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Abstract: Brushstroke segmentation algorithms are critical in computer-based analysis of fine motor
control via handwriting, drawing, or tracing tasks. Current segmentation approaches typically
rely only on one type of feature, either spatial, temporal, kinematic, or pressure. We introduce
a segmentation algorithm that leverages both spatiotemporal and pressure features to accurately
identify brushstrokes during a tracing task. The algorithm was tested on both a clinical and validation
dataset. Using validation trials with incorrectly identified brushstrokes, we evaluated the impact of
segmentation errors on commonly derived biomechanical features used in the literature to detect
graphomotor pathologies. The algorithm exhibited robust performance on validation and clinical
datasets, effectively identifying brushstrokes while simultaneously eliminating spurious, noisy data.
Spatial and temporal features were most affected by incorrect segmentation, particularly those
related to the distance between brushstrokes and in-air time, which experienced propagated errors of
99% and 95%, respectively. In contrast, kinematic features, such as velocity and acceleration, were
minimally affected, with propagated errors between 0 to 12%. The proposed algorithm may help
improve brushstroke segmentation in future studies of handwriting, drawing, or tracing tasks. Spatial
and temporal features derived from tablet-acquired data should be considered with caution, given
their sensitivity to segmentation errors and instrumentation characteristics.

Keywords: biomedical signal processing; segmentation algorithm; biomechanical phenomena; error
propagation; tracing

1. Introduction

The emergence of affordable digital tablets over the past decade has created new
opportunities for identifying cognitive and motor control differences among populations
through drawing, tracing, and handwriting tasks [1–12]. Compared to conventional pen-
and-paper assessments, which limit analysis to the final product, tablet computers allow
researchers to study the process of drawing by capturing continuous changes in pen
position, pen-on-tablet pressure, and the stylus azimuth or tilt. These data give rise to
efficient, computer-based assessment of graphomotor activities, circumventing the need for
time-consuming, subjective judgment of conventional pen-and-paper acquired data [13].
For tablet data, various algorithms have been proposed to detect subtle dynamic, kine-
matic, and static markers of handwriting/drawing difficulties secondary to impairments
of perceptual motor control. These brushstroke-derived biomechanical quantities have
expanded our understanding of graphomotor processes and set the stage for machine
learning-based detection of handwriting or drawing disorders due to developmental dif-
ferences or disease [2,6–8,12]. For example, Asselborn et al. [2], were able to identify
53 measurable brushstroke features (such as in air-time ratio, drawing velocity, essential
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tremor, among others) that together characterized fine motor control difficulties in children
with dysgraphia. Most tablet-based handwriting/drawing studies have focused on identi-
fiable features within brushstrokes. However, the actual segmentation, i.e., automatically
identifying from the recorded data the end of one stroke and the beginning of the next,
are vaguely described, if at all. Brushstroke segmentation is a critical step in the prepro-
cessing of drawing or handwriting data; errors in brushstroke identification propagate to
brushstroke-derived measures, which would ultimately yield inaccurate evaluations of
task performance.

Few authors have presented approaches to segmenting brushstrokes [1,2,14–16]. Spa-
tial segmentation approaches have categorized strokes based on spatial features such as
local minimum/maximal coordinates or have deconstructed characters into predefined
components [14,16,17]. Fitjar et al. [16] predefined the strokes needed to trace letters; for
example, the letter “A” was decomposed into three lines (two slanted and one horizontal).
However, this method did not account for cases where the user writes the letter using a
different number of strokes. In alternative schemes, Asselborn et al. [1,2] segmented strokes
using predefined bin sizes of sampled points while others separated strokes according to
predefined temporal (e.g., 5–10 s segments [14]) rather than spatial boundaries. By adopting
a predefined segmentation approach, these algorithms ignored pen lifts that may have
occurred within segments. The multiplicity of pen lifts and greater in-air duration has previ-
ously yielded insight into cognitive or motor-processing difficulties [10,11,15,18,19]. Other
segmentation strategies in the literature include separating written strokes by identifying
points in time where the velocity was equal to zero, i.e., directional changes [20,21]. Alterna-
tively, strokes have also been segmented at timepoints where the velocity and acceleration
was 0 [14]. However, as participants may pause without lifting the pen, this condition alone
is not sufficient to delineate strokes. An alternative is to explicitly instruct participants
to start or stop drawing continuously, and observe the time when the pen touches the
tablet [4,22,23]. However, explicit start/stop instructions detract from naturalistic drawing
and may be difficult for children with cognitive disabilities to comply with.

To avoid issues associated with predefining strokes, time points that indicate specific
fluctuations in applied pen pressure have been used to distinguish segments [16,22]. Some
authors have defined segments based on pen-up and pen-down positions when the regis-
tered pressure equals zero [8,24]. In similar spirit, Rosenblum et al. defined the beginning
of a brushstroke as the moment when pen pressure surpassed 4% of the maximum mea-
sured pressure and the end as when the pressure dipped below this threshold [15]. These
approaches require instrumentation that is sensitive to subtle pressure changes, but they
are consequently susceptible to segmentation error whenever unintended palm contact (on
capacitive touchscreens) introduces errant pressure measurements.

