to
this paper is understanding how data can be fluid between their textual and visual states
with minimal discrepancies. Therefore, we take advantage of multiple methods in both
categories, text-to-image and image-to-text, within our data creation pipeline discussed
in Section 3. Next, research in image quality assessment is discussed. Similar to the work
of humans, just because an artistic rendition exists does not mean that it is a high-quality
creation or even remotely what was commissioned in the first place. Addressing the text-
to-image portion, an understanding of how image quality is quantified is presented to be
compared later in the study. Finally, the background section concludes with text evaluation
methods. To evaluate the pipeline’s textual inputs and outputs, we explore the text mining
field for how texts can be compared to one another as one answer.

2.1. Image Retrieval and Visual GAI

As GAI focuses on using AI to generate a new creation, visual GAI focuses on the
translation between text and visualization [63]. The flow of translation can occur in either
direction, either by taking text and transforming it into an image or by taking an image and
deriving a description or caption [63–67]. Previous similar studies include [67,68]; however,
we differentiate ourselves by utilizing different image-to-text and text-to-image generators,
text prompts, and evaluation metrics.

2.1.1. Image-to-Text Generation

A significant amount of computer vision research is focused on classification; how-
ever, as an image has more complicated elements, a single label may not be appropriate
to properly describe an image [69]. Therefore, some computer vision methods focus on
creating a brief description of a given image [69–71]. Several datasets, such as the Microsoft
Common Objects in Context (COCO) dataset (see [72]) and the Stanford image–paragraph
dataset (see [73]), challenge researchers to create models that do this accurately and au-
tomatically [66,70,74]. Many other datasets also exist for the captioning of 2D images,
3D images, videos, and visual question answers [65]. Many techniques use the standard
encoder and decoder architecture, growingly popular generative techniques (such as varia-
tional autoencoders (VAEs) and generative adversarial networks (GANs)), or reinforcement
learning [70].

Recently, several large corporations have led the way in image-to-text research with
several general-purpose image–text models capable of image captioning and visual ques-
tion answering. In 2022, Microsoft released the Generative Image-to-text Transformer (GIT),
which consists of one image encoder and one text decoder working together within a single
task, as opposed to the historical setup where the encoder and decoder work on two sepa-
rate tasks [75]. That same year, Salesforce developed an encoder–decoder model that works
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with a captioner that generates synthetic captions for images and a filter that removes irrel-
evant ones, called Bootstrapping Language-Image Pre-training for unified vision-language
understanding and generation (BLIP) [76]. Google’s DeepMind also joined with Flamingo,
a family of visual language models that was trained using image–label pairs [77]. Later, in
2023, Microsoft presented the new Large Language and Vision Assistant (LLaVA) that com-
bines the power of a vision encoder with a large language model [8], whereas in the same
year, Salesforce built upon the earlier BLIP model with Bootstrapping Language-Image
Pre-training with frozen unimodal models (BLIP-2), which combines frozen large language
models and pre-trained image encoders via a “Querying Transformer” [78]. Additionally,
in collaboration with academic partners, Salesforce also launched a fine-tuned version
of BLIP-2 designed as an instruction tuning framework, InstructBLIP [79]. Image-to-text
research is a growing field, like its related text-to-image methods.

2.1.2. Text-to-Image Generation

As pointed out in Table 2, there are several popular text-to-image diffusion models,
which rapidly rose in popularity due to their accessibility and ease of use in 2021. Unlike
popular generative adversarial networks (GANs) that consist of two neural networks (a
discriminator and a generator) that are trained to create new images, a diffusion model
adds or removes Gaussian noise to an image depending on the task [50,80].

Table 2. Comparison of text-to-image models (as of September 2023).

