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Abstract: Machine learning and speech emotion recognition are rapidly evolving fields, significantly
impacting human-centered computing. Machine learning enables computers to learn from data and
make predictions, while speech emotion recognition allows computers to identify and understand
human emotions from speech. These technologies contribute to the creation of innovative human–
computer interaction (HCI) applications. Deep learning algorithms, capable of learning high-level
features directly from raw data, have given rise to new emotion recognition approaches employing
models trained on advanced speech representations like spectrograms and time–frequency represen-
tations. This study introduces CNN and LSTM models with GWO optimization, aiming to determine
optimal parameters for achieving enhanced accuracy within a specified parameter set. The proposed
CNN and LSTM models with GWO optimization underwent performance testing on four diverse
datasets—RAVDESS, SAVEE, TESS, and EMODB. The results indicated superior performance of the
models compared to linear and kernelized SVM, with or without GWO optimizers.

Keywords: speech emotion recognition; neural network; deep learning; LSTM

1. Introduction

Speech emotion recognition (SER) is a research field aiming to develop systems that
automatically recognize emotions from speech, with the potential to enhance user experi-
ences in various applications like spoken dialogue systems, intelligent voice assistants, and
computer games. However, the accuracy of current SER systems remains relatively low
due to factors such as the intricate nature of human emotions, variability in human speech,
and challenges in extracting reliable features from speech signals.

A typical SER system comprises two main components: feature extraction and classifi-
cation. Feature extraction is tasked with capturing essential acoustic characteristics from
the speech signal, including pitch and spectral features. Subsequently, the classification
component assigns emotional labels to the speech signal based on extracted features.

In recent years, deep learning has emerged as a powerful tool for machine learning,
finding success in domains like computer vision, speech recognition, and natural lan-
guage processing. Deep learning is well suited for SER for several reasons. Firstly, deep
learning models excel at capturing intricate relationships between features, crucial for accu-
rately identifying emotions from speech. Secondly, deep learning models possess unique
characteristics that enable them to efficiently leverage large speech datasets, a capability
particularly advantageous in SER, where access to extensive annotated data facilitates
model training and improves generalization to diverse speakers and emotional expressions.
Additionally, while other models also claim the ability to generalize to new speakers and
situations, deep learning models demonstrate a notable robustness and adaptability in
handling variations, making them particularly effective in real-world SER applications.

Here are some other points to keep in mind before going forward with the research:
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• The intricate nature of human emotions poses a challenge to developing accurate
SER systems as emotions are complex and expressed in various ways. For instance,
happiness may be conveyed through laughter, smiling, and a high-pitched voice, but
also through tears, a frown, and a low-pitched voice.

• The variability in human speech further complicates SER systems, as individuals speak
differently based on factors like age, gender, and accent. For example, a young woman
from the United States may have a different speaking style than an older man from
the United Kingdom.

In the dynamic landscape of speech emotion recognition (SER), marked by its rapid
growth, this research aims to contribute to the evolution of computer interaction by lever-
aging deep learning advancements to advance real-time emotion recognition from speech.
The primary objective involves extracting pivotal features from audio waveforms to con-
struct a model that accurately predicts emotions. While Mel-frequency cepstral coefficients
(MFCC) feature extraction was employed in this study, it is important to acknowledge
that other feature extraction methods exist and could be explored in future research to
potentially enhance performance. MFCC is widely used and has shown success in many
SER applications due to its ability to capture spectral characteristics relevant to speech
perception, it is essential to note that there is not a universally “best” technique. Different
techniques may perform better in different contexts. Four datasets (RAVDESS, SAVEE,
TESS, and EmoDB) were utilized to train and evaluate the model. The model underwent
initial training with linear and kernelized support vector machines (SVMs), followed by
comprehensive training with a convolutional neural network (CNN) model incorporating
long short-term memory (LSTM). Further refinement of the datasets was achieved through
the application of a Gray Wolf Optimizer, tailoring the parameters for optimal model
fitting. It is important to clarify that, while the study contributed to refining the models and
optimization techniques, the datasets themselves were not crafted by the authors. Despite
the inherent challenges in doing so, the study underscores the potential of deep learning in
enhancing the accuracy and efficiency of real-time emotion recognition systems.

