
Citation: Zhao, A.; Toudeshki, A.;

Ehsani, R.; Viers, J.H.; Sun, J.-Q.

Evaluation of Neural Network

Effectiveness on Sliding Mode Control

of Delta Robot for Trajectory Tracking.

Algorithms 2024, 17, 113. https://

doi.org/10.3390/a17030113

Academic Editor: Andres Iglesias

Prieto

Received: 31 January 2024

Revised: 20 February 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evaluation of Neural Network Effectiveness on Sliding Mode
Control of Delta Robot for Trajectory Tracking
Anni Zhao 1, Arash Toudeshki 1 , Reza Ehsani 1, Joshua H. Viers 2 and Jian-Qiao Sun 1,*

1 Department of Mechanical Engineering, University of California, Merced, CA 95343, USA;
azcoco2021@gmail.com (A.Z.); amohammaditoudeshk@ucmerced.edu (A.T.); rehsani@ucmerced.edu (R.E.)

2 Department of Civil & Environmental Engineering, School of Engineering, University of California,
Merced, CA 95343, USA; jviers@ucmerced.edu

* Correspondence: jqsun@ucmerced.edu

Abstract: The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and
dynamics. Designing the control for a Delta robot to carry out various operations is a challenging
task. Various advanced control algorithms, such as adaptive control, sliding mode control, and model
predictive control, have been investigated for trajectory tracking of the Delta robot. However, these
control algorithms require a reliable input–output model of the Delta robot. To address this issue, we
have created a control-affine neural network model of the Delta robot with stepper motors. This is a
completely data-driven model intended for control design consideration and is not derivable from
Newton’s law or Lagrange’s equation. The neural networks are trained with randomly sampled data
in a sufficiently large workspace. The sliding mode control for trajectory tracking is then designed
with the help of the neural network model. Extensive numerical results are obtained to show that
the neural network model together with the sliding mode control exhibits outstanding performance,
achieving a trajectory tracking error below 5 cm on average for the Delta robot. Future work will
include experimental validation of the proposed neural network input–output model for control
design for the Delta robot. Furthermore, transfer learnings can be conducted to further refine the
neural network input–output model and the sliding mode control when new experimental data
become available.

Keywords: delta robot; sliding mode control; neural networks

1. Introduction

Delta robots are fast, accurate, and versatile, suitable for tasks like assembly, pick-
and-place, sorting, and classification. The Delta robot is a parallel robot with three arms
connected to an end effector mounted on its base, exhibiting an over-actuated configuration.
Lagrangian dynamics, inverse kinematics, and screw theory are three common approaches
to model the Delta robot [1–3]. Knowing the dynamic model is essential for motion planning
and trajectory tracking. It allows the controller to calculate the required joint inputs to
achieve a desired end effector position. The control design of a Delta robot is challenging
due to its high level of non-linearity and complicated kinematic and dynamic model.
Therefore, plenty of nonlinear and adaptive control algorithms have been implemented
for trajectory tracking and disturbance rejection of the Delta robot. Sliding mode control
is one of the most popular nonlinear control algorithms [4,5]. This algorithm has been
extensively applied to the trajectory tracking of the Delta robot combined with the fuzzy
neural network [6], nonlinear proportional-derivative (PD) control [7], and synergetic
control [8]. Additionally, Radial Basis Function Neural Networks (RBFNNs) combined with
sliding mode control were adopted in [8,9] to compensate for the unknown disturbances.
The work reported in [10] proposed an online estimation approach to compensate for
various uncertainties in the Delta robot and to improve the tracking performance. An

Algorithms 2024, 17, 113. https://doi.org/10.3390/a17030113 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030113
https://doi.org/10.3390/a17030113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3305-6126
https://orcid.org/0000-0001-7957-7942
https://orcid.org/0000-0002-5441-7982
https://doi.org/10.3390/a17030113
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030113?type=check_update&version=2

Algorithms 2024, 17, 113 2 of 15

adaptive active disturbance rejection control was adopted for the output-based robust
trajectory tracking of the Delta robot in [11]. Iterative learning control has also been applied
to the trajectory tracking of the Delta robot with a high performance. Boundjedir, C.E. and
Bouri, M. [12] proposed a PD-type ILC combined with PD control to improve the iteration
performance. Model-free iterative learning control was further implemented on the Delta
robot with non-repetitive trajectories [13]. Moreover, a model reference adaptive control
has also been adopted for control of the Delta robot. Combining an identified linear model
with mode reference adaptive control has shown a significant performance improvement
compared to the three commonly used methods: PID, adaptive control, and sliding mode
control algorithms [14].