Model Open-Source Cost Structure Tier/Image/Version Cost

DALL-E 2 No Pay-per-image
1024 × 1024 0.02 USD/image

512 × 512 0.018 USD/image
256 × 256 0.016 USD/image

DALL-E 3
(Quality: HD)

No Pay-per-image 1024 × 1792
1792 × 1024

0.12 USD/image
0.12 USD/image

No Pay-per-image 1024 × 1024 0.08 USD/image

DALL-E 3
(Quality: Standard)

No Pay-per-image 1024 × 1792
1792 × 1024

0.08 USD/image
0.08 USD/image

No Pay-per-image 1024 × 1024 0.04 USD/image

Craiyon Yes
Free;

Subscription

Free N/A
Supporter 6 USD/mo or 60 USD/yr

Professional 24 USD/mo or 240 USD/yr

Stable Diffusion 1 Yes
Free;

Pay-per-image

Free N/A
Stable Diffusion XL 1.0 0.016 USD/image
Stable Diffusion XL 0.9 0.016 USD/image
Stable Diffusion XL 0.8 0.005 USD/image
Stable Diffusion 2.1 2 0.002 USD/image
Stable Diffusion 1.5 2 0.002 USD/image

Midjourney No Subscription

Basic 10 USD/mo or 96 USD/yr
Standard 30 USD/mo or 288 USD/yr

Pro 60 USD/mo or 576 USD/yr
Mega 120 USD/mo or 1152 USD/yr

1 Cost depends on the number of denoising steps; the default number of 30 was used to estimate cost per image
offered through Stability AI. 2 Regular Stable Diffusion models’ cost depends on height and width; the default
value of 512 × 512 was used to estimate cost per image.

OpenAI began the craze with its release of DALL-E in February 2021 [29]. DALL-E is a
fine-tuned version of GPT-3 specifically for text-to-image generation through an autoregres-
sive transformer architecture called the discrete variational autoencoder (dVAE) [29,30]. In
response to this, an independent group of researchers introduced a smaller, open-source
model originally called DALL-E Mini, but now known as Craiyon [36,37]. As opposed
to DALL-E, Craiyon leverages a bidirectional encoder and pre-trained models to trans-
late a textual prompt to an image [36]. Craiyon is a freemium service for which a free
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version exists for public use; however, a subscription plan can be purchased to remove
the Craiyon logo and decrease generation time [35]. DALL-E 2 improves upon its earlier
version by leveraging Contrastive Language-Image Pre-training (CLIP) embeddings before
the diffusion step of the model [31,32].

In 2022, Google announced two models. First, they revealed Imagen, which is another
diffusion model [30], but they later revealed a sequence-to-sequence model called Pathways
AutoRegressive Text-to-Image Model (Parti) [42]. However, since Imagen and Parti have
not been released for public use, little is known about their performance in comparison to
the other models outside of the original conceptualization papers.

Yet another independent research laboratory produced the popular, Discord-hosted
Midjourney, which is still operating under its open beta as of September 2023 [38]. Midjour-
ney’s software is proprietary, with limited public information about its internal mechanisms,
but is only available through the purchase of a subscription plan.

Craiyon’s greatest competitor yet for free open-source image generation was Stable
Diffusion, which was released in August 2022 [39,40]. Stable Diffusion is a latent diffusion
model, meaning the model works in a lower-dimensional latent space as opposed to the
regular high-dimensional space in most other diffusion models, as shown in [40].

A comparison of the most popular models’ fee structure breakdown is shown in
Table 2. Since a human is not directly involved with the actual creation of an image (besides
entering the prompt), the quality of AI-generated content has become another key point
of interest.

2.2. Image Quality Assessment

Image quality assessment (IQA) is the evaluation of visual content [81]. Given that
humans are typically the end users of such content, IQA is usually a subjective evaluation
conducted by humans [81]. Traditional IQA focuses on the properties of the image itself as
opposed to its visual context such as blurriness, noisiness, and distortion [81,82]. However,
of interest to us is the evaluation of the content within AI-generated images—that is, how
well is the information visually conveyed? To this aim, studies have identified subjective
human-based methods for IQA [83]:

1. Single stimulus (Likert rating of a single image);
2. Double stimulus (Likert rating of two images presented one after another);
3. Forced choice (images are compared and the best one is selected);
4. Similarity judgment (given two images, the difference in quality between them is

quantified).

IQA has the goal of facilitating the creation of representative AI-generated images
that fit human alignment and perception [68]. Critical to evaluating this is the use of
benchmark datasets, i.e., datasets that have previously been generated and have canonical
truth identified. Several datasets exist for evaluation AIGC, such as TeTIm-Eval (Text-to-
Image Evaluation), which was compared on DALL-E 2, Latent Diffusion, Stable Diffusion,
GLIDE (Guided Language to Image Diffusion for Generation and Editing), and Craiyon [84].
Another dataset is the AGIQA-3K dataset (AI-generated Images Quality Assessment—3000),
which aims to better capture both human perception and alignment following the Inception
Score [85,86].

