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Abstract: Given the emergence of China as a political and economic power in the 21st century, there
is increased interest in analyzing Chinese news articles to better understand developing trends in
China. Because of the volume of the material, automating the categorization of Chinese‑language
news articles by headline text or titles can be an effective way to sort the articles into categories
for efficient review. A 383,000‑headline dataset labeled with 15 categories from the Toutiao web‑
site was evaluated via natural language processing to predict topic categories. The influence of
six data preparation variations on the predictive accuracy of four algorithms was studied. The sim‑
plest model (Naïve Bayes) achieved 85.1% accuracy on a holdout dataset, while the most complex
model (Neural Network using BERT) demonstrated 89.3% accuracy. The most useful data prepara‑
tion steps were identified, and another goal examined the underlying complexity and computational
costs of automating the categorization process. It was discovered the BERT model required 170x
more time to train, was slower to predict by a factor of 18,600, and required 27x more disk space to
save, indicating it may be the best choice for low‑volume applications when the highest accuracy is
needed. However, for larger‑scale operations where a slight performance degradation is tolerated,
the Naïve Bayes algorithm could be the best choice. Nearly one in four records in the Toutiao dataset
are duplicates, and this is the first published analysis with duplicates removed.

Keywords: multinomial Naïve Bayes; ensemble model; neural network; multi‑class classification;
large language models; BERT; data preprocessing

1. Introduction
In the past few decades, China has become one of the largest economies in the world.

Its progress has attracted the interest of researchers from business, government, and
academia. For Western researchers, there is an increasing interest in accessing Chinese
media sources and increasing knowledge of China’s culture, economy, and intellectual
systems as China’s influence on the world grows [1]. A challenge in this is the large vol‑
ume of publications originating from China, a country of over a billion people, as well as
the challenge of non‑native Chinese readers evaluating Chinese news.

These researchers of Chinese media, faced with the daunting task of sorting through
a flood of news articles, would benefit from natural language processing (NLP) techniques
to categorize news articles in their topics of interest. An experienced researcher can accom‑
plish a lot on the Internet with a search engine and any one of the many translation tools
available, which leverage natural language processing in several different ways. However,
the sources are so numerous that a search engine’s index could lack records of the newest,
most relevant articles, which could lead to missed opportunities for the researcher [2]. A
web scraper with a means to evaluate headlines of articles would be a means to rapidly
select relevant, timely articles for researcher review.

In order to automate the classification of Chinese‑language news headlines, this pa‑
per will use the cross‑industry standard process for data mining (CRISP‑DM) to investi‑
gate how NLP techniques, along with AI/ML models, can be applied toward this goal.
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Standardized metrics and processes will be used to compare the performance of each tech‑
nique and each model. The accurate classification of headlines can enable researchers to
prioritize reviews of the numerous articles appearing on Chinese news websites. Other
components involved in the process will not be covered here, such as aggregating head‑
lines through web scraping, translating the headline and article after selection, and other
functions that enable the actual reviewing of the Chinese language content. Investigated
models will be evaluated to provide options for integration into either a lightweight com‑
puting environment or one that is more resource‑intensive.

1.1. Data Understanding
Jinri Toutiao, or “Today’s Headlines”, is a Chinese news site that aggregates and an‑

alyzes article content based on user profiles to tailor news feeds for each user [3]. As part
of the process, they classify articles into categories. The publicly available Toutiao dataset
selected for this study possesses 382,688 headlines, which are tagged as one of 15 news
topic categories, such as finance or culture [4]. Selected rows from the dataset are shown
in Table 1, presenting the category and headline fields from the dataset. The headline’s
translation is also shown, along with notes that highlight occurrences of duplicate entries,
entries that are partially English, and entries that are completely English. Chinese‑only
entries consist of 99.989% of the dataset.

Because this dataset was from an aggregator and it was possible the site captured
the same article from multiple sources, a search for duplicate headlines was conducted.
The result of this search is displayed in Figure 1, which is a countplot generated from
the 15 topic categories and gives insight into a flaw in the dataset—an excessive number of
duplicate entries in certain categories. There are a total of 86,195 duplications (22.5% of the
dataset), which can cause an inaccurate calculation of model metrics and result in models
inappropriately focusing more on high‑duplicate categories such as culture. Figure 1 also
highlights a class imbalance, especially for the story and stock categories.
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Table 1. Dataset examples.