2. Related Work

This section provides a concise overview of the speech emotion recognition (SER)
research landscape, highlighting the importance of acoustic features [1,2]. Acoustic pa-
rameters play a crucial role in deciphering emotions, prompting studies to investigate
emotion-specific profiles through these parameters. While the integration of diverse clas-
sifiers such as Bayesian, K-nearest neighbor (KNN), and decision trees has reshaped the
research field, it’s worth noting that models like Gaussian mixtures (GMMs) and hidden
Markov models (HMMs) may lack insights into low-level feature distribution [3–14].

The introduction of deep learning in SER, particularly with end-to-end systems and
deep neural networks (DNN), has led to significant accuracy improvements [15]. Explo-
rations into feature fusion techniques integrating acoustic and lexical domains [16], break-
throughs like the RNN-ELM model addressing long-range context effects [17], and the
preference for features like logarithmic Mel-frequency cepstral coefficients (logMel), MFCC,
and extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) over prosodic fea-
tures [18] underscore the evolving landscape. The convolutional recurrent neural network
for end-to-end emotion prediction from speech [19] and recent studies focusing on deep
learning approaches utilizing spectrograms [20–27], including models with convolutional
neural networks (CNNs) and long short-term memory (LSTM) networks, have demon-
strated enhanced accuracy [21]. Ensemble models incorporating bagging and boosting
techniques with support vector machines (SVMs) showcased significant accuracy gains [28].

Optimization algorithms for feature selection in SER, such as Cat Swarm Optimization
(CSO), Grey Wolf Optimizer, and Enhanced Cat Swarm Optimization (ECSO), have shown
promise in enhancing classification accuracy and reducing selected features [29,30]. The
Whale-Imperialist Optimization algorithm (Whale-IpCA) introduced multiple support
vector neural network (Multi-SVNN) classifiers for emotion identification [31], while feature
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selection methods employing metaheuristic search algorithms like Cuckoo Search and
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) demonstrated effective emotion
classification with reduced features [32]. Comprehensive speech emotion recognition
systems leverage diverse machine learning algorithms, including recurrent neural networks
(RNNs), SVMs, and multivariate linear regression (MLR) [33]. Innovative feature selection
approaches, such as the combination of Golden Ratio Optimization (GRO) and Equilibrium
Optimization (EO) algorithms, have been explored [34–36].

Advanced architectures like dual-channel Long Short-Term Memory (LSTM) com-
pressed capsule networks have been proposed for improved emotion recognition [37].
Furthermore, clustering-based Genetic Algorithm (GA) optimization techniques have been
utilized to enhance feature sets for SER [38]. Recent research has also investigated the effec-
tiveness of weighted binary Cuckoo Search algorithms for feature selection and emotion
recognition from speech [39]. Moreover, the application of wavelet transform in SER has
been explored for its potential in capturing relevant emotional features [40]. Ensemble
methods like Bagged Support Vector Machines (SVMs) have shown promise in achieving
robust emotion recognition from speech signals [41]. Convolutional Neural Networks
(CNNs) have been employed to extract salient features for SER, leveraging their capability
to capture hierarchical representations [42].

Additionally, novel methods for feature selection in SER, such as a hybrid meta-
heuristic approach combining Golden Ratio and Equilibrium Optimization algorithms,
have been proposed [43]. Recent studies have explored the application of modulation
spectral features for emotion recognition using deep neural networks [44]. Transfer learn-
ing frameworks, like EmoNet, have been developed to leverage multi-corpus data for
improved SER performance [45–47]. Feature pooling techniques for modulation spectrum
features have also been investigated to enhance SER accuracy, particularly in real-world
scenarios [48,49].

3. Dataset

This study uses four different datasets, namely the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS), Toronto Emotional Speech Set (TESS), Emotional
Database (EmoDB), and Surrey Audio-Visual Expressed Emotion (SAVEE). Details of the
dataset and their limitations can be seen in Tables 1 and 2 respectively.

Table 1. The datasets used and their details.

Dataset Description

RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) is a publicly available dataset
designed for affective computing and emotion recognition research. It contains audio and video recordings of
24 actors performing eight different emotions in both speech and song. The dataset provides a diverse set of
emotional expressions for study and is widely used in emotion recognition research.