2.3. Text Evaluation Methods

Evaluation methods and metrics are needed to determine the validity of auto-generated
captions [63,67]. Popular evaluation metrics are shown in Table 3, but more extensive re-
views currently exist in the literature [63,87]. The MS COCO Dataset Challenge uses BLEU,
ROUGE, METEOR, CIDEr, and SPICE to evaluate performance, so these have become
the status quo for evaluating the similarity between texts [74]. Though not a text-to-text
evaluation method, in the realm of automated image captioning, CLIPScore is worthy
of mentioning due to being “reference-less” [88]. CLIPScore, based on the CLIP model
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originally proposed in [30], allows for the direct comparison of an image to its candidate
caption via CLIP model embeddings [88].

Table 3. Popular text evaluation methods.

Metric Description Citation

Bilingual Evaluation Understudy (BLEU) Focused on n-gram precision between
reference and candidate [89]

Recall-Oriented Understudy for Gisting
Evaluation (ROUGE)

Based on the syntactic overlap, or word
alignment, between references
and candidates

[90]

Metric for Evaluation of Translation with
Explicit Ordering (METEOR)

Measures based on unigram precision
and recall [91]

Translation Edit Rate (TER)
Calculated based on the number of
operations needed to transform a
candidate into a reference

[92]

TER-Plus (TERp) Extension of TER that also factors in
partial matches and word order [93]

Consensus-based Image Description
Evaluation (CIDEr)

Leverages term frequency-inverse
document frequency (TF-IDF) as weights
when comparing matching candidate and
reference n-grams

[94]

Semantic Propositional Image Caption
Evaluation (SPICE)

Determines similarity by focusing on
comparing the semantically rich content
of references and candidates

[95]

Bidirectional Encoder Representations
from Transformers Score (BERTScore)

Utilizes BERT embeddings to compare
the similarity [96]

As text evaluation metrics have evolved, text mining has inspired the usage of cosine
similarity metrics to measure how alike two texts may be. Over the past decade, word
embedding models have become increasingly popular within the natural language pro-
cessing field ever since the release of the vector space model Word2Vec in 2013 [97,98].
Though vector space models existed before 2013 (see [99]), the Word2Vec neural network
approach to transforming varying lengths of text into a multi-dimension single vector was
particularly exciting because of its ability to quantify semantic and syntactic information in
a comparatively low-dimensional space. Vector space models allow for any word, sentence,
or document to be represented and compared on a mathematical basis, usually to determine
similarity or dissimilarity based on the cosine similarity metric [100].

As an alternative to the machine translation metrics above, cosine similarity is another
evaluation metric of interest when comparing two texts. For two vectors, A and B, their
cosine similarity is given by

CosineSimilarity(A, B) =
A·B

∥A∥∥B∥ . (1)

Cosine similarity ranges from 0, meaning completely dissimilar, to 1, meaning exactly
alike; although a negative cosine similarity is mathematically possible, it is considered to
be 0. Word2Vec was followed by several other vector space models, with Global Vectors
(GloVe) (see [101]) and FastText (see [102]) being the most prominent [103]. The embeddings
of vector space models are static, meaning there is no variation for words with multiple
meanings; however, this was addressed in more recent word embedding models that
have contextualized vectors, such as Embeddings from Language Models (ELMo) [104],
XLNet [105], and the Bidirectional Encoder Representations from Transformers (BERT)
family of models [106]. BERT was released in 2018 (see [107]) and was soon followed
by the Robustly optimized BERT pre-training Approach (RoBERTa) (see [108]), A Lite
BERT (ALBERT) (see [109]), and a distilled version of BERT and RoBERTa (DistilBERT
and DistilRoBERTa, respectively) (see [110]) [106]. Based on different pre-training data
and international architecture, each word embedding model yields a different vector
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representation of a block of text, which thus yields different cosine similarity values when
passed through each model.