Category Headline Translation * Notes

military 美国宣布退出伊核协议,
对中东有何重大影响

The United States announced its withdrawal from
the Iran nuclear agreement, what is the major
impact on the Middle East

Normal entry

education Couple reunites with lost son Couple reunites with lost son Only English

finance 美元加息的含义和目的是什么? What is the meaning and purpose of the dollar
rate hike? Duplicate

game Made To Game!
iGame联合NVIDIA打造极致游戏体验

Made To Game! iGame collaborates with NVIDIA
to create the ultimate gaming experience

Mix of English
and Chinese

* via Google Translate.

1.2. Literature
In the literature, many researchers have applied variousmethods and strategies to the

NLP of Chinese text, and some of these have used the Toutiao dataset. Table 2 gives a sum‑
mary of prior work using the Toutiao dataset along with the method, metrics, complexity
of eachmodel, and the corresponding results. As with all data analytics techniques, the de‑
tails of how each methodology is configured are incredibly important and, in some cases,
very complex. One noteworthy aspect identified in the literature search is in the rightmost
column—none of the prior work removed duplicate headlines. Analyses of other Chinese
short‑text datasets are present in the literature, with Xu et al. describing the performance
of a variety of algorithms on four datasets, achieving 72–99% accuracy [5].

The concept of pre‑trained language models such as BERT and ERNIE have proven
effective for improving the performances of various natural language understanding and
generation tasks [6,7]. Pre‑trained languagemodels are generally trained on a large amount
of text data in a self‑supervised manner and then fine‑tuned on downstream tasks or di‑
rectly deployed through zero‑shot learning without task‑specific fine‑tuning. BERT is a
pre‑trained model that has demonstrated high performance and is appropriate for text
classification (our case), named entity recognition, and sentiment analysis [8]. This archi‑
tecture differs from decoder‑based models such as GPT and sequence‑to‑sequence models
that include Pegasus [9] and BART [10]. For comparable work in English, similar work
by De Pietro compared three different NLP methods and showed a general accuracy at a
minimum of 84% for classifying English headlines and higher accuracies on some models
focusing on three classification categories [11]. This paper will attempt to reach a general
minimum accuracy of 0.80 across 14 categories, which is a lower accuracy when compared
with De Pietro, but analyzes a different dataset with a broader number of categories. An‑
other goal of this paper is to analyze the tradeoffs between model performance, model
complexity, and prediction speed.
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Table 2. Summary of literature analyzing the Toutiao dataset.

Source Methodology Measure of Goodness Complexity Pre‑Training Used Notes

[12] Combined neural topic model (ProdLDA) with a
Convolutional NN

85% Accuracy
85% Precision
85% Recall
85% F1 Score

Seven‑step method to prepare/extract features None
N = 382,688
Duplicates
retained

[13] Feature‑enhanced non‑equilibrium bi‑directional long
short‑term memory (NE‑BiLSTM) NN

91.71% Precision
91.66% Recall
91.68 F1 Score

Three Components
‑ BERT+
‑ Nebi‑LSTM
‑ Hierarchical Attention Model

BERT
word vector training method

N = 300,000
Duplicates
retained

[14]
Hypernetwork‑based architecture to model the
descriptive meta‑information and integrate it into
pre‑trained language models with LSTM NN

90.05% Accuracy

Three Components
‑ Pre‑trained Model Encoder
‑ Hyper Encoding (LSTM)
‑ Infer Encoding (LSTM)

RoBERTa
N = 382,688
Duplicates
retained

[15] Multi‑kernel convolution NN with label‑oriented
attention mechanism

86% Accuracy
85% Precision
87% Recall
86% F1 Score

Five Components
‑ extract text feature information
‑ aggregate the information of the token

features
‑ generate sentence vector
‑ generate final sentence representation
‑ predict final label

None
N = 382,688
Duplicates
retained

[16] Fusion of BERT‑based model, semantic features, and
Bidirectional Gate Recurrent Unit (BiGRU) 87% Accuracy

Three Components
‑ TF‑IDF weighting
‑ Semantic input from BiGRU CNN
‑ Fusion of semantic and statistical feature