In this technical note, we illustrate the necessity of accurately segmenting tablet-
derived data into brushstrokes. To this end, we developed a simple brushstroke segmen-
tation algorithm that leverages spatial, temporal, and pressure measurements. Using
kinematic data from a tablet-based tracing task, we validated the automatically detected
strokes against those derived from retrospective video review. We quantified the impact of
incorrect brushstroke segmentation on the biomechanical parameters often derived from
table-based handwriting and drawing studies.

2. Materials and Methods
2.1. Participants

Fifty-two child–adult dyads were recruited as part of a larger study which included
examining brushstroke features while tracing cartoon images. In this technical note, we con-
sider selected tracings from a subset of 11 participants consisting of 5 children (4 diagnosed
with autism spectrum disorder, 1 neurotypical; average age = 12.34 ± 0.49 years; 4 males)
and 6 adults (average age = 40.64 ± 1.41 years; 5 females).
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2.2. Tracing Protocol

A tracing game application for android tablets was developed using the Construct
3 game engine. During the data collection session, which lasted an hour and a half,
parent–child dyads were seated at a table across from each other in a quiet, well-illuminated
room. Participants were asked to trace images either independently or collaboratively. For
each drawing trial, the parent and child took turns selecting one of 20 images they wanted
to trace. They then traced with their dominant hand various cartoon characters over a 120 s
period using an S Pen stylus (silicone tip stylus 9.7; BoxWave Corp., Kirkland, WA, USA)
on a 9.7′′ electromagnetic resonance touchscreen tablet (Tab A model SM-P550; Samsung,
Suwon, South Korea) with 1024 levels of pressure sensitivity. While participants traced the
image, time-stamped x- and y-coordinates along with the estimated applied pen pressure
(a continuous value between 0 and 1) were recorded at 16.51 ± 0.01 Hz and saved to a
server. A sagittal view of the participants was video recorded during the tracing task.

2.3. Tracing Data

A total of 487 tracings were collected and the two most selected images (yoda, selected
44 times; lego, selected 40 times) were used to verify the proposed brushstroke segmentation
method presented in this note. From the two selected images, we only used tracings where:
(1) the corresponding video recordings provided an unobstructed view of the participant’s
hand such that pen lifts could be unambiguously confirmed; and (2) there was no evidence
of free-hand drawing, i.e., doodling unrelated to the tracing task. For this study, 14 separate
tracings met these two criteria and from here on, will be referred to as the clinical dataset.

We created a separate dataset, from here on referred to as the validation dataset, to
systematically stress test the segmentation algorithm. The first author traced the same
two images as above 12 times, each emulating different tracing behaviors informed by
observations of actual participant tracing habits. These conditions comprised variations
in speed (slow, fast, and variable), the number of pen lifts (minimal or several), and hand
positions (hand resting and not resting on the screen). In total, the validation set consisted
of 12 trials for each image, generating a total of 24 tracings. To validate the number of
algorithmically identified brushstrokes, actual brushstrokes were manually enumerated by
retrospective review of an overhead camera recording that provided a transverse view of
the tracing task.

2.4. Segmentation Algorithm

The acquired data were segmented into brushstrokes using a custom semi-automated
program developed in MATLAB (v.R2022b) that considered pressure, as well as temporal
and spatial measurements. Pen-on-tablet contact was defined as instances where pressure
exceeded a threshold, PT . In this study, PT = 0.7 was empirically determined as the
threshold that captured most of the authentic brushstrokes. In complementarity, pen
lifts occurred at timepoints where instantaneous pressure, p(ti), fell below this threshold,
namely, p(ti) < PT . Therefore, the set of times, Lp, associated with pressure-demarcated
pen lifts is given by,

Lp = {ti|pi(t) < PT}, i = 1, . . . , N (1)

where N is the number of samples in the entire tracing. This definition identified complete
lifts, i.e., where p(ti) = 0, with neither pen nor hand contact, as well as partial lifts where
the pen was raised but the hand remained on the screen, yielding non-zero pressure
readings, or where the pen tip traversed proximal to the screen without drawing, thereby
registering supra-threshold pressure values. However, in these instances, pen lifts could
not be detected based on pressure alone.

Concurrent spatial and temporal data were subsequently considered. It was found
that the time difference, δ(ti), between successive unique x- and y-coordinate values varied
as the stylus moved across the screen while tracing (Figure 1a). These variations reflected
within-stroke pauses while tracing, natural fluctuations in drawing speed, as well as pen
lifts between successive brushstrokes. The latter were an order of magnitude larger than the
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time differences associated with pauses and speed fluctuations. Exploiting this observation,
we fitted, via maximum likelihood estimation, a Rayleigh probability density to the time
differences between successive unique pen positions. The 95th percentile of this density
was empirically determined as the temporal threshold, δT , that identified authentic pen lifts,
i.e., δ(ti) > δT , from unique x- and y-coordinates with the highest sensitivity and specificity
(Figure 1b). Identifying the set of pen lift times, LS, by spatiotemporal information, that is,
the time differences between successive unique coordinates (xi, yi) and (xi+1, yi+1), can,
thus, be summarized as follows:

LS = {ti|δ(ti) > δT , xi+1 ̸= xi and yi+1 ̸= yi}, i = 1, . . . , N − 1where δ(ti) = ti+1 − ti (2)
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Figure 1. (a) A plot of the time-varying time differences between unique x- and y-coordinates versus
the sample number. Time differences above a defined threshold were identified as pen lifts (red
peaks) while those below indicated pauses while drawing a brushstroke. (b) A Rayleigh density fit
the time differences between unique x- and y-coordinates during the tracing trial. Time differences
above the 98th percentile were deemed to be authentic inter-brushstroke pen lifts.