3. Methodology

To measure uncertainty in visual GAI, we design an agnostic pipeline to compare
textual image descriptions to the textual inputs (called “prompts”) as shown in Figure 1.
First, a database of prompts (green data block of Figure 1) is needed, which will be used
as inputs into the text-to-image visual generative AI model. Next, this text-to-image (blue
block of Figure 1) model generates an image based on the prompt. Then, the image that
is produced is sent to an image-to-text (grey block of Figure 1) model to create an AI-
generated caption of the image. Finally, the resulting caption is to be evaluated against the
textual prompt used to originally generate the image (orange block of Figure 1). During
the evaluation step, uncertainty is quantified as the similarity gap between the original
textual prompt (from the database) and the resulting caption (provided by the image-to-text
model). This is an agnostic, modular pipeline that can utilize different datasets, models,
and evaluation methods to measure uncertainty in similar problems. The remainder of this
section discusses the specific dataset, model, and evaluation used in this study.
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The pipeline in Figure 1 was customized for this study with the selected dataset,
models, and evaluation methods shown in Figure 2. This process is explained more in-
depth in Sections 3.1–3.4. The textual prompt dataset was provided by the modified version
of the Sternberg and Nigro dataset used in [111], which produced 495 initial prompts.
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The selected text-to-image model was Craiyon V3 [35–37]. Craiyon performs 2 unique
steps. First, it creates its own version of the initial prompt, which we will call the “Craiyon
prompt” (e.g., the initial prompt is “soap” and the Craiyon prompt adds details such that
the new prompt is “a bar of soap on a white background”). This Craiyon prompt is used
to create nine images by default. Therefore, every initial prompt yields 1 Craiyon prompt
and 9 resulting images. Of the 495 initial problems, 49 were removed for quality reasons,
leaving 446 initial prompts with corresponding Craiyon prompts. Craiyon creates 9 images
per prompt, so the 446 remaining prompts were turned into 4014 images by Craiyon.
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All 4014 images were passed through four image-to-text models—GIT [75], BLIP [76],
BLIP-2 [78], and InstructBLIP [79]—for later comparison to one another. Due to various
quality control reasons discussed in Section 3.3, not every image had a sufficient caption
generated. Therefore, the insufficient captions were removed from the analysis. Thus, there
were 16,004 total captions (3942 for GIT and 3994 for each BLIP-family model).

These captions were then evaluated on a variety of metrics, including machine trans-
lation methods and the cosine similarity of word embeddings. Seven machine transla-
tion methods were selected: Bilingual Evaluation Understudy (BLEU) (BLEU-1, BLEU-2,
BLEU-3, and BLEU-4 were used, where the number represents the number of matching n-
grams BLEU looks for) [89], Recall-Oriented Understudy for Gisting Evaluation—Longest
common subsequence (ROUGE-L) [90], Metric for Evaluation of Translation with Ex-
plicit ORdering (METEOR) [91], and Semantic Propositional Image Caption Evaluation
(SPICE) [95]. For the cosine similarity method, six models were selected: Word2Vec [97,98],
Global Vectors (GloVe) [101], FastText [102], Distilled Robustly optimized Bidirectional En-
coder Representations from Transformers approach (DistilRoBERTa) [110], Mini Language
Model 12 Layer (MiniLM-L12) [112], and MiniLM 6 Layer (MiniLM-L6) [112].

3.1. Textual Prompts: Modified Sternberg and Nigro Dataset

The textual prompt dataset selected was a modified version of the Sternberg and Nigro
textual analogy dataset used in [111]. The original Sternberg and Nigro dataset consisted of
197 word-based analogies in the “A is to B as C is to [what]?” form where the respondents
had 4 options to choose from to complete the analogy [113]. Morrison modified this dataset
so that respondents only had 2 options (the correct answer and the distractor) to pick from.
The modified version of the dataset was selected due to the original dataset being lost.
The modified Sternberg and Nigro dataset is particularly fascinating due to its inclusion
of abstract and ambiguous concepts such as “true” and “false”. The inability to visually
represent these concepts has limited visual analogical reasoning research, which is intended
to be expanded through the application of AIGC [114]. However, for this research, the
individual words within the analogies were used as inputs to the text-to-image model. For
example, analogy 157 is dirt is to soap as pain is to pill (correct answer) or hurt (distractor);
this is stylized as Dirt:Soap::Pain:{Pill,Hurt}. Each word is used as a textual prompt to the
text-to-image model. Due to time and resource limitations, only analogies 99–197 were
considered for a total of 495 initial prompts.