TESS

The Toronto Emotional Speech Set (TESS) is a comprehensive and publicly available collection of 2803 audio
recordings, featuring professional actors portraying seven distinct emotional categories. The dataset includes
balanced representation from both male and female actors, making it valuable for developing and evaluating
emotion recognition models.

SAVEE

The Surrey Audio-Visual Expressed Emotion (SAVEE) dataset is designed for research into speech emotion
recognition, featuring 480 audio recordings with a single male actor portraying seven emotional states. The
dataset provides a standardized resource for studying emotional speech and has been widely used in affective
computing research.

EmoDB

The Emotional Database (EmoDB) is utilized for studying emotional speech recognition and consists of
recordings from ten professional German actors portraying different emotions. The dataset, developed by the
Technical University of Berlin, is valuable for developing and evaluating algorithms for automatic emotion
classification from speech signals.
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Table 2. Observations and considerations about datasets used.

Observations Dataset-Specific Observations

Limited Actor Diversity
RAVDESS: 24 actors may not fully represent diverse vocal characteristics. SAVEE: Only
four male actors may limit diversity and variability. EmoDB: Ten actors may not fully
capture wide-ranging vocal characteristics.

Imbalanced Emotional Classes RAVDESS, SAVEE, EmoDB: Some emotions have fewer instances, impacting
model performance.

Controlled Recording Conditions RAVDESS, SAVEE, EmoDB: Recordings in controlled studios lack natural variability,
affecting generalizability to real-world scenarios.

Limited Contextual Information RAVDESS, SAVEE, EmoDB: A lack of contextual cues in datasets may limit the applicability
to real-world scenarios influenced by various factors.

Limited Language Representation RAVDESS: Primarily English, limiting cross-lingual applications. EmoDB: Primarily
German, affecting cross-lingual usability.

Limited Emotional Variability SAVEE: Four basic emotions may restrict generalizability. EmoDB: Seven discrete emotions
may not cover the full spectrum of human emotional experiences.

TESS Advantages

Diverse emotional expressions, large number of actors, naturalistic recording conditions,
high-quality recordings, detailed metadata, and multimodal data: the TESS dataset stands
out for its richness, naturalness, and comprehensive features, contributing to its reliability
and robustness in emotional speech analysis.

Despite limitations in some datasets, they remain valuable for emotional speech
analysis research. The TESS dataset, in particular, excels due to its diverse emotional
expressions, large actor pool, natural recording conditions, high-quality data, detailed
metadata, and multimodal features, making it a robust resource in emotional speech
analysis research. Researchers should be aware of dataset-specific considerations when
interpreting results and generalizing findings beyond a dataset’s scope.

4. Experimental Setup

The experimental setup entails the development and evaluation of a recurrent neural
network (RNN) with long short-term memory (LSTM) architecture for emotion recognition
using audio datasets. Inspired by [20] work on CNNs for environmental sound recognition,
this study extends their approach to emotion recognition. The LSTM model, comprising
four LSTM layers, a dropout layer, and a dense layer, aims to effectively identify speech
sections with relevant information. Additionally, the study introduces the Gray Wolf
Optimizer (GWO) requiring optimization. In terms of model architecture, the CNN-LSTM
ensemble incorporates both convolutional and recurrent layers to capture spatial and
temporal dependencies in the audio data. Convolutional layers extract relevant features
from the raw audio waveforms, while LSTM layers process sequences of features over time.
Meanwhile, the SVM serves as a traditional yet robust classifier for emotion recognition
tasks, leveraging its ability to find the optimal hyperplane to separate different emotion
classes in the feature space.

Furthermore, the methodology unfolds in three main stages: feature extraction, feature
selection (using GWO), and classification. Feature extraction involves extracting mean-
ingful representations from the raw audio waveforms, such as Mel-frequency cepstral
coefficients (MFCCs) or logMel features, to capture acoustic characteristics related to dif-
ferent emotions. Feature selection using GWO aims to identify the most discriminative
features for emotion recognition, enhancing the model’s performance. Subsequently, the
selected features are fed into the classification stage, where SVM and CNNs handle the task
of classifying emotions based on the extracted features. Specifically, GWO-SVM, GWO-
CNN, and GWO-LSTM approaches are explored, each involving initialization, evaluation,
updating the GWO population, and a stopping criterion. Key components include solution
representation and fitness function, crucial for feature selection optimization. This com-
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prehensive approach leverages both traditional and deep learning techniques, along with
optimization algorithms, to optimize emotion recognition performance.