Besides traditional control algorithms, neural networks were also adopted to improve
the trajectory-tracking performance of the Delta robot. An inverse kinematic controller
using neural networks was presented in [15] for trajectory control of a Delta robot in
real-time by making use of data collected from simulation. Ref. [16] proposed a data-
driven optimal control algorithm by approximating the solution of the Hamilton–Jacobi–
Bellman equation using neural networks. A neural network model was proposed in [17] to
approximate the inverse kinematics of the Delta robot with randomly sampled experimental
data and was implemented on the hardware in an open-loop control for trajectory tracking.

Most of the advanced control algorithms mentioned above are either data-driven
or model-based. Model-based control algorithms are highly dependent on the accuracy
of the model. Therefore, they have high requirements for control robustness in terms
of model uncertainties and disturbances. On the other hand, data-driven algorithms
operate independent of model accuracy requirements. Given the paramount importance
to safety considerations during normal operations, ensuring robustness and maintaining
optimal performance pose significant challenges in the control design of Delta robots
employing data-driven algorithms. Moreover, another challenge in Delta robot control is
the singularity [18,19], which occurs when the end effector is positioned at specific locations
where the kinematic model degenerates and the joint angles become indeterminate, which
can lead to erratic behavior and potential damage to the robot. Therefore, understanding
the robot’s geometry and workspace is crucial to avoid singularities, which can cause
significant problems during operation.

In this study, we consider a Delta robot equipped with stepper motors as inputs. Once
the desired trajectory of the end effector is determined, inverse kinematics can be adopted to
solve for the joint inputs analytically or numerically using optimization methods. Moreover,
control algorithms can be implemented to further improve the reliability of the motion and
the trajectory tracking accuracy of the Delta robot. The objective of this study is to develop
a hybrid of data-driven and model-based sliding mode control algorithms instead of using
the conventional optimal control to improve the trajectory tracking performance. The
inverse kinematics of the Delta robot is analytically difficult to express in the control-affine
form, which complicates the control design process. Therefore, to deal with this issue, we
propose that neural networks are used to create a control-affine nonlinear input–output
dynamic model of the Delta robot, considering the stepper motor angles and velocities as
inputs. The neural network input–output model is trained with randomly sampled data in
a sufficiently large workspace of the Delta robot. Furthermore, the model-based sliding
mode control for trajectory tracking is designed based on the neural network model. The
proposed neural networks make full use of the inverse kinematics while the sliding mode
control delivers excellent performance in trajectory tracking for a Delta robot. We should
point out that the proposed control-affine nonlinear dynamic model of the Delta robot is
not derivable either from Lagrangian dynamics or inverse kinematics. It is completely
data-driven and can be updated once new experimental data become available. This is also
one of the contributions from our work.

Algorithms 2024, 17, 113 3 of 15

Section 2 presents the architecture of the Delta robot and its inverse kinematics. Section 3
presents the control-affine nonlinear dynamic model in terms of the neural networks. Section 4
presents the sliding mode control with the neural network model and extensive numerical
simulation results to validate the proposed model and control design. Section 5 concludes
this paper.

2. Dynamic Model of Delta Robot

The mechanical structure of a three-DOF Delta robot is shown in Figure 1. Figure 2
shows the geometry and coordinates of the Delta robot in 2D and 3D views. A typical
Delta robot is composed of a fixed platform, a moving platform, three active arms, and
three passive arms connected to an end effector mounted on the base. The active arms of
the robot are driven by the rotation actuators, which are stepper motors in this study. The
parameters of the Delta robot are given in Table 1, and the specifications of components
used for fabricating the Delta robot can be found in [17].

Figure 1. Hardware setup of the Delta robot.

Figure 2. The geometric configuration and coordinate framework required to model the inverse
kinematics of the Delta robot. Left: geometric structure of the Delta robot in 3D. Right: two-
dimensional projection of geometry and coordinates of the Delta robot joints and links.

Algorithms 2024, 17, 113 4 of 15

Table 1. Parameters of the Delta robot.