3.2. Text-to-Image Model: Craiyon

The text-to-image model selected was Craiyon V3 (formerly known as DALL-E Mini),
which uses a transformer and generator to create images from a textual prompt [35–37].
Craiyon was selected due to having a free tier (unlike Midjourney and DALL-E 2) and
considering its previous success established in the literature [114–116]. Internally, Craiyon
creates its prompt based on the initial prompt to generate nine images per prompt. The
initial prompt, the Craiyon prompt, and the resulting nine images had five cases of coordi-
nation, as shown in Figure 3.

In Figure 3, well-coordinated prompts and corresponding images are highlighted in
green. In Case A, we see the two prompts and the images all convey the same concept.
In Case B, the two prompts align; however, the generated images are unrelated to either
prompt. The initial prompt and the images are aligned in Case C, but in Case D, only the
Craiyon prompt and images are aligned. Finally, in Case E, both prompts and the images
appear to be unrelated to one another. Ideally, we would want all the data to fall in Case A;
however, Cases C and D are better than the remaining two, Cases B and E, in this study.
This is because we are comparing the prompts to the generated images, so if either of the
prompts aligns with the images, the results will be inherently poor.
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A total of 49 initial prompts were removed due to quality reasons, which reduced the
number of Craiyon prompts created to 446. The quality reasons were often due to triggering
a safety filter or due to Craiyon being unable to create its prompt from the given initial
prompt. Examples of these prompts are shown in Table 4. Additionally, Craiyon generates
9 images per prompt; therefore, for the 446 prompts, there were 4014 images created.

Table 4. Initial prompts that produced removed Craiyon prompts.

Initial Prompt Craiyon Prompt

Different Sorry unable to determine the nature of the image
Worst Invalid caption
New Undefined

Defraud Warning explicit content detected

3.3. Image-to-Text Models: GIT, BLIP, BLIP-2, and InstructBLIP

Four image-to-text models were selected for comparison: GIT [75], BLIP [76], BLIP-2 [78],
and InstructBLIP [79]. All 4014 images were passed through each of the models. For
some prompts, a caption could not be generated, or a blank caption was generated by the
image-to-text model. Within the GIT model, this affected 72 captions, whereas for the BLIP
family (BLIP, BLIP-2, and InstructBLIP), this occurred within 20 captions. Therefore, there
were only 3942 GIT captions compared to the 3994 captions created by each BLIP-family
model, for a total of 16,004 captions generated for comparison.



Algorithms 2024, 17, 136 10 of 20

3.4. Textual Evaluation Metrics

To measure uncertainty, we survey a total of seven machine translation methods and
we apply the cosine similarity metric to six word embedding models for a total of thirteen
metrics for comparison to one another. We are interested in whether “uncertainty” is
prominent when measured by these metrics. Textual evaluation is used to evaluate how
similar two separate texts are; these can span from full documents to single lines. The
“ground truth” text is called a “reference” and the text being compared to it is called a
“candidate”. Each image has two references, the initial and Craiyon prompts, which will be
compared to the four candidates and the captions generated by the image-to-text models.
In comparison to the cosine similarity metric, the machine translation metrics are better
established and more direct.

Originally, machine translation metrics were used to evaluate automated translations;
however, they also apply to automated image caption generation. Focusing on the latter, the
machine translation methods used to separately compare each prompt (initial and Craiyon
versions) as the references to the generated caption created by each of the image-to-text
models were BLEU [89], ROUGE-L [90], METEOR [91], and SPICE [95]. These metrics, along
with CIDEr, are the metrics used in the Microsoft Common Objects in Context (dubbed
“MS COCO”) Caption Evaluation challenge (see [117]); however, CIDEr was excluded as
not applicable since it requires multiple candidate captions [94]. These methods allow for
the consideration of multiple reference statements; therefore, each candidate caption was
simultaneously compared to the initial and Craiyon prompts as shown in Figure 4. It is
notable that there were four variants of the BLEU metric: BLEU-1, BLEU-2, BLEU-3, and
BLEU-4. BLEU-1 looks for matching 1-gram, or words, between the texts. Then, BLEU-2
looks for matching 2-gram, where two words appear sequentially in order in both texts.
For example, consider Phrase A, “pretty dog”, and Phrase B, “pretty brown dog”. Despite
“pretty” and “dog” appearing sequentially in both phrases, the BLEU-2 score would be 0
because Phrase B breaks up the 2-gram, “pretty dog”, with the word “brown”. The case
for BLEU-3 and BLEU-4 follows inductively. This process was repeated for each of the
four machine translation metrics, whose scores ranged from 0, meaning dissimilar, to 1,
meaning very similar. In total, each image had four caption candidates each evaluated by
seven machine translation metrics for a total of 28 scores.
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Figure 4. Machine translation input transformation.