The GWO optimizer was introduced by Seyedali Mirjalili and Seyed Mohammad Mir-
jalili in 2014 [50]. GWO mimics wolf hunting strategies to solve optimization problems. It
maintains a population of alpha, beta, delta, and omega wolves, updating their positions it-
eratively based on fitness and social interactions. GWO efficiently explores and exploits the
search space through equations simulating hunting behavior. The methodology involves
three steps: feature extraction, feature selection, and classification. Figure 1 displays the
architecture of the conventional RNN-LSTM model for feature extraction and classification.
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GWO adapts as a feature selection method to identify crucial emotional features.
Support vector machines (SVM) and convolutional neural networks (CNNs) handle the
classification task. GWO-SVM, GWO-CNN, and GWO-LSTM approaches involve initial-
izing, evaluating, and updating the GWO population and the stopping criterion. Key
components include solution representation and fitness function, crucial for feature selec-
tion optimization.

This streamlined research methodology leverages GWO to optimize emotion fea-
ture selection, demonstrating its adaptability with SVM and CNNs to provide accurate
classification. Figure 2 gives and abstract overview of proposed research.
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4.1. Social Hierarchy

In the social structure of gray wolves, a cohesive cultural dominance system is ob-
served, comprising four distinct categories: alpha, beta, delta, and omega. The alpha,
occupying the highest position, serves as the dominant authority and demonstrates supe-
rior intelligence in pack management. Assisting the alpha are the beta wolves, who play
decision-making roles at the second level of the social order. The omega wolves make
up the majority of the pack and are positioned at the lowest tier. Although not explicitly
mentioned in the hierarchy levels, the delta wolves follow the beta wolves and function
as leaders among the omega-level members. In the context of GWO solutions, they are
classified based on the grey wolf social order, with the alpha wolf considered the most fit,
followed by the beta and delta wolves. Figure 3 provides a visual representation of the
social hierarchy within a wolf pack.
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4.2. Hunting Strategy

The hunting tactics utilized by a wolf pack entail a strategic process with three key
stages: pursuit, encirclement, and assault. In the encirclement phase, a wolf exhibits the
skill to tactically adjust its position, skillfully surrounding the prey within a defined area.
This encircling behavior of gray wolves can be expressed mathematically as follows:

µ = |v × X′(i) − X(i)|, (1)

X(i + 1) − X′(i) − η × µ, (2)

where η and v represent two controlling factors, X′ represents the prey’s location, X denotes
the wolf’s current location, and i indicates the present iteration. The values of the controllers
η and v) are determined using the following calculations:

η = 2 × ι × r1 − ι (3)

v = 2 × r2 (4)

where ι linearly decreases from 2 to 0 over the iterations, while the values r1 and r2 are
random values within the range of [0, 1]. The range of the controller η is bounded by the
interval [−2ι, 2ι], which is determined by the value of ι.

4.3. Prey Search (Exploration)

The arrangement of alpha, beta, and delta wolves significantly influences the search
behavior exhibited by other members of the pack as they pursue their prey. Throughout the



Algorithms 2024, 17, 90 7 of 15

prey search, the wolves disperse from one another and subsequently converge to encircle
and launch an attack on their target. The wolves’ dispersal is symbolized by the variable η,
which assumes random values greater than 1 or less than −1, guiding the movement of
search agents away from the prey’s location. This process is designed to ensure thorough
exploration and enhance the GWO capacity for a comprehensive global search to attain
the most optimal solution. In the GWO algorithm, the variable v governs the exploration
phase, comprising random values between 0 and 2. This enables the random emphasis or
de-emphasis of the prey’s significance, contingent on whether v exceeds or is less than 1,
respectively. Unlike η, v does not undergo linear diminishment. The utilization of random
values in GWO serves to emphasize both exploitation and exploration, extending to the
final iteration. This feature proves crucial in scenarios where search agents may risk being
confined to local optima, particularly in the later stages of the search process.

The mathematical model for encircling the prey involves a linear deduction of the
value of ι. The fluctuation range of η is reduced to a similar degree by the parameter ι. In
situations where η consists of random values between 1 and −1, the location of the search
agent can be updated to a position near the prey’s location, facilitating a more focused
exploitation of the prey. In situations where η consists of random values between 1 and
−1, the location of the search agent can be updated to a position near the prey’s location,
facilitating a more focused exploitation of the prey.