BERT
N = 70,000
Duplicates
retained

[17] BiLSTM and TextCNN, followed by
fully‑connected layers 89.9% F1 Score

Three Components
‑ BiLSTM
‑ TextCNN
‑ Fusion of two inputs

ERNIE
N = 221,000
Duplicates
retained

[18] Single Layer Convolutional NN using pixel glyphs 87% Accuracy

Three‑Step Method
‑ convert Chinese text to glyph pixel matrix
‑ extract forward and backward n‑gram

features
‑ apply 1‑dim max‑over‑time pooling

None
N = 382,688
Duplicates
retained

Present work Several algorithms Refer to
Section 3

‑ Naïve Bayes
‑ XGBClassifier
‑ Sequential NN
‑ BERT

Evaluate five options

N = 382,688
86,195

duplicates
removed
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2. Materials and Methods
The code for the models was prepared and executed within a Python 3.10.12 envi‑

ronment using sklearn 1.2.2 and keras 2.14.0. A 16 GB NVIDIA T4 Tensor Core GPU was
used, and the CRISP‑DM process was followed, with the phases of data understanding,
data preparation, modeling, and evaluation [19]. The methods described below primarily
use these libraries for the models and for the preparation of the text, with the assistance of
numpy, pandas, and other common multi‑task Python libraries. Many NLP libraries such
as NLTK, spaCy, andword2vec were not used as they were created forWestern languages;
applying them to non‑Western languages can lead to unintended results. An additional
library used for the paper was the jieba library, which was created to segment Chinese
text into “words” for NLP tasks due to the Chinese language’s lack of space separation
in writing [20]. The BERT Chinese‑language tokenizer bert‑base‑chinese was used in the
BERT models.

Four algorithms were evaluated for their performance on this dataset: Naïve Bayes,
XGBClassifier, BERT, and neural network (sequential). For the first three approaches, an
85%/15% train/holdout split was used to monitor overfitting since there are many data
points available. For the NN‑sequential approach, a 70%/15%/15% train/validate/holdout
split was used where the model is trained with the train set, the validation set is used for
making decisions about hyperparameters, and the test set is used to evaluate a few selected
models with the best performance. A stratified split is used to make sure minority classes
are represented due to the class imbalance noted in Figure 1.

Other methods described below include the NLP processing techniques used, the six
iterations of data preparation that were evaluated in this work, and details related to the
four families of algorithms that were applied to this dataset.

2.1. Natural Language Processing
Simplified Chinese Mandarin characters dominated the dataset, with only a small

number of headlines in traditional characters. In Chinese Mandarin, the meanings of tra‑
ditional and simplified characters are generally the same, so training only needs to hap‑
pen on one character set if the traditional characters are converted to simplified. Written
dialects of Chinese, such as Cantonese, were not in the dataset and, therefore, were not
considered in this study.

Initial data processing created the stop words list and segmented the headlines [21].
In NLP, stop words are words, characters, or symbols in a text that typically convey little
meaning but may perform a grammar function or other purpose and that are generally
considered unimportant when labeling the data [21,22]. Stop words tend to rise toward
the top of frequency lists of words as they are often the most common elements of a cor‑
pus and are removed from a text before it is processed by a model. Stop word removal
was part of the pre‑processing for each model. A custom‑built set of 83 stop words was
determined by examining the frequencies of characters and words in the training set. The
stop word list contained English words such as the/and/is, individual Chinese characters,
Chinese “words” created from the jieba encoder, and common punctuation marks. All
algorithms used this stop word list except for BERT, which did not use stop words. As
a transformer model, BERT derives context from the surrounding words, and excluding
stop words could hurt performance. After an analysis of the frequencies of characters and
words in the training set, candidate stop words were selected and written in a text file.

The 382,688‑entry dataset contained both English and Chinese, and the number of
English‑only headlines was found to be minuscule—all categories had 2 or fewer English‑
only headlines except for one 36‑count category. As a result, headlines with English words
were retained. Stemming and lemmatization are common NLP steps that deconstruct a
word to arrive at the shared meaning in similarly spelled words since it is the meaning
that should be modeled with the other words in the text. Stemming is a relatively simple
process that truncates the end of a word; for example, process, processed, and processing
would all be reduced to process. Lemmatization is a more complex process that addresses
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plurals, tenses, and gerunds in order to reduce the word to its base form, also known as a
lemma. Chinese does not have these elements, so stemming and lemmatization were not
required [21].

The vocabulary provided to the models, also known as the set of unique tokens, was
evaluated by character‑level and word‑level approaches. The character‑level vocabulary
had a size of 5888 characters. It represented all of the characters used throughout the head‑
line corpus and could be used because of theway each Chinese character retains ameaning
that is often similar, regardless of the surrounding characters. After applying jieba to the
training corpus, the word‑level vocabulary had 167,506 words. Limiting the size and se‑
lection of these vocabularies provided an option for tuning the models, and models were
built ranging from 25 words in increments to the maximum vocabulary [11]. Vectorization
and feature selection occurred via sklearn Count Vectorizer for bag‑of‑words (word count)
encoding, sklearn TF‑IDF for statistical TF‑IDF encoding, keras TextVectorization for NN
TF‑IDF encoding, and BertTokenizer for the BERT models. The NLP processing steps var‑
ied per algorithm, and a summary is provided in Table 3. More details on each algorithm
are provided in Section 2.3.