The threshold δT is defined as the 98th percentile,

1
N

N

∑
i=1

H(δT − δ(ti))× 100% = 98% (3)

where H(·) is the Heaviside function, namely, H(x) = 1, x > 0 otherwise H(x) = 0.
The times of spatiotemporally determined pen lifts, LS, were combined with pen lift

times detected based on pressure, Lp, to define a final set of pen lift times, L = t1, . . . , tK
where tk ∈ LS ∪ Lp and K =

∣∣LS ∪ Lp
∣∣ where |·| denotes the cardinality of the set. We

further define t0 as the time of the beginning of the first stroke, i.e., the initial time at which
p(t) > PT . The kth brushstroke, Bk, is then defined as the set of coordinates between pen
lift times,

Bk = {(xi, yi)|tk−1 + τ ≤ ti ≤ tk}, tk ∈ Li = 1, . . . , N, k = 1, . . . , K (4)

where, as above, N is the total number of samples in the tracing, K is the number of
brushstrokes comprising the tracing, and τ > δT is a temporal offset guaranteeing a unique
point following the last pen lift, wherein p(tk−1 + τ) > PT .
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In other words, tk−1 + τ is the first unique point after the last pen lift where pressure
exceeds the minimum threshold for legitimate pen-on-tablet contact.

Noisy or spurious points were observed when the stylus traversed the screen during
a pen lift or when the hand was resting on the surface while drawing. These spurious
points appeared as the first or final six points of some brushstrokes and appeared relatively
equidistant but much more widely spaced apart compared to other points within the
stroke (Figure 2). To automatically remove these points from an identified brushstroke,
we fit a Rayleigh probability density to the distances between unique coordinates via
maximum likelihood estimation. The 95th percentile distance demarcated noisy points. In
other words,

Noise ≜ {(xi, yi)|di > DT

}
, ∀(xi, yi) ∈ Bkdi =

√
(xi−1 − xi)

2 + (yi−1 − yi)
2 (5)
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Figure 2. (a) A photo of the original tracing on the tablet. (b) Raw data prior to preprocessing. Points
circled in red are examples of noisy points. (c) Detected brushstrokes after applying the segmentation
algorithm. Each stroke is represented by a different color and red points indicate identified spurious
points. (d) The final reconstructed image after removing noisy points.

2.5. Algorithm Validation

The algorithm was tested with the 12-behavior validation set described above. In
the trials where the number of strokes were incorrectly identified by our algorithm, we
estimated the propagated error in 37 features typically used in studies to characterize fine
motor control [1,2,6,8,25,26]. These features, listed in Table 1, were categorized as temporal,
kinematic, or spatial and were quantified using descriptive statistics (average, standard
deviation, maximum, and minimum). The algorithm was further tested on the clinical
dataset to confirm that the number of strokes identified by the algorithm was equal to the
number of pen lifts observed during the recorded trial.

For the temporal features, in-air time was the time that the pen was lifted from the
screen between brushstrokes while the on-screen time was the time that elapsed between
the first and final coordinates of the stroke, which included both pauses and movement
time [8]. Subsequently, the in-air time/on-surface ratio was the total in-air time divided
by the calculated total on-surface time [1]. Stop time and movement time were defined,
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respectively, as the durations over which the pen remained in contact with the screen while
stationary and in motion [6].

Table 1. List of biomechanical features typically derived from tablet-based data to characterize
graphomotor performance [1,2,6,8,15,26].

Temporal Features (In Units of Seconds) Spatial Features (In Units of Pixels)

Total on-screen time Average distance between brushstrokes
Average on-screen time Standard deviation distance between brushstrokes
Standard deviation on-screen time Maximum distance between brushstrokes
Maximum on-screen time Minimum distance between brushstrokes
Minimum on-screen time Average brushstroke width
Total in-air time Standard deviation brushstroke width
Average in-air time Maximum brushstroke width
Standard deviation in-air time Minimum brushstroke width
Maximum in-air time Average brushstroke height
Minimum in-air time Standard deviation brushstroke height
Total movement time Maximum brushstroke height
Total stop time Minimum brushstroke height
In-air/on-paper time ratio (dimensionless) Average brushstroke length

Standard deviation brushstroke length
Maximum brushstroke length
Minimum brushstroke length

Kinematic features (pixels/s)

Average velocity
Standard deviation stroke velocity

Maximum stroke velocity
Average acceleration (pixels/s2)

Standard deviation acceleration (pixels/s2)
Maximum acceleration (pixels/s2)
Minimum acceleration (pixels/s2)

Average fluency (number of velocity inversions)

Spatial features such as the brushstroke height and width were defined as the length
of the strokes along the x- and y-axes, respectively, while the stroke length was the total
Euclidean distance of the brushstroke [6,15]. The distance between brushstrokes was the
Euclidean distance between the end point of one stroke and the starting location of the
next [2].

The kinematic features such as the velocity and acceleration were computed as in-
stantaneous values between x- and y-coordinates across all brushstrokes [1]. Fluency was
defined as the number of inversions in the vector sum of velocity or, equivalently, the
number of zero-crossings in the corresponding acceleration signal [26].