5. Results and Discussion

In this study, Python serves as the programming language for implementing our
methodologies. Our central objective revolves around the integration of the Grey Wolf
Optimizer (GWO) to optimize emotion features, thereby enhancing emotion recognition
performance. To validate the efficacy of our approach, we conduct experiments across
four distinct emotion datasets: Emotion Database, RAVDESS, TESS, and SAVEE. Our eval-
uation metrics encompass classification accuracy, precision, recall, and F1-score, providing
comprehensive insights into the effectiveness of the proposed methodology.

It can be seen from Table 3 that the GWO optimizer, when used with classifiers like
SVM, LSTM, and CNN, surpasses the conventional classification methods on all evaluation
metrics. In EmoDB, the traditional Kernalized SVM shows a classification accuracy of only
55%, which is the worst among the six models. The use of GWO improved accuracy to
85%. The difference in accuracy is an improvement of 30% for EmoDB and RAVDESS,
whereas the precision doubled for EmoDB and RAVDESS and improved 7× for SAVEE,
which is a huge jump from that of traditional SVM classifiers. While the use of CNNs is
not as accurate as SVMs, the GWO technique managed to improve all the measurement
parameters of CNN as well.

Figure 4a,b display the confusion matrix representing a set of emotions comprising
six categories: anger, happiness, neutral, fear, disgust, and sadness for RAVDESS. The
proposed model achieved an overall accuracy of 53% when evaluated using this particular
emotion set and an accuracy of 60% when evaluated with the GWO technique. Upon
analyzing the confusion matrix (Figure 4a,b), it becomes apparent that the accuracy rates
for the fear and neutral classes are relatively high compared to those of the other classes. In
contrast, the angry class exhibits a lower classification accuracy. Additionally, there is a
significant misclassification of neutral as sad and disgust as happy. Despite the underper-
formance of the angry class, the proposed model demonstrated effective distinction among
the other emotions within this emotion set. Figure 4b displays the classification after using
GWO, which, as can be seen, lowers the misclassifications by a small degree.

Figure 4c,d display the confusion matrix representing a set of emotions comprising six
categories: anger, happiness, neutral, fear, disgust, and sadness for SAVEE. The proposed
model achieved an accuracy of 57% when evaluated using this particular emotion set and
an accuracy of 68% when evaluated with the Gray Wolf Optimization technique. Upon
analyzing the confusion matrix (Figure 4c,d), it becomes apparent that the accuracy rates
for the angry class are relatively high compared to the other classes, whereas the fear class
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exhibits the lowest classification accuracy. Despite the underperformance of all the classes,
the proposed model demonstrated effective distinction among the other emotions within
this emotion set. Figure 4d displays classification after using GWO, which, as can be seen,
reduces the incidence of misclassifications by a small degree.

Figure 4e,f display the confusion matrix representing a set of emotions comprising six
categories: anger, happiness, neutral, fear, disgust, and sadness for EmoDB. The proposed
model achieved an overall accuracy of 75% when evaluated using this particular emotion
set and an accuracy of 78% when evaluated with the Gray Wolf Optimization technique.
Upon analyzing the confusion matrix, it becomes apparent that the accuracy rates for
the disgust class are relatively high compared to the other classes, whereas the fear class
exhibits a lower classification accuracy. The fear class is rarely classified accurately and is
the lowest correctly identified class. Figure 4f shows the classification after using GWO,
which, as can be seen, lowers the misclassifications by a small degree.

Table 3. Classification Performance of 6 classifiers on the four datasets.

Without GWO Optimizer GWO Optimizer
Datasets Measurements SVM K-SVM CNN LSTM SVM K-SVM CNN LSTM

Accuracy 0.74 0.55 0.75 0.76 0.85 0.85 0.78 0.83
EmoDB Precision 0.71 0.42 0.74 0.73 0.82 0.87 0.77 0.82

Recall 0.70 0.45 0.69 0.71 0.82 0.84 0.77 0.87
F1-Score 0.70 0.39 0.71 0.71 0.82 0.84 0.77 0.84
Accuracy 0.74 0.55 0.53 0.73 0.85 0.87 0.60 0.73