Table 3. NLP pre‑processing steps conducted per algorithm.

Step Naïve Bayes and
XGBClassifier NN‑Sequential BERT

Segmentation, stemming, and
lemmatization not applicable to Chinese ‑‑ ‑‑

Tokenize
(determine vocabulary)

25–5888 characters or
25–167,506 jieba words
Unigrams,
uni‑/bigrams, or
uni‑/bi‑/trigrams

25–5888 characters or
25–167,506 jieba words
Unigrams

BertTokenizer
bert‑base‑chinese

Vectorize method
(select from vocabulary)

sklearn CountVectorizer for
count encoding
sklearn TF‑IDF for TF‑IDF
encoding

Keras TextVectorization
layer

BertTokenizer provides
vectors

Feature selection
Term frequency
(CountVectorizer)
TF‑IDF score (TF‑IDF)

TF‑IDF score All features used

Embedding None Keras Embedding layer Word‑piece and token
embedding

Stop words Char: none
Word: custom list

Char: none
Word: custom list Not used

2.2. Data Preparation Investigations
In this work the resultingmodel performance from a variety of data preparation steps

are evaluated, which are labeled variations A/B/C/D/E. The individual influence of these
data preparation steps are studied, and then the steps that contribute positively to model
performance are combined as variation F.

A. Baseline: The baseline dataset has duplicate entries removed but no other adjust‑
ments. After removing 86,195 duplicates, there are 296,493 entries in 15 categories.
Headlineswithmixtures of Chinese text andnon‑Chinese textwere retained, aswere
44 English‑only headlines. All other variations (B–F below) start with this dataset.

B. Remove stock category: As shown in Figure 1, the stock category of news headlines
was vastly underrepresented when compared to the other categories. This version
of the dataset removed this category.

C. Remove whitespace: This version removed any whitespace at the beginning or end
of the headline.

D. Standardize headline length: The lengths of the headlines were examined, and they
varied from 2 to 150 characters in length. The median headline length was 23 char‑
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acters, with the smallest median of 18 for the culture category and the longest of
28 for the story category. A plot of frequency vs. headline characters is shown in
Figure 2. The left side of the figure shows a countplot of the number of characters
in all headlines. This variation was adjusted by removing headlines that exceeded
50 characters in length or were shorter than 3 characters. The right side of Figure 2
shows the countplot after these headlines are removed.
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F. Best: Detailed modeling and analysis showed that, on average, the algorithms ben‑
efited most from data preparation approaches that removed the under‑represented
stock category (variation B), did not remove whitespace at the beginning/end of a
headline (variation C), did not standardize the headline length to 3–50 characters
(variation D), and combined 3 pairs of related categories (variation E).

2.3. Metrics and Algorithms
Amulti‑class classification attempts to discern which single label to apply to the data.

In this study the accuracy averaged across all classes was selected as the primary metric,
as the penalty for an incorrect prediction was equal across the classes. Accuracy is the
overall effectiveness represented by the sum of true positives and true negatives divided
by the total sum of results and was selected as the main performance metric [23–25]. This
also facilitates a comparison to the literature, as a majority of those papers use accuracy.
Other metrics that were evaluated on a case‑by‑case basis were f1, AUC, precision, and
recall. AUCwas selected as ametric as sensitivity versus specificity can be easily plotted to
provide a visual comparison both for the model as well as for each category [26]. Precision
is the ratio of true positives to true positives plus false positives. Recall is also known as
sensitivity and is calculated as the number of true positives divided by the number of true
positives and false negatives.

2.3.1. Statistical Model—Multinomial Naïve Bayes
The Multinomial Naïve Bayes scheme was selected as the first modeling algorithm to

determine if a simple architecture could performaswell asmore complexmodels, which in‑
cluded pre‑training techniques. In the literature, a multinomial Naïve Bayes classifier was
paired with a term frequency‑inverse document frequency (TF‑IDF) vectorizer to achieve
91% accuracy on a different Chinese short‑text dataset [27].