Description Notation Value

Radius of the fixed platform R 0.325 m

Radius of the moving platform r 0.075 m

Length of the active arm r f 0.5 m

Length of the passive arm re 0.25 m

Mass of the active arm m f 0.205 kg

Mass of the passive arm me 0.153 kg

Mass of the end effector mb 0.653 kg

Inverse Kinematics

Inverse kinematics stands out as one of the most widely adopted algorithms for
modeling the Delta robot. Solving the inverse kinematics involves deriving the geometrical
relationships between its links and joints. From Figure 2, the relationship between the link
positions and angles θi can be given as

θi = arctan
(

ZJi

YFi − YJi

)
(1)

where i = 1, 2, 3; YFi and YJi are the positions of the points Fi and Ji in the Y direction; and
ZFi and ZJi are the positions of the points Fi and Ji in the Z direction. The positions of the
joints YFi and YJi satisfy the geometric constraints of the Delta robot as described in [17].

The inverse kinematics describes how the angles of the joints relate to the positions
of the end effector. The joint velocities θ̇i are not considered in Equation (1). In this study,
the control inputs include angles and joint velocities [θ, θ̇] of the stepper motors. Hence,
the dynamic input–output model of the Delta robot should involve joint velocities. One
way to compute the joint velocities is by using the Jacobian matrix J that relates to the joint
velocities θ̇ = [θ̇1, θ̇2, θ̇3]

T and the end effector position velocities v = [ẋ, ẏ, ż]T [20]:

θ̇ = J(r)v (2)

where r = (x, y, z)T describes the centroid position of the end effector. Equations (1) and (2)
suggest that the joint velocities are highly nonlinear and complex functions of the positions
and its velocities of the end effector. In the data-driven study, the joint velocities can be
computed using finite difference approximation as, for example,

θ̇i(k) = (θi(k)− θi(k − 1))/∆t (3)

where k is the discrete time, i represents the stepper motor’s index number and ∆t is the
sample time. However, as discussed in the Section 1, this information alone is not enough
to help us build a dynamic input–output model for the Delta robot. Furthermore, if the
finite difference method or Jacobian matrix method is used to compute joint velocities,
errors in the computed velocities can accumulate over time, leading to a poor position
prediction. This affects the performance of trajectory tracking control.

It is commonly known that the control-affine model of a system provides a convenient
platform for control design. In this study, we propose to develop a control-affine nonlinear
model of the Delta robot by utilizing neural networks. Neural networks can learn and model
the underlying physical relationship between the inputs and outputs. A rich set of input–
output data from the forward model of the Delta robot can be used to train neural networks
in order to build the control-affine nonlinear dynamic model of the Delta robot without the
need for the Jacobian matrix, finite difference, and inverse kinematics. The proposed control-
affine model is completely data-driven and is intended for control design consideration. The

Algorithms 2024, 17, 113 5 of 15

model is not derivable from Newton’s law or Lagrange’s equation. The input–output data
for training the neural networks are randomly sampled in a sufficiently large workspace.
Moreover, the neural network model can be further updated by incorporating the concept
of transfer learning when new experimental data become available.

3. Neural Network Model

The nonlinear control-affine model with stepper motor joint angles and velocities as
inputs makes the control design relatively straightforward and is given in the following.

ẍ = f(x, ẋ) + g(x, ẋ)u (4)

where x = [px, py, pz]T , u = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
T , f(·) ∈ R3×1, and g(·) ∈ R3×6 are non-

linear functions of their arguments, and px, py, and pz represent the position of the end
effector at the centroid along the x, y, and z axes.

As pointed out before, the control-affine form of the model is not directly derivable
from Newton’s law, Lagrangian dynamics, or inverse kinematics. Although various dy-
namic models for the Delta robot that use the computed-torque approach are available in
the literature, they cannot be applied to this study, since the inputs of the Delta robot are
only the joint angles and velocities. Here, the neural networks are adopted to approximate
the nonlinear functions of the dynamic model for the Delta robot. Specifically, two neural
networks are constructed to approximate the nonlinear functions f(·) and g(·). Notably,
with an extra hidden layer and an additional input, a single neural network can be cus-
tomized to approximate the two nonlinear functions. The structure of the proposed neural
network model for the Delta robot is shown in Figure 3.

Figure 3. A flowchart illustrating the neural network model of the Delta robot.