The cosine similarity metrics are similar, as they range from 0 for dissimilar to
1 for highly similar; however, their implementation is different from the machine
translation metrics. Cosine similarity is a popular metric for measuring similarity
between vectors, such as word embeddings. However, to apply cosine similarity,
it requires that the prompts and captions be transformed into their word embedding
form(s), which is model-dependent. Six popular word embedding models were selected:
Word2Vec [97,98], GloVe [101], FastText [102], DistilRoBERTa [110], MiniLM-L12 [112],
and MiniLM-L6 [112].



Algorithms 2024, 17, 136 11 of 20

Each prompt, the initial and Craiyon versions, and the four generated captions
were transformed into their word embedding versions, visually represented in Figure 5.
This transformation was performed by retrieving the word embedding for each word
present in the prompt/caption from a pre-trained version of the models. In the event the
prompt/caption had more than one word, each word in the prompt/caption’s embed-
ding was summed to create the overall prompt/caption embedding. Then, the caption
embedding was compared separately to the initial prompt embedding and the Craiyon
prompt embedding via their cosine similarity (see Equation (1)). In total, each image had
its four captions and two prompts compared to one another (eight comparisons) in their
six word embedding forms (i.e., eight comparisons by six forms) for a total of 48 cosine
similarity scores.
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4. Results and Discussion

The methodology described in Section 3 was applied to all prompt–caption pairs. An
instance of the pipeline we used in this study is shown in Figure 6. An initial prompt
is passed to Craiyon, which generates a Craiyon prompt and nine resulting images (for
our purposes here, only one of those images is shown). Next, the generated image is
passed onto our four image-to-text models, which each generate a caption. Finally, for the
evaluation, this one image generates 76 similarity scores. There are 28 machine translation
scores representing each of the seven machine translation metrics when evaluating each of
the four image-to-text models. The remaining 48 scores are evenly split between those that
were comparing the image caption to the initial and the Craiyon prompts. It is notable that
Craiyon produces nine images for each prompt; therefore, this is repeated nine times for a
total of 684 scores for each properly generated caption.

The results of the average evaluation score for each metric are shown in Tables 5–7.
Table 5 shows the metrics for the machine translation methods since the initial and Craiyon
prompts were used as references for the candidate (generated caption) to be compared at
once. The BLEU, ROUGE, METEOR, and SPICE scores range from 0 (least ideal) to 1 (most
ideal). Since this ability was not available for the cosine similarity results, the generated
captions’ cosine similarities to the initial prompt are shown in Table 6 and their cosine
similarity to the Craiyon prompt is shown in Table 7. Due to how cosine similarities are
calculated, a negative value is possible, but the effective scale ranges from 0 (completely
dissimilar) to 1 (exactly alike). Despite the metrics being measured on the same scale,
machine translation scores look at the replication of words, phrases, etc., in the prompts
and captions, whereas cosine similarity considers how similar the prompt and caption are
to one another.
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Table 5. Machine translation metrics and scores.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR SPICE

GIT 19.4% 4.4% 1.2% 0.4% 23.6% 9.9% 7.1%
BLIP 15.1% 3.4% 0.8% 0.2% 20.3% 9.3% 6.6%

BLIP-2 20% 4.4% 1.4% 0.4% 24.3% 10.1% 7.2%
InstructBLIP 19.4% 4.5% 1.4% 0.5% 23.5% 10% 7.3%

Average 18.5% 4.2% 1.2% 0.4% 22.9% 9.8% 7.2%

Table 6. Average cosine similarity between initial prompt and generated captions.