When the algorithm incorrectly identified the number of brushstrokes in the valida-
tion dataset, we computed the absolute propagated errors in the values of the features
in Table 1, namely,

Error =
| ferr − f0|

f0
× 100% (6)

where ferr is the value of a given feature computed with the erroneously detected number of
brushstrokes while f0 is the same feature computed with the actual number of brushstrokes.

3. Results

On the validation set, the algorithm correctly predicted the number of brushstrokes in
19 of the 24 trials (79%). See Table 2. Of the five instances of incorrect segmentation, all cases
yielded one brushstroke more than the original tracing. Discrepancies between the actual
and detected number of brushstrokes occurred exclusively in trials where brushstrokes
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were deliberately minimized. Hand position and drawing speed seemed to have less of a
negative impact on detection accuracy.

Table 2. Segmentation performance of the validation set under different conditions (variations in
hand position, drawing speed, and the number of pen lifts). * denotes trials where the number of
detected and actual segments differed.

Condition

Trial Hand
Position

Drawing
Speed

Number of
Pen Lifts Image Number of Actual

Segments
Number of

Detected Segments

1 resting slow minimum
yoda 11 11

2 lego 3 3

3 resting fast maximum
yoda 48 48

4 lego 67 67

5 resting variable minimum
yoda 9 * 10 *

6 lego 6 6

7 resting slow maximum
yoda 43 43

8 lego 63 63

9 resting fast minimum
yoda 11 11

10 lego 5 5

11 resting variable maximum
yoda 41 41

12 lego 55 55

13 not resting slow minimum
yoda 4 * 5 *

14 lego 5 * 6 *

15 not resting fast maximum
yoda 45 45

16 lego 70 70

17 not resting variable minimum
yoda 1 1

18 lego 5 * 6 *

19 not resting slow maximum
yoda 43 43

20 lego 52 52

21 not resting fast minimum
yoda 4 4

22 lego 1 * 2 *

23 not resting variable maximum
yoda 39 39

24 lego 44 44

For the clinical dataset, consisting of both adult and pediatric data, the number of pen
lifts could only be verified by video review in 14 recordings due to the sagittal view of the
participant. See Table 3. Of these 14 video recordings, the algorithm correctly identified the
number of brushstrokes in 12 trials (86%).

Table 3. Number of actual and detected brushstrokes for the clinical dataset. The algorithm correctly
identified the number of strokes in 12 of 14 trials. * denotes trials where the number of detected and
actual segments differed.

Trial Image Number of Actual
Segments

Number of Detected
Segments

1 yoda 19 19
2 yoda 34 * 33 *
3 yoda 26 26
4 lego 22 22
5 lego 24 24
6 yoda 37 37
7 yoda 53 53
8 yoda 12 12
9 yoda 41 41
10 lego 27 27
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Table 3. Cont.

Trial Image Number of Actual
Segments

Number of Detected
Segments

11 yoda 26 * 28 *
12 yoda 26 26
13 lego 31 31
14 lego 33 33

Table 4 lists the average errors for each feature, averaged across the 5 trials of the
validation set with erroneous brushstroke segmentations.

Table 4. The error for the tested features, averaged across the five trials of the validation set where
the incorrect number of strokes was algorithmically identified. Features are sorted according to their
corresponding average error from highest to lowest.

Biomechanical Features Avg Error ± SD %

Minimum distance between brushstrokes 99.31 ± 1.08
Minimum in-air time 95.34 ± 1.96

Standard deviation of in-air time 49.21 ± 27.33
Standard deviation of on-screen time 30.71 ± 14.82

Standard deviation of brushstroke length 28.84 ± 11.60
Maximum on-screen time 24.95 ± 23.95

Average fluency 22.76 ± 15.66
Average on-screen time 22.71 ± 15.70

Average brushstroke length 22.69 ± 15.70
Average in-air time 22.02 ± 15.52

Maximum brushstroke length 21.04 ± 20.22
Average distance between brushstrokes 18.60 ± 5.76

Average brushstroke width 15.45 ± 10.81
Standard deviation of brushstroke height 14.21 ± 4.05

Minimum brushstroke length 11.12 ± 24.86
Minimum on-screen time 10.77 ± 22.68

Average acceleration 12.66 ± 15.19
Standard deviation of brushstroke width 6.26 ± 5.61

Maximum brushstroke height 6.04 ± 12.42
Minimum brushstroke width 5.75 ± 12.85
Average brushstroke height 4.98 ± 3.97

Maximum brushstroke width 4.07 ± 9.10
Standard deviation of distance between brushstrokes 2.88 ± 1.81