RAVDESS Precision 0.71 0.42 0.53 0.73 0.84 0.88 0.59 0.69
Recall 0.70 0.45 0.52 0.82 0.83 0.85 0.56 0.71

F1-Score 0.70 0.39 0.52 0.76 0.83 0.86 0.59 0.71
Accuracy 0.54 .35 0.57 0.62 0.76 0.75 0.68 0.71

SAVEE Precision 0.53 0.10 0.59 0.53 0.74 0.72 0.66 0.59
Recall 0.51 0.25 0.51 0.57 0.75 0.68 0.64 0.72

F1-Score 0.52 0.15 0.53 0.59 0.73 0.68 0.64 0.71
Accuracy 0.98 0.91 0.99 0.97 0.99 0.99 0.99 0.99

TESS Precision 0.98 0.93 0.99 0.96 0.99 0.99 0.99 0.99
Recall 0.98 0.91 0.99 0.95 0.99 0.99 0.99 0.99

F1-Score 0.98 0.91 0.99 0.96 0.99 0.99 0.99 0.99
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 F1-Score 0.70 0.39 0.52 0.76 0.83 0.86 0.59 0.71 
 Accuracy 0.54 .35 0.57 0.62 0.76 0.75 0.68 0.71 

SAVEE Precision 0.53 0.10 0.59 0.53 0.74 0.72 0.66 0.59 
 Recall 0.51 0.25 0.51 0.57 0.75 0.68 0.64 0.72 
 F1-Score 0.52 0.15 0.53 0.59 0.73 0.68 0.64 0.71 
 Accuracy 0.98 0.91 0.99 0.97 0.99 0.99 0.99 0.99 

TESS Precision 0.98 0.93 0.99 0.96 0.99 0.99 0.99 0.99 
 Recall 0.98 0.91 0.99 0.95 0.99 0.99 0.99 0.99 
 F1-Score 0.98 0.91 0.99 0.96 0.99 0.99 0.99 0.99 

Figure 4a,b display the confusion matrix representing a set of emotions comprising 
six categories: anger, happiness, neutral, fear, disgust, and sadness for RAVDESS. The 
proposed model achieved an overall accuracy of 53% when evaluated using this particular 
emotion set and an accuracy of 60% when evaluated with the GWO technique. Upon an-
alyzing the confusion matrix (Figure 4a,b), it becomes apparent that the accuracy rates for 
the fear and neutral classes are relatively high compared to those of the other classes. In 
contrast, the angry class exhibits a lower classification accuracy. Additionally, there is a 
significant misclassification of neutral as sad and disgust as happy. Despite the underper-
formance of the angry class, the proposed model demonstrated effective distinction 
among the other emotions within this emotion set. Figure 4b displays the classification 
after using GWO, which, as can be seen, lowers the misclassifications by a small degree. 
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Figure 4g,h display the confusion matrix, representing a set of emotions comprising
six categories: anger, happiness, neutral, fear, disgust, and sadness for TESS. The proposed
model achieved an overall accuracy of 99% when evaluated using this particular emotion
set and an accuracy of 100% when evaluated with the Gray Wolf Optimization technique.
The TESS data are highly recommendable for speech emotion recognition as all the emotions
are accurately classified by our model as well. The TESS dataset does not need Gray Wolf
Optimization since it is already good enough to be used for accurate emotion classification
via traditional methods.

In Figure 5a, the horizontal axis represents the number of epochs, and the vertical axis
represents the accuracy and the validation accuracy through training. The accuracy peaks at
nearly 90% once, while the validation accuracy rises with it to around 70% and then flattens.
The model was set to train for 100 epochs with an Early Stopping Callback. This stopped the
training at 61 epochs, denoting that training the model will no longer improve the results.
As visible in Figure 5b, the horizontal axis represents the number of epochs, and the vertical
axis represents the loss and the validation loss through training. The loss is relatively high
at the beginning of training but decreases gradually. After a while, the validation loss starts
to saturate and does not fall below the 0.11 mark. As visible in Figure 5c, the accuracy is
relatively low at the beginning of training, but it increases gradually. The accuracy peaks
at nearly 99% once, while the validation accuracy rises slower than that. The model was
set to train for 100 epochs with an Early Stopping Callback. This stopped the training at
67 epochs, denoting that training the model will no longer improve the results. The testing
accuracy is only 53%. As visible in Figure 5d, the x-axis represents the number of epochs,
and the y-axis represents the loss and the validation loss through training. It is evident that
the validation loss does not decrease and instead fluctuates between 0.14 and 0.12 at all
times. This is why the testing accuracy and the validation accuracy are very low.