As shown in Table 3, tokenizing and other functions were incorporated into the nat‑
ural language processing for this algorithm. As part of the tokenizing and vectorizing
process for the Multinomial Naïve Bayes model, word‑count vectorization and TF‑IDF
vectorization techniques were explored [11,28,29]. The sklearn CountVectorizer module
used a bag‑of‑words approach based on the frequency of each word, or the sklearn Tfid‑
fVectorizer module applied to weight each token against its frequency in the training set.
After the chosen vectorization was applied, the stop words were removed from the vo‑
cabulary, and the training vocabulary was tokenized and vectorized. After processing,
5888 characters were tokenized at the character level, and 167,506 words were tokenized
at the word level. TF‑IDF and count‑based feature selection were applied to explore a
range of 25–5888 characters and 25–167,506 words. The vocabulary sweep was repeated
for unigram token selection, uni‑/bigram selection, and uni‑/bi‑/trigram selection.

In Naïve Bayes, token order does not matter, which is part of the naïve quality of
the method. From the training set, tokens were assessed for the probability of occurring
alongside other tokens within a headline. The relational probabilities were also calculated
for every token in their vocabulary. Into this trained model, validation headlines could
be inputted, and from the relationships of the tokens, a probability was calculated on how
the words in each validation headline were likely to belong to each of the 15 categories,
and the highest probability was the winning result for that headline [30]. This was applied
via sklearn’s MultinomialNB module, to which the TF‑IDF training vocabulary was fitted.
The validation set, in comparison with the training set, was used to monitor for overfitting
and tuning of parameters.

2.3.2. Ensemble Model—XGBClassifier
The Python extreme gradient boosting algorithm XGBClassifier was selected to inves‑

tigate the performance of an ensemble algorithm. Ensemble methods were not applied
in the literature surveyed for this work and can often rival the performance of neural
networks [31,32]. This algorithm is a member of the extreme gradient boosting family,
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which is an ensemble learning method that combines the predictions of multiple decision
trees (boosting) to create a strong predictive model. The decision trees are trained sequen‑
tially, and each subsequent tree minimizes the errors made by the prior tree.

Within the XGBClassifier algorithm, the pruning parameter max_depth = 6 was spec‑
ified to limited overfitting, after exploring a range of max_depth values. Similar to the
Naïve Bayes algorithm procedure, TF‑IDF and count‑based feature selection was applied
to explore a range of 25–5888 characters and 25–167,506 words, for unigram, uni‑/bigram,
and uni‑/bi‑/trigram token selection methods.

2.3.3. Sequential Neural Network
In this approach, keras neural network models were created using a sequential ar‑

chitecture, and used similar processing functions as the prior algorithms to prepare the
data. For word‑level neural networks, the data were tokenized by jieba, stop words were
removed from the text, and whitespace was inserted between the tokens. These inputs
were incorporated into the neural network via a keras TextVectorization layer, which used
the TF‑IDF method for feature selection. The TextVectorization layer was also used to ex‑
amine character‑based and word‑based tokenization approaches. This was the first layer
of the network and was fed into an embedding layer for dimension reduction. A rule
of thumb suggested an embedding dimension approximately equal to the fourth root of
the vocabulary [33]. This was calculated as 8 dimensions for the 5888‑token vocabulary
character‑level models and 20 dimensions for the 167,506‑token word‑level models. For
the word‑level models, the maximum tokens were limited to 20,000 as it is rare that per‑
formance increases can be identified beyond that level [34] and to avoid memory crashes.
To change the dimensions of the embedding layer in preparation for the Dense layers, a
Flatten layer was used. AGlobal Average Pooling 1D layer was investigated as a substitute
for the Flatten layer but did not alter performance.

Stochastic gradient descent (SGD) and adaptive moment estimation (Adam) were in‑
vestigated as optimizer options, and each Dense layer used the ReLU activation function
for its neurons. Because each headline was selected into one of many categories, the sparse
categorical cross‑entropy loss function was used, which penalizes the model when it es‑
timates the incorrect category [26]. To prevent overfitting, L2 regularization was used
at a fixed value of 0.001, and a range of dropout levels was investigated. Overfitting
is monitored through the accuracy of the training and validation datasets at each epoch
of training—it is known that overfitting occurs when the accuracy of the validation set
plateaus while the training set accuracy continues to increase.

To aid in training, a callbackwas established to halve the learning rate every 15 epochs,
and early stopping was used with a patience level of 10 epochs. The Widrow recommen‑
dation for the number of neurons is related to the number of data points P = 296,493
non‑duplicate entries, the number of weights (neurons × (inputs + 1)), and the desired
error level according to Equation (1) below [35].

P =
neurons ∗ (inputs + 1)

error
(1)

According to the Widrow recommendation, for the approximate 10% error level in
this work, 30 embedded dimensions are used as inputs and 15 outputs, and the recom‑
mendation is amaximumof 63 neurons. In the hyperparameter tuning process, the neuron
count was limited to within an order of magnitude of this recommendation.