Minimum brushstroke height 1.72 ± 3.84
In-air/on-surface time ratio 0.99 ± 0.61

Total in-air time 0.92 ± 0.60
Maximum distance between brushstrokes 0.88 ± 1.76

Total stop time 0.27 ± 0.05
Maximum in-air time 0.23 ± 0.51

Standard deviation of acceleration 0.13 ± 0.19
Total on-screen time 0.06 ± 0.02

Average velocity 0.05 ± 0.02
Standard deviation of velocity 0.04 ± 0.08

Total movement time 0.04 ± 0.02
Maximum velocity 0.00 ± 0.00

Maximum acceleration 0.00 ± 0.00
Minimum acceleration 0.00 ± 0.00

The most affected feature was the minimum distance between brushstrokes as well
as the minimum in-air time, with errors of 99.31% and 95.34%, respectively. Outside of
this, all other spatial features were mildly-to-moderately affected with a cumulative error
between 0.88–28.84%. In a similar manner, the temporal features were moderately affected
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by erroneously detected strokes, with an error ranging from 0.04% to 49.21%. However,
measurements related to total times (such as total stop time, total movement time, total
on-screen time, and total in-air time) demonstrated an error of approximately 0.92% or less.
Kinematic features were the least affected compared to spatial and temporal features. All
kinematic features generally had error rates less than 1%, except the average fluency and
acceleration which had discrepancies of 22.76% and 12.66%, respectively.

4. Discussion

We quantified the propagated impact of incorrect brushstroke segmentation on com-
mon biomechanical feature values reported in studies utilizing tablet-based drawing,
tracing, or handwriting tasks. To do so, we introduced a novel brushstroke segmentation
algorithm that leverages both pressure and spatiotemporal data from a digital tablet. The
current findings showed that, despite small discrepancies between the algorithmically
identified and actual brushstrokes, there can be significant errors in the values of the
derived features.

4.1. The Segmentation Algorithm Performance

On the validation set, the algorithm demonstrated robust detection under various
drawing conditions (varying the number of strokes, hand position, and drawing speed).
Among the five trials where the number of brushstrokes was incorrectly identified, the
algorithm was off by only one brushstroke in all five trials. In all instances of erroneous
segmentation, the common tracing behavior was that the number of brushstrokes was
purposely minimized. The speed and hand position seemed to have a smaller but non-
negligible effect on segmentation. In all cases of segmentation error, unique data points
were not recorded as the image was traced due to intermittent server connection, creating
an inflated mid-stroke pause which led to the incorrect decomposition of a single stroke
as multiple brushstrokes. Perhaps the prevalence of pen-contact samples in these trials,
which necessitated longer periods of continuous data streaming, increased the risk of
the observed hardware fault. The algorithm also demonstrated robust performance with
the clinical dataset where it only misidentified two trials and was off by one and two
brushstrokes each.

4.2. Impact of Segmentation Errors on Spatial Features

Spatial features were the most affected by incorrect stroke identification, particularly
the minimum distance between strokes which had a propagated error of 99.3% as well as
the minimum in-air time, a temporal feature, which similarly demonstrated a propagated
error above 90%. This is unsurprising given that a single stroke would have closely
adjacent x- and y-pixels compared to segmentations that yielded multiple strokes. Given
the relationship between distance and time, it is also expected that minimum distance
measurements would be positively correlated with minimum in-air time. Incidentally,
spacing as a feature is commonly used in handwriting analysis to assess fine motor control
in various populations [1,2,15,17,19], although the literature has not consistently associated
this feature with neurodivergent writing capabilities. For example, it has been reported
that children with dysgraphia [2] and non-proficient writing [19] tend to narrowly space
their words. Falk and colleagues found high variability in the inter-letter distance among
younger children writers, and concluded that size and space parameters alone could
discriminate between proficient and non-proficient handwriting [17]. In contrast, Asselborn
et al. found that spatial features, such as the distance between letter strokes, did not provide
a clear distinction between children with and without handwriting difficulties [1]. The
high possibility of errors in spatial features due to incorrect brushstroke segmentation may
explain these inconsistent findings. From our data, segmenting strokes based solely on
distance or pressure is vulnerable to error as variable speed and pauses while drawing could
falsely emulate a pen lift. It is, thus, recommended that future studies consider the accuracy
of their segmentation algorithm or exclude the measures of inter-stroke distance altogether.
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All other spatial features were moderately affected by incorrect segmentation. Brush-
stroke length measures exhibited an error rate between 11.1–28.8%. Again, this was also
expected because the erroneous segmentation of one stroke as multiple brushstrokes would
positively skew the measured segment length. Alternatively, quantifying brushstroke
dimensions in height and width along the y- and x-axis, respectively, proved to be a more
robust measurement as the measured errors were between 1.7–15.5%. This is likely due
to the dependence of these measurements on the global image rather than individual
segments. Some studies have reported correlations between spatial features, particularly
those related to height, and writing proficiency [9,17,20]. However, given the sensitivity
of these measures to segmentation, spatial features should be considered with caution as
quantifiers of fine motor control.

4.3. Impact of Segmentation Errors on Temporal and Kinematic Features

Temporal and kinematic features were less affected by incorrect segmentation. This is
a critical finding because these measurements are most commonly used in the literature and
have consistently shown correlations to writing or drawing difficulties [1,5,20,22,23,25,27].
Since kinematic and temporal features have been correlated to fine motor control abilities
across populations, and have been critical for developing machine learning algorithms for
automatically detecting various pathological conditions [2,8,12].

The temporal features explored in this study were moderately but less affected by
incorrect brushstroke segmentation as compared to spatial features. The propagated error,
outside of the minimum in-air time, ranged from 0.0–49.2%. The temporal features explored
in this study are commonly used in the literature and have proven discriminatory between
different populations [2,11,15,17–19]. It must be noted that features that measured aggre-
gated time, specifically total in-air time, total stop time, total on-screen time, and total move-
ment time, generally demonstrated the smallest error, between 0.0–0.9%; these features
have been associated with graphomotor pathologies in previous studies [2,6,7,11,18,19].
Our analysis supports that total time measures provide reliable insights into writing or
drawing capabilities.