Algorithms 2024, 17, 113 6 of 15

The inputs for neural networks are x, ẋ, and u. The output for the neural networks is
¨̂x, which can be expressed in terms of the two neural networks f̂(x, ẋ) and ĝ(x, ẋ):

¨̂x(n) = f̂(x(n), ẋ(n)) + ĝ(x(n), ẋ(n))u (5)

where n is the sample time. The loss function is defined as

J =
1
2

ns

∑
n=1

(¨̂x(n)− ẍ(n))2 (6)

where ¨̂x(n) is the prediction from neural networks and ẍ(n) is the system response. Data can
be collected from simulations or experiments, and ns is the total number of sampled points.

Detailed information of the number of hidden layers, type of activation function,
and number of neurons are shown in Table 2. Here, the sigmoid neuron is chosen as
the activation function. Other activation functions such as tanh or ReLU can also be
considered based on the universal approximation theorem of neural networks. The number
of training epochs is set as 20,000. The chosen optimization algorithm is stochastic gradient
descent (SGD). Dropout with a frequency of 0.5 is adopted to prevent overfitting. The
SGD algorithm is one of the most popular stochastic optimization methods in the machine
learning community [21]. In this study, it has been adopted as the optimization algorithm
to train the neural networks. The stochastic gradient descent maintains a single learning
rate to update all weights compared to Adam [22]. The loss value reached 0.000281 after
training for 20,000 epochs.

A remark on the choices of various hyper-parameters for the neural networks is in
order. We have to say that the parameters we used are not guaranteed to be optimal. Since
there is no established general rule for selecting the hyper-parameters of neural networks,
some level of trial and error is involved with specific data set of different applications.

Table 2. Summary of neural networks.

Function No. of Hidden Layers Activation Function No. of Neurons

f̂(x) 1 sigmoid 100

ĝ(x) 1 sigmoid 100

With the help of the dynamic model built in Section 2, a SimScape model of the Delta
robot is developed and used to generate the data of time series x, ẋ, ẍ and θ̇i. The SimScape
model of the Delta robot is shown in Figure 4 and created based on the actual Delta robot
that is to be used for the experiment, as shown in Figure 1 and Table 1. The parameters of
this modeled Delta robot are digital twins of those listed in Table 1. To generate training
data, we randomly sample joint angles in a bounded range of θi ∈ [−30◦, 120◦], as shown
in Figure 5, in order to cover the typical workspace of the Delta robot. A total of 2500 data
points are sampled in the workspace, and 75% of the data are chosen as training data set,
and 25% of the data are chosen as validation data set. The corresponding positions of
the end effector in 3D are shown in Figure 6. The boundary of these points is associated
with the maximum of the positions in the workspace of the end effector of the targeted
Delta robot.

Algorithms 2024, 17, 113 7 of 15

Figure 4. SimScape model of Delta robot.

0 1000 2000 3000 4000 5000

0

50

100

0 1000 2000 3000 4000 5000

0

50

100

0 1000 2000 3000 4000 5000

0

50

100

Figure 5. Random joint angles for SimScape Delta robot model. Top: joint angle θ1 for stepper motor
1. Middle: joint angle θ2 for stepper motor 2. Bottom: joint angle θ3 for stepper motor 3.

Algorithms 2024, 17, 113 8 of 15

Figure 6. Random sampled points in the 3D workspace of the Delta robot.

4. Sliding Mode Control

Recall the control-affine nonlinear model in terms of the neural networks in Equation (5).
We have

ẍ = f̂(x, ẋ) + ĝ(x, ẋ)u (7)

Assume that the Delta robot will track the desired trajectory xd(t). The tracking error
and its derivative are given as

e(t) = xd(t)− x(t), ė(t) = ẋd(t)− ẋ(t) (8)

We select a sliding surface as

s(t) = Ce(t) + ė(t) (9)

where C ∈ R3×3 is positive-definite and satisfies the Hurwitz stability condition. Thus, the
sliding mode control can be designed as [23]

u(t) = ĝ−1
(

γ tanh
(s

ϵ

)
+ αs + C(ẋd − ẋ) + ẍd − f̂

)
(10)

where γ > 0 and α > 0 are constant gains, and ϵ > 0. Chattering is a prevalent concern
associated with sliding mode controllers with switching term sgn(s). To reduce the chat-
tering in the sliding mode control, the switching terms for the control law and the sliding
surface have to be carefully chosen [24]. In this paper, the continuous function tanh(·) is
adopted to replace the discontinuous sign function [25]. ϵ determines the steepness of
tanh(·) as an approximation of the sign function. To prove the stability of the sliding mode
control, we shall need the following lemma.