Within Python, theAdaptive Experimentation Platform (Ax) librarywas installed and
used to tune the neural network model’s hyperparameters. The training dataset was split
into training and validation, and the hyperparameters were tuned using the validation
dataset. After tuning, the final model performance was calculated using the test/holdout
dataset. Bayesian optimization was used for numeric features, except for the categorical
optimizer feature, where Bandit optimization was used. Further optimization information
is given in Section 3.3.
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2.3.4. BERT Neural Network
A Bidirectional Encoder Representation from Transformers (BERT) model instance

fromHugging Facewas fine‑tuned on the dataset [36]. This encoder‑basedmodelwas from
the BERTforSequenceClassification family, and the number of inputs was specified based on
the number of labels in the dataset. The dataset was split into 80% train and 20% hold‑
out sections, stratified amongst the labels. To minimize RAM usage, a DataLoader was
used with a maximum batch size of 128, and shuffle = True. The bert‑base‑chinese tok‑
enizer was trained on the dataset, and the neural networks were trained using TensorFlow
and PyTorch. A decoupled weight decay regularization optimizer (AdamW) was speci‑
fied [37], and multiclass accuracy was calculated on the training and validation datasets to
monitor for overfitting. The training process was lengthy, and both the epoch‑level accu‑
racy and batch‑level accuracy for a BERT training run are shown in Figure 4. As shown
in the figure, it was common for the accuracies to stabilize at 2 epochs, so that was se‑
lected as the epoch hyperparameter. A limited hyperparameter sweep of learning rates
and batch sizes was conducted to find that the best performance resulted in a learning rate
of 2 × 10−5 and a batch size of 32. With the low batch size, each 2‑epoch training run took
approximately 3 hours.
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3. Results
In this section, the performance of four machine learning algorithms is evaluated on

datasets with dataset versions A–F. A summary of the main hyperparameter settings and
model performance is presented in Table 4, followed by detailed results for each algorithm.
Based on the exploration in this work, performances are given for the best set of encoding
and hyperparameters for each algorithm, which are indicated in the notes column. As
visible in the table, the data preparation steps that made positive contributions (averaged)
to the baseline dataset were B and E. These steps were to remove the stock category and
combine similar categories, which were used to build dataset version F. In the subsequent
sections, modeling results for dataset version A are presented.
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Table 4. Accuracy (%) on the test/holdout dataset for data preparation steps A‑F and a variety of
algorithms and encodings. Columns B—F also include the difference from the baseline column A.
HP: hyperparameter; TF‑IDF: term frequency‑inverse document frequency; NN: neural network.

Algorithm Notes A
(Baseline) B C D E F

Naïve Bayes
Char‑level

uni/bigram, TF‑IDF,
5888‑token vocab 78.2 +0.1

78.3
−0.1
78.1

−0.2
78.0

+1.7
79.9

+1.8
80.0

Naïve Bayes
Word‑level

unigram, CountVectorizer,
84,025‑token vocab 82.7 +0.1

82.8
0.0
82.7

−0.1
82.6

+2.3
85.0

+2.4
85.1

XGBClassifier
Char‑level

unigram, CountVectorizer,
5888‑token vocab 80.8 0.0

80.8
−0.5
80.3

−0.1
80.7

+1.6
82.4

+1.7
82.5

XGBClassifier
Word‑level

unigram, CountVectorizer,
167,500‑token vocab 75.6 −0.1

75.5
−0.3
75.3

−0.1
75.5

+0.7
76.3

+0.8
76.4

NN‑S
Char‑level

hyperparameters listed
in Table 5 79.5 0.0

79.5
−0.2
79.3

+0.1
79.6

+2.2
81.7

+1.8
81.3

NN‑S
Word‑level

hyperparameters listed
in Table 5 81.1 +0.1

81.2
−0.5
80.6

−0.4
80.7

+2.4
83.5

+2.3
83.4

NN BERT 2 epochs, learning rate = 2 × 10−5
batch size = 32 87.2 −0.3

86.9
0.0
87.2

+0.1
87.3

+2.8
89.0

+3.1
89.3

3.1. Multinomial Naïve Bayes
Using dataset version A and character‑level tokenization, the results of the hyperpa‑

rameter sweep on vocabulary and tokenization are presented in Figure 5. The tokeniza‑
tion approaches included either CountVectorizer or TF‑IDF vectorization and explored un‑
igrams, unigrams/bigrams, and unigrams/bigrams/trigrams. The results were similar for
CountVectorizer (a) and TF‑IDF vectorization (b) methods, where the highest performance
was found using the full 5888‑token vocabulary. By a smallmargin, the best character‑level
model used TF‑IDF, unigrams/bigrams, and possessed 78.2% accuracy.
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Figure 5. Multinomial Naïve Bayes algorithm: character-level model accuracy vs. character vocabu-
lary for CountVectorizer (a) and TF-IDF vectorizer (b). Using the test dataset, unigram performance 
is shown in blue, unigram/bigram accuracy in orange, and unigram/bigram/trigram in green. 