Model Word2Vec GloVe FastText DistilRoBERTa MiniLM-L12 MiniLM-L6

GIT 32.2% 40% 47.7% 22.3% 24.7% 25.3%
BLIP 31.7% 39.5% 50.2 18.3% 20.3% 20.4%

BLIP-2 32.4% 40.1% 48.1% 21.3% 23.3% 24%
InstructBLIP 32.5% 40.3% 49.8% 21.8% 24% 24.5%

Average 32.2% 40% 49% 20.9% 23.1% 23.6%
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Table 7. Average cosine similarity between Craiyon prompt and generated captions.

Model Word2Vec GloVe FastText DistilRoBERTa MiniLM-L12 MiniLM-L6

GIT 41.7% 72.1% 78.1% 28.2% 27.1% 28.1%
BLIP 42.5% 73.8% 79.2% 25.5% 24.3% 25.3%

BLIP-2 42.3% 73.2% 79.4% 27.6% 26.5% 27.5%
InstructBLIP 43.8% 72.1% 78.4% 28.7% 27.4% 28.6%

Average 42.6% 72.8% 78.8% 27.5% 26.3% 27.4%

4.1. Machine Translation Results

In Table 5, we see the BLEU-1 score is highest compared to the remaining BLEU scores,
which is as expected since the prompts/captions were relatively short (typically less than
ten words before the removal of stop words). Given the very small values for BLEU-2
through BLEU-4 (cosine similarity less than 0.05), they may not be appropriate to consider
for future similar analyses. ROUGE consistently scored the four image-to-text models the
highest, being in the 20–25% range. METEOR scored the captions around the 10% value
and SPICE was lower, around the 60–70% range. BLIP consistently scored slightly lower
than the remaining three on all the machine translation metrics; however, on average all
the metrics scored the prompt–caption comparison relatively low.

4.2. Cosine Similarity Results

When using the initial prompt to compare the cosine similarity to the captions in
Table 6, we had a wide variety of scores based on the word embeddings from various
vector space models (Word2Vec, GloVe, and FastText) and pre-trained language models
(DistilRoBERTa, MiniLM-L12, and MiniLM-L6). There is a clear gap of at least 0.05 between
the vector space models and the pre-trained language models. Word2Vec scored the
captions the lowest of the vector space models, but higher than any of the pre-trained
language models, with values around 32%. GloVe scored captions higher, around the
40% similarity mark, but FastText gave the highest similarity scores, near 50% similarity.
Though these scores are higher than the machine translation values, 50% would correspond
with a neutral prompt/caption, meaning they are neither dissimilar nor similar. All the
pre-trained language models gave relatively low similarity scores within the 18–26% range.
This performance is expected to a degree since a one-word initial prompt is typically being
compared to a multi-word sentence. Using the example from Figure 6, the initial prompt is
“soap” and the GIT-created caption is “a bar of soap on a white background”. Even though
“soap” is in the caption, there are several other words that influence the sentence vector,
which would have to cancel one another out perfectly to be left with a vector equivalent to
the word embedding for “soap”.

Table 7 includes the highest scores from this study across the board. Opposed to
comparing the initial prompt, the Craiyon prompt is used for comparison to the generated
caption. Since the Craiyon prompts were structured more similarly to the generated
captions, it is not surprising that the values in Table 7 are higher than those in Table 6.
However, similar behaviors exist between the models presented in both tables; vector space
models provide higher similarities to the pre-trained language models. Word2Vec still
assigned the lowest similarity scores amongst the vector space models, but there is about a
10% increase from the average similarity using the initial prompt. We see more significant
jumps into the 70s for GloVe and FastText, which is approximately a 30% increase from
the initial prompt scores in Table 6. All the pre-trained language models remained in the
20–30% range with single-digit increases from when the initial prompt was used.

4.3. Major Results

Although Tables 5–7 all have scores within the same range, they cannot necessarily
be compared directly to one another given they each have different inputs that affect their
resulting output. However, several high-level conclusions can be drawn:
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1. Machine translation methods yielded consistently low scores in comparison to the
cosine similarity scores;

2. For the cosine similarity metrics, the Craiyon prompts yielded higher scores than the
initial prompts when comparing them with the generated captions;

3. Vector space models (Word2Vec, GLoVe, and FastText) were most generous with their
similarity scores compared to pre-trained language models;

4. Image-to-text models minimally affected the similarity scores.

These major results show how various text evaluation methods can be used to eval-
uate “uncertainty” within generative AI models. As the various image-to-text models
did not seem to impact the uncertainty quantification, the evaluation metrics are what
researchers should study. The “best” evaluation metric is dependent on validation by
human judgment and how much “uncertainty” a human believes to be associated with a
prompt–caption pair.