Kinematic features proved to be the least sensitive to misidentified brushstrokes.
The small, propagated error could be attributed to the fact that these measures rely on
instantaneous values. The only kinematic measure that was moderately affected was
average acceleration which had a propagated error of 12.7%. This high error rate was
due to trials 18 and 22 (validation dataset) with average acceleration errors of 25.9% and
32.2%, respectively, while the other trials (5, 13, and 14) had errors between 0.2–3.0%. The
non-robustness in the average explains the sensitivity of these measures to a single outlying
observation. The robustness of kinematic features to segmentation errors makes them ideal
for assessing fine motor control in different populations.

Several biomechanical features (e.g., minimum brushstroke length, maximum brush-
stroke width, minimum on-screen time) exhibited large standard deviations in their average
propagated errors. This observation can be traced to trial 22 (validation dataset), where
the algorithm erroneously identified one brushstroke as two. However, it is important to
note that this trial, where the participant traced the entire image with one brushstroke, was
the exception. Of the 52 observed clinical trials, only one participant traced in this manner.
Thus, features with large variance in propagated error may still be useful.

4.4. Instrumentation Considerations

Our findings suggest that some important technical characteristics of the data capture
instrumentation must be considered to minimize propagated errors in biomechanical
features in handwriting, drawing, or tracing studies. In this study, erroneous segmentation
in the validation dataset could partially be attributed to the tablet’s variable sampling rate.
While most studies have presumed a fixed sampling rate, others have reported different
rates during data collection [21] or have omitted this information altogether [3,5,28]. For the
current study, the sampling rate variability could be attributed to the connection between
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the server and tablets. While a variable sampling rate may be inherent to the systems
used for data acquisition and, thus, unavoidable, this variability could negatively affect
common features, such as fluency, entropy, or essential tremor, in the study of handwriting
complexities [3,10,29]. For example, if one assumed a constant sampling period between
data points when, in fact, the sampling period varied, then all instantaneous measures,
such as velocity, that depend on time differences between samples would be inaccurate.
Those errors would propagate to derived measures, such as fluency, and would, in turn, be
further magnified in any cognate summary statistic, such as average acceleration.

The sampling rate itself is also an important consideration. For example, essential
tremor is found to be between 4–12 Hz [29], requiring a minimum sampling rate of 24 Hz
to accurately capture this behavior. A low sampling rate may compromise the detection
of within-brushstroke pauses, which have been proposed as an important measurement
for categorizing divergent drawing or handwriting capabilities [11,30]. Most studies
reporting high (100–200 Hz) sampling rates have used specialized WACOM drawing
tablets [4,13,20,22,25]. Studies deploying consumer-based tablets, such as the iPad with an
Apple Pencil, report a much lower sampling rate of 60 Hz [1], or a Samsung tablet with an
unspecified sampling rate [28]. Thus, when using cost-effective, consumer-grade tablets,
special attention must be paid to the sampling rate and its consistency over time, and,
consequently, the kinematic features that can be reasonably estimated.

Touchscreen technology is another important consideration. Specifically, our findings
indicate an effect of hand position on brushstroke segmentation when using consumer-
grade tablets outfitted with capacitive screens. Functionally, capacitive screens do not
directly measure pen pressure. Rather, they register pen position based on contact with an
electrical conductor such as a stylus pen tip or hand. As the current study demonstrated,
pen proximity as well as the hand resting on the screen contributed noisy data points that
distorted brushstrokes, which, in turn, could propagate to incorrect feature measurements.
Since capacitive screens are inherently sensitive to pen proximity and hand position, it
is plausible that the same effects were present in other studies using similar hardware.
Therefore, it is critical that future studies consider denoising methods, such as the one
proposed here, for removing spurious data points.

5. Conclusions

This paper presented a novel brushstroke segmentation algorithm based on spatiotem-
poral as well as pen pressure measurements. The algorithm robustly identified brushstrokes
in both validation and clinical datasets. We showed that incorrect brushstroke segmentation
can propagate grave errors to many spatial and selected temporal features commonly cited
when characterizing graphomotor activities. Instrumental specifications such as consistency
of sampling rate and nature of the touchscreen technology can also contribute to erroneous
estimation of biomechanical features. The proposed algorithm can assist in segmenting
tablet-acquired data for studies exploring fine motor control through handwriting, drawing,
or tracing. Our findings suggest that future studies must provide greater transparency on
segmentation approaches, consider spatial features, in particular, with prudence and attend
to technical limitations of the acquisition tablet.
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2. Asselborn, T.; Gargot, T.; Kidziński, Ł.; Johal, W.; Cohen, D.; Jolly, C.; Dillenbourg, P. Automated human-level diagnosis of

dysgraphia using a consumer tablet. npj Digit. Med. 2018, 1, 42. [CrossRef]
3. Drotar, P.; Mekyska, J.; Rektorova, I.; Masarova, L.; Smekal, Z.; Faundez-Zanuy, M. Decision Support Framework for Parkinson’s