Lemma 1. Let f , V : [0 : ∞) ∈ R, then V̇ ≤ −αV + f , ∀t ≥ t0 ≥ 0 implies that [26]

V(t) ≤ e−α(t−t0)V(t0) +
∫ t

t0

e−α(t−τ) f (τ)dτ (11)

Algorithms 2024, 17, 113 9 of 15

Define a Lyapunov function as

V =
1
2

sTs (12)

Then, we have
V̇ = sT ṡ (13)

Since

ṡ = Cė(t) + ë(t) (14)

= C(ẋd − ẋ) + (ẍd − ẍ)

= C(ẋd − ẋ) + (ẍd − f̂ − ĝu)

= −γ tanh
(s

ϵ

)
− αs,

therefore, we obtain

V̇(t) = sT
(
−γ tanh

(s
ϵ

)
− αs

)
(15)

= −αsTs − γsT tanh
(s

ϵ

)
≤ 0

Hence, the closed-loop system is stable. Furthermore, we have

V̇(t) =
{

−2(α + γ/ϵ)V(t) si ≤ ϵ for all i
−2αV(t) si > ϵ for all i

(16)

According to Lemma 1, we conclude that V(t) exponentially decreases at the rate
2(α + γ/ϵ) when s is outside the boundary layer defined by ϵ, and at the rate of 2α when s
is located inside the boundary layer. In both cases, we have

lim
t→∞

V(t) → 0 (17)

Hence, the tracking error of the sliding mode control for the system in Equation (7)
converges asymptotically to zero at the exponential rate. On the other hand, when the
neural network model of the Delta robot has a sufficiently small error, it can be expected
that the sliding mode control will deliver similar tracking performance in experiments.
This is a subject of on-going work. In this paper, we applied neural network model-based
sliding mode control to the physics- and geometry-based model of the Delta robot, and
carried out numerical simulations to observe and evaluate the validity of the proposed
neural network modeling and control design approach.

In the following examples, we take C as 10 × I where I is the identity matrix, α = 0.1,
γ = 0.1, and ϵ = 1. Three different paths are adopted to test the performance of the
proposed sliding mode control. The mathematical expressions of three paths, namely heart
curve, logarithmic spiral, and spiral, are given as follows.

Heart curve:


x = 0.01(16 sin3(2.1πt/te))

y = 0.01(13 cos(2.1πt/te)− 5 cos(4.1πt/te)

−2 cos(6.1πt/te)− cos(8.1πt/te))

z = −0.6

(18)

Algorithms 2024, 17, 113 10 of 15

Logarithmic spiral:


a = 0.2e(−0.48πt/te)

x = a cos(8πt/te)

y = −a sin(8πt/te)

z = 0.1 sin(0.5πt/te)− 0.55

(19)

Spiral:


x = 0.05 sin(5πt/te)

y = 0.22 cos(5πt/te)

z = −0.25t/te − 0.35

(20)

where te is the end of the time. The 3D tracking results and part of the control inputs θi
for different paths are shown in Figures 7–12. The neural network model-based sliding
mode control demonstrates remarkable performance in trajectory tracking of various paths
while maintaining bounded control inputs. This indicates that the trained neural net-
work model successfully captures the Delta robot’s nonlinear property with an acceptable
magnitude of tracking error. The trajectory tracking errors of the sliding mode control
e(t) = [epx , epy , epz]

T for different curves are shown in Figure 13. The initial conditions for
the tracking of all trajectories are chosen as [x; ẋ] = [xd; ẋd]− [0.1; 0.1; 0.1; 0.1; 0.1; 0.1].

Figure 7. Three-dimensional trajectory tracking of heart curve using the sliding mode control with
the neural network control-affine model.

Algorithms 2024, 17, 113 11 of 15

0 20 40 60 80 100

-10

0

10

20

1

2

3

0 20 40 60 80 100
-50

0

50

100

Figure 8. Magnitude of the sliding mode control with the neural network control-affine model for
heart curve trajectory tracking.

Figure 9. Three-dimensional trajectory tracking of logarithmic spiral curve using the sliding mode
control with the neural network control-affine model.