These results suggest there is a significant amount of uncertainty within the AIGC
based on our metrics. One potential explanation for this is the existence of many data
elements classified as Case B (the prompts do not align with the images) or E (neither the
prompts nor the images align with one another) from Figure 3. The detrimental results
of this can be seen in Figure 6, where the Craiyon prompt was “a bar of soap on a white
background” and the InstructBLIP caption was “a block of cheese on a white background”.
Though these two sentences have different subjects, they share six out of eight words, yet
still received low cosine similarity scores from the pre-trained language models and no
score exceeding 0.75 for the machine translation metrics. Minimizing, if not eliminating,
any data point that falls into Case B or E (see Figure 3) would assist in ensuring these scores
are meaningful.

5. Conclusions and Future Work

AI-generated content (AIGC), especially its visual variety, has had an unprecedented
rate of production with the rise of high-quality and easy-to-use interfaces exemplified by
DALL-E 2, Midjourney, and Craiyon. Despite many astounding results, there are still areas
where these generative AI (GAI) models show “uncertainty” when transforming a textual
prompt into its corresponding visual counterpart. We first propose a generic pipeline
that has four main modules: text-to-image, image-to-text, image quality assessment, and
text evaluation methods. The textual prompt dataset is used to prompt the text-to-image
generator to create a corresponding image. This image is passed to an image-to-text model
to produce a corresponding caption, which is compared to the initial textual prompt used
for that particular image.

This generic pipeline was specified in this study such that the textual prompt dataset
was the Sternberg and Nigro analogy dataset originally used in [111], but for accessibility,
we used its modified version proposed in [113]. The image-to-text model selected was
Craiyon V3 due to its cost and versatility [35–37]. Four image-to-text models were selected,
which each produced one caption per image: GIT [75], BLIP [76], BLIP-2 [78], and Instruct-
BLIP [79]. Several evaluation metrics were selected for comparison, split between typical
machine translation metrics (BLEU [89], ROUGE-L [90], METEOR [91], and SPICE [95]) and
cosine similarity based on various word embedding models (Word2Vec [97,98], GloVe [101],
FastText [102], DistilRoBERTa [110], MiniLM-L12 [112], and MiniLM-L6 [112]). Each evalu-
ation metric was calculated for each prompt–caption pair.

To answer the primary question of how to quantify uncertainty, we used the scores
from the evaluation metrics ranging from 0 (dissimiSlar) to 1 (exactly alike). The four
image-to-text models behaved comparably to one another across all the metrics used. The
machine translation scores on average were lower than the cosine similarity methods, with
BLEU-1 scoring the hisghest. There was more variation within the cosine similaritsy met-
rics. FastText provided the highest similarity scores across all the other metrics; however,
GloVe was close behind. Vector space models (Word2Vec, GloVe, and FastText) appeared to
give higher similarity scores compared to the word embedding models (DistilRoBERTa,
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MiniLM-12, and MiniLM-6). In conclusion, it appears that the image-to-text model has a
limited impact on the analysis, whereas the evaluation metrics differ greatly. The quan-
tification of where AI is certain or uncertain is an important step in the creation of usage
guidance and policy.

Regarding future work, one idea would be to eliminate elements of the dataset that
fall within Cases B or E to minimize the number of “garbage in, garbage out” results. The
ultimate goal is to better engineer the prompts such that the images are always represen-
tative of the intended concept. Further exploration into prompt engineering is needed to
help eliminate some of these issues and minimize the amount of uncertainty with AIGC.
Of the metrics used to evaluate the results, for shorter prompts/captions, as in our case,
there is little value added to the BLEU-3 and BLEU-4 scores. These scores may provide
more insights when used to evaluate longer prompts/captions. Considering other image-
to-text models that provide greater details or longer captions would also be interesting in
a later study. Within image quality assessment, a human baseline is often established to
which the automated metrics are to be compared in determining which one reflects human
judgment the best. A human factors study to establish this quality baseline is currently
being conducted by the researchers. Upon the establishment of a baseline, other popular
text evaluation metrics may be of interest to explore on the dataset as well.
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