Disease Based on Novel Handwriting Markers. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 508–516. [CrossRef]
4. Fleury, A.; Kushki, A.; Tanel, N.; Anagnostou, E.; Chau, T. Statistical persistence and timing characteristics of repetitive circle

drawing in children with ASD. Dev. Neurorehabilit. 2013, 16, 245–254. [CrossRef]
5. Cohen, E.J.; Bravi, R.; Minciacchi, D. Assessing the Development of Fine Motor Control in Elementary School Children Using

Drawing and Tracing Tasks. Percept. Mot. Ski. 2021, 128, 605–624. [CrossRef] [PubMed]
6. Dui, L.G.; Lomurno, E.; Lunardini, F.; Termine, C.; Campi, A.; Matteucci, M.; Ferrante, S. Identification and characterization of

learning weakness from drawing analysis at the pre-literacy stage. Sci. Rep. 2022, 12, 21624. [CrossRef] [PubMed]
7. Rosenblum, S.; Dror, G. Identifying Developmental Dysgraphia Characteristics Utilizing Handwriting Classification Methods.

IEEE Trans. Hum.-Mach. Syst. 2016, 47, 293–298. [CrossRef]
8. Lopez-De-Ipina, K.; Solé-Casals, J.; Faúndez-Zanuy, M.; Calvo, P.M.; Sesa, E.; Roure, J.; Martinez-De-Lizarduy, U.; Beitia, B.;

Fernández, E.; Iradi, J.; et al. Automatic Analysis of Archimedes’ Spiral for Characterization of Genetic Essential Tremor Based on
Shannon’s Entropy and Fractal Dimension. Entropy 2018, 20, 531. [CrossRef]

9. Johnson, B.P.; Phillips, J.G.; Papadopoulos, N.; Fielding, J.; Tonge, B.; Rinehart, N.J. Understanding macrographia in children with
autism spectrum disorders. Res. Dev. Disabil. 2013, 34, 2917–2926. [CrossRef]

10. Mekyska, J.; Faundez-Zanuy, M.; Mzourek, Z.; Galaz, Z.; Smekal, Z.; Rosenblum, S. Identification and Rating of Developmental
Dysgraphia by Handwriting Analysis. IEEE Trans. Hum.-Mach. Syst. 2016, 47, 235–248. [CrossRef]

11. Paz-Villagrán, V.; Danna, J.; Velay, J.-L. Lifts and stops in proficient and dysgraphic handwriting. Hum. Mov. Sci. 2014, 33, 381–394.
[CrossRef]

12. Parziale, A.; Senatore, R.; Della Cioppa, A.; Marcelli, A. Cartesian genetic programming for diagnosis of Parkinson disease
through handwriting analysis: Performance vs. interpretability issues. Artif. Intell. Med. 2020, 111, 101984. [CrossRef] [PubMed]

13. Di Brina, C.; Niels, R.; Overvelde, A.; Levi, G.; Hulstijn, W. Dynamic time warping: A new method in the study of poor
handwriting. Hum. Mov. Sci. 2008, 27, 242–255. [CrossRef] [PubMed]

14. Mavrogiorgou, P.; Mergl, R.; Tigges, P.; El Husseini, J.; Schröter, A.; Juckel, G.; Zaudig, M.; Hegerl, U. Kinematic analysis of
handwriting movements in patients with obsessive-compulsive disorder. J. Neurol. Neurosurg. Psychiatry 2001, 70, 605–612.
[CrossRef]

15. Rosenblum, S.; Dvorkin, A.Y.; Weiss, P.L. Automatic segmentation as a tool for examining the handwriting process of children
with dysgraphic and proficient handwriting. Hum. Mov. Sci. 2006, 25, 608–621. [CrossRef]

16. Fitjar, C.L.; Rønneberg, V.; Nottbusch, G.; Torrance, M. Learning Handwriting: Factors Affecting Pen-Movement Fluency in
Beginning Writers. Front. Psychol. 2021, 12, 663829. [CrossRef]

17. Falk, T.H.; Tam, C.; Schellnus, H.; Chau, T. On the development of a computer-based handwriting assessment tool to objectively
quantify handwriting proficiency in children. Comput. Methods Programs Biomed. 2011, 104, e102–e111. [CrossRef]

18. Rosenblum, S.; Parush, S.; Weiss, P.L. Computerized Temporal Handwriting Characteristics of Proficient and Non-Proficient
Handwriters. Am. J. Occup. Ther. 2003, 57, 129–138. [CrossRef] [PubMed]

19. Rosenblum, S. Development, Reliability, and Validity of the Handwriting Proficiency Screening Questionnaire (HPSQ). Am. J.
Occup. Ther. 2008, 62, 298–307. [CrossRef]

20. Van Gemmert, A.W.A.; Adler, C.H.; Stelmach, G.E. Parkinson′s disease patients undershoot target size in handwriting and similar
tasks. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1502–1508. [CrossRef] [PubMed]

21. Caligiuri, M.P.; Teulings, H.-L.; Dean, C.E.; Niculescu, A.B.; Lohr, J.B. Handwriting movement kinematics for quantifying
extrapyramidal side effects in patients treated with atypical antipsychotics. Psychiatry Res. 2010, 177, 77–83. [CrossRef]