For word-level tokenization, the hyperparameter sweep was repeated and the results 
are presented in Figure 6. The approach differed from the character-level tokenization by 
exploring the full vocabulary of the 167,506 tokens that resulted from applying the jieba 
method. Again, the results were similar for CountVectorizer (a) and TF-IDF vectorization 

Figure 5. Multinomial Naïve Bayes algorithm: character‑level model accuracy vs. character vocabu‑
lary for CountVectorizer (a) and TF‑IDF vectorizer (b). Using the test dataset, unigram performance
is shown in blue, unigram/bigram accuracy in orange, and unigram/bigram/trigram in green.

For word‑level tokenization, the hyperparameter sweep was repeated and the results
are presented in Figure 6. The approach differed from the character‑level tokenization by
exploring the full vocabulary of the 167,506 tokens that resulted from applying the jieba
method. Again, the results were similar for CountVectorizer (a) and TF‑IDF vectorization
(b) methods. The best model used the CountVectorizer, unigrams with an 84,025‑token
vocabulary and possessed 82.8% accuracy.
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CountVectorizer (a) and TF‑IDF vectorizer (b).

3.2. XGBClassifier Ensemble Method
Similar to the Multinomial Naïve Bayes algorithm, a sweep of vocabulary and tok‑

enization was conducted using the ensemble XGBClassifier algorithm. Figure 7 shows the
results for the character‑level modeling; the results were similar for CountVectorizer (a)
and TF‑IDF vectorization (b) methods. The performance plateaued near 2000 tokens, and
the best character‑level model used the full 5888‑token vocabulary. This model used the
CountVectorizer, unigrams/bigrams and achieved 81.0% accuracy.
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CountVectorizer (a) and TF‑IDF vectorizer (b).

The hyperparameter sweep was repeated for word‑level tokenization, where the only
change was exploring the full vocabulary of the 167,506 tokens that resulted from the
jieba method. Figure 8 shows that this method did not perform as well for either the
CountVectorizer (a) and TF‑IDF vectorization (b) methods. The best word‑level XGBClas‑
sifier model used the CountVectorizer, unigrams, and the full 167,506‑token vocabulary
and achieved 76.2% accuracy.
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3.3. Sequential Neural Network
The Adaptive Experimentation Platform (Ax) library was used to tune the neural net‑

work model’s hyperparameters, and Ax converged on a solution after 30 optimization
loops. Table 5 presents a summary of the multi‑dimensional hyperparameter tuning using
Ax, including the hyperparameters tuned, their search range, the best set of hyperparam‑
eters for the character‑level and word‑level approaches, and the performance achieved on
the holdout dataset. These sets of hyperparameters were used to create sequential neural
network models for data preparation versions A–F.

Table 5. Ax‑optimized neural network hyperparameter sweep range and the optimal set of hyper‑
parameters selected for character‑level and word‑level encoding. The performance is calculated on
the test/holdout portion of dataset variation A.

Hyperparameter Range Char‑Level Best Word‑Level Best

Learning Rate 0.005–0.03 0.0095 0.0168
Vocabulary 500–20,000 3111 20,000
Embedding
dimensions 5–60 41 13

Number of hidden
layers 1–4 2 2

Neurons/layer 5–100 60 86
Batch size 1024–10,240 3458 1688
Optimizer Adam or SGD Adam Adam

Dropout Rate 0–10% 3.7% 4.6%
Accuracy ‑‑ 79.4% 81.3%

Models were saved during optimization, and the best model’s train/validation curves
are shown in Figure 9 for the best character‑level (a) and word‑level (b) models. Both
sets of curves show the model is exhibiting normal training behavior. The impact of the
decreasing learning rate is visible in Figure 9, which halves every 15 epochs of training and
enables a small boost in performance at 15 and 30 epochs. Also, the early stopping callback
allowed the model to be saved at the highest validation performance, which is denoted by
the black oval. This enables the model to avoid higher levels of overfitting.
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Figure 9. Training curves for the TF‑IDF sequential neural network model for the character‑encoded
model (a) and theword‑encodedmodel (b). Accuracywas calculated using the training dataset (blue
lines) and validation dataset (orange lines).