In Figure 5e, the horizontal axis represents the number of epochs, and the vertical
axis represents the accuracy and the validation accuracy through training. The training
accuracy climbs rapidly, whereas the callback stops the network after 56 epochs because
further training will not yield useful results and will only result in overtraining. This is
because the validation loss does not decrease. The model cannot accurately distinguish the
emotions in the testing phase, and the validation loss always stays between 0.11 and 0.09.

Figure 5g shows the accuracy graph for the TESS dataset. There is again an exception
to note, namely that the TESS dataset being balanced and great for SER produces excellent
results. The accuracy climbs to greater than 95% within the first five epochs and then
saturates around the 99% mark, ranging from 99.1% to 99.73% on training and validation.
This is shown in the loss graph (Figure 5h) as well, which shows the loss nearing 0.01 as
the epochs progress. The TESS dataset exhibits the highest values in all the parameters
measured, with an average value of 99% in F1-score, precision, recall, and accuracy.

Table 4 shows a comparison of the proposed model with the existing studies conducted
for the respective datasets. It can be seen that our proposed method outperforms the
existing methods by good margins. Since TESS is a dataset that often displays an accuracy
greater than 99%, there are not many comparisons for it. That is why RAVDESS, SAVEE,
and EmoDB were given more emphasis during research and comparison. The average
accuracy for the RAVDESS dataset lies between 60–75%, whereas our model achieved an
accuracy of 87% with GWO optimization. The CNN and LSTM, however, underperformed
for both RAVDESS and SAVEE datasets without the GWO optimizer. The GWO-SVM beat
the traditional DNN frameworks and existing SVM models.

Table 4. Comparison with existing studies.

Reference Dataset Classifier Used Accuracy

Bhavan et al. [44] RAVDESS Bagged ensemble of SVMs 75.69%
Zeng et al. [42] RAVDESS DNNs 64.52%

Shegokar and Sircar [43] RAVDESS SVMs 60.1%
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Table 4. Cont.

Reference Dataset Classifier Used Accuracy

This Work (Proposed Method) SAVEE GWO-SVM
GWO-CNN

75%
65.47%

This Work (Proposed Method) EmoDB GWO-SVM
GWO-CNN

85%
78%

This Work (Proposed Method) TESS GWO-SVM
GWO-CNN

99.97%
99.93%
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6. Conclusions and Future Work

In this research study, a deep learning model was introduced for speech emotion
recognition. The effectiveness of the proposed model was assessed using four datasets:
EmoDB, RAVDESS, TESS, and SAVEE. The experimental findings demonstrated that the
proposed model achieved better results with GWO, irrespective of the model used on
the four datasets. The evaluations revealed that the results obtained were comparable
to the accuracy of other convolutional neural networks (CNNs) utilizing spectrogram
features. Consequently, it can be concluded that the proposed approach is highly suitable
for emotion recognition.

It is recommended to evaluate the proposed approach further using additional emotion
datasets. Additionally, the proposed model can be enhanced by utilizing large datasets
to improve the recognition of all emotions. Another solution to increase the accuracy of
the model could be to combine all four datasets present and extract common emotions
from them. This will result in a more balanced dataset that will show promising results
based on overall SER instead of individual datasets, with constraints being used for the
same objective.

In the future, human assistance will no longer be necessary for speech recognition
tasks as they transition into automated processes. Voice recognition is likely to become a
seamless and automatic function. It would not be surprising if we are eventually all carrying
earpieces like C-3PO that listen to our conversations. Ongoing research and development in
deep learning are expanding the possibilities of speech recognition. Exciting advancements
are being made, including the utilization of neural networks to analyze sound patterns,
resulting in improved artificial intelligence algorithms. Speech recognition, a subset of deep
learning, has been a subject of study for over five decades. Presently, speech recognition
systems exhibit higher accuracy levels than ever before. The future holds even more
promise for speech recognition as deep learning techniques enable training models on
larger datasets and utilize increased computing power, enhancing the algorithms’ data
processing capabilities.
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