22. Broderick, M.P.; Van Gemmert, A.W.A.; Shill, H.A.; Stelmach, G.E. Hypometria and bradykinesia during drawing movements in
individuals with Parkinson’s disease. Exp. Brain Res. 2009, 197, 223–233. [CrossRef]

23. Kushki, A.; Schwellnus, H.; Ilyas, F.; Chau, T. Changes in kinetics and kinematics of handwriting during a prolonged writing task
in children with and without dysgraphia. Res. Dev. Disabil. 2011, 32, 1058–1064. [CrossRef]

24. Fitjar, C.L.; Rønneberg, V.; Torrance, M. Assessing handwriting: A method for detailed analysis of letter-formation accuracy and
fluency. Read. Writ. 2022, 37, 291–327. [CrossRef]

https://doi.org/10.1038/s41598-020-60011-8
https://doi.org/10.1038/s41746-018-0049-x
https://doi.org/10.1109/TNSRE.2014.2359997
https://doi.org/10.3109/17518423.2012.758184
https://doi.org/10.1177/0031512521990358
https://www.ncbi.nlm.nih.gov/pubmed/33496640
https://doi.org/10.1038/s41598-022-26038-9
https://www.ncbi.nlm.nih.gov/pubmed/36517669
https://doi.org/10.1109/THMS.2016.2628799
https://doi.org/10.3390/e20070531
https://doi.org/10.1016/j.ridd.2013.06.003
https://doi.org/10.1109/THMS.2016.2586605
https://doi.org/10.1016/j.humov.2013.11.005
https://doi.org/10.1016/j.artmed.2020.101984
https://www.ncbi.nlm.nih.gov/pubmed/33461684
https://doi.org/10.1016/j.humov.2008.02.012
https://www.ncbi.nlm.nih.gov/pubmed/18407363
https://doi.org/10.1136/jnnp.70.5.605
https://doi.org/10.1016/j.humov.2006.07.005
https://doi.org/10.3389/fpsyg.2021.663829
https://doi.org/10.1016/j.cmpb.2010.12.010
https://doi.org/10.5014/ajot.57.2.129
https://www.ncbi.nlm.nih.gov/pubmed/12674304
https://doi.org/10.5014/ajot.62.3.298
https://doi.org/10.1136/jnnp.74.11.1502
https://www.ncbi.nlm.nih.gov/pubmed/14617705
https://doi.org/10.1016/j.psychres.2009.07.005
https://doi.org/10.1007/s00221-009-1925-z
https://doi.org/10.1016/j.ridd.2011.01.026
https://doi.org/10.1007/s11145-022-10308-z


Algorithms 2024, 17, 128 13 of 13

25. Danna, J.; Paz-Villagrán, V.; Velay, J.-L. Signal-to-Noise velocity peaks difference: A new method for evaluating the handwriting
movement fluency in children with dysgraphia. Res. Dev. Disabil. 2013, 34, 4375–4384. [CrossRef] [PubMed]

26. Schenk, T.; Bauer, B.; Steidle, B.; Marquardt, C. Does training improve writer’s cramp?: An evaluation of a behavioral treatment
approach using kinematic analysis. J. Hand Ther. 2004, 17, 349–363. [CrossRef]

27. Kushki, A.; Chau, T.; Anagnostou, E. Handwriting Difficulties in Children with Autism Spectrum Disorders: A Scoping Review. J.
Autism Dev. Disord. 2011, 41, 1706–1716. [CrossRef] [PubMed]

28. Degtyarenko, I.; Radyvonenko, O.; Bokhan, K.; Khomenko, V. Text/shape classifier for mobile applications with handwriting
input. Int. J. Doc. Anal. Recognit. 2016, 19, 369–379. [CrossRef]

29. López-De-Ipiña, K.; Solé-Casals, J.; Faundez-Zanuy, M.; Calvo, P.M.; Sesa, E.; de Lizarduy, U.M.; De La Riva, P.; Marti-Masso, J.F.;
Beitia, B.; Bergareche, A. Selection of Entropy Based Features for Automatic Analysis of Essential Tremor. Entropy 2016, 18, 184.
[CrossRef]

30. Reinders-Messelink, H.; Schoemaker, M.; Snijders, T.; Göeken, L.; Bökkerink, J.; Kamps, W. Analysis of handwriting of children
during treatment for acute lymphoblastic leukemia. Med. Pediatr. Oncol. 2001, 37, 393–399. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ridd.2013.09.012
https://www.ncbi.nlm.nih.gov/pubmed/24139714
https://doi.org/10.1197/j.jht.2004.04.005
https://doi.org/10.1007/s10803-011-1206-0
https://www.ncbi.nlm.nih.gov/pubmed/21350917
https://doi.org/10.1007/s10032-016-0276-0
https://doi.org/10.3390/e18050184
https://doi.org/10.1002/mpo.1216
https://www.ncbi.nlm.nih.gov/pubmed/11568905

	Introduction 
	Materials and Methods 
	Participants 
	Tracing Protocol 
	Tracing Data 
	Segmentation Algorithm 
	Algorithm Validation 

	Results 
	Discussion 
	The Segmentation Algorithm Performance 
	Impact of Segmentation Errors on Spatial Features 
	Impact of Segmentation Errors on Temporal and Kinematic Features 
	Instrumentation Considerations 

	Conclusions 
	References