3.4. BERT Neural Network Modeling
The highest performancewas achieved using the BERT transformermodels, using the

results of the exploration that identified the optimal set of hyperparameters as epochs = 2,
learning rate = 2× 10−5, and batch size = 32. The best‑in‑classmodel used data‑preparation
steps that removed the under‑represented stock category (B), combined three pairs of re‑
lated categories (D), did not remove whitespace at the beginning/end of a headline, and
did not standardize the headline length to 3–50 characters. The detailed metrics for this
model are presented in Section 4.

4. Discussion
From examining Table 4, it can be seen that there are two notable high‑performing

models on this dataset from the simplest and most complex algorithms tested. The sim‑
plest algorithm (Naïve Bayes using dataset variation F) achieved 85.1% accuracy on the
test dataset, using a jieba word‑level CountVectorizer with 84,025 unicode tokens. This
model size was 15 MB, does not require a GPU, took a total of 45 s to train the vectorizer,
and the model can predict 3,625,000 headlines per second. The most complex algorithm
(NN BERT) achieved 89.3% accuracy using the hyperparameters of 2 × 10−5 learning rate,
batch size of 32, and 2 epochs of training. The model size was 409 MB, and training the
vectorizer and model took 2.1 hours with an NVIDIA T4 GPU. The model could predict
195 headlines per second.

There are vast differences in time and computing resources between the two best al‑
gorithms, as the BERT model required 170x more time to train, was slower to predict by
a factor of 18,600, and required 27x more disk space to save the model. This model could
be the best choice for a low‑volume application when the highest accuracy is needed. For
applications on a larger scale where a slight degradation in performance can be tolerated,
the Naïve Bayes algorithm could be the best choice.

The detailed model performance of the tuned BERT algorithm is presented in
Figure 10, with the confusion matrix on the left and the classification report on the right.
The model performed fairly consistently on the test/holdout dataset across all categories,
with the exception of the world category, which possessed F1 = 77.6%. On the left side of
the figure, the model had the highest level of confusion between the military and world
categories and between the finance/technology and car categories.
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Considering the high volume of Chinese language articles posted online on any given
day that a typical Chinese researcher needs to process, deploying this model in a web
scraper could assist in the initial selection of articles for analysis.

Web scrapers are easy to build and deploy and are commonly used by researchers
and journalists to automate the collection of news articles from online sources. They are
cheap and effective to use but often use exact keywordmatching to select articles for reten‑
tion. Keyword matching can grab unintended articles and miss articles of interest. Key‑
word lists also require maintenance to keep up with changes in keywords. Applying the
models developed in this work would reduce the number of extraneous articles collected,
increase the collection of articles of interest, and eliminate the need to maintain keyword
lists. This would result in overall savings by allowing the web scraper to complete its task
more efficiently and in less time and enabling researchers to focus on the most relevant
articles. This method could also reduce computer memory storage requirements as it se‑
lects a higher number of relevant articles and fewer unnecessary articles. It would also
enable researchers who are not language‑enabled to effectively use the scraper, allowing
language‑enabled researchers to focus efforts elsewhere.

5. Conclusions
Given the volume and scope of Chinese‑based language articles generated each day

and the limited amount of time andpersonnel to review thematerial, it is a true challenge to
effectively find and analyze relevant works. It is, therefore, essential to reduce the number
of candidate articles for review. Efficient and, perhaps more importantly, accurate cate‑
gorization of news articles is the first step toward this goal. Using automated processes
offers increased capability if the methods used can be trusted and are accomplished in a
timelymanner. This paper explored combining natural language processingwithmachine
learning to solve this problem.

Specifically, several data preprocessingmethods based onNLPmethodswere used to
pre‑process Chinese‑language news articles for use in four machine‑learning algorithms,
resulting in the classification of those articles into 15 general topic categories. The results
show that the accuracy of the methods involved approached 90% and were robust enough
to be applied in a live setting to obtain useful results. However, it was also discovered that
model complexity significantly impacted processing time and storage requirements, thus
indicating that the usefulness of each method may be dependent on the time and accuracy
constraints required by the user. Also, 22.5% of the Toutiao dataset consists of duplicate
records, and this work is the first published analysis with duplicates removed. As such, it
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sets a new benchmark for comparison to future work even though its model performance
does not exceed those found in the literature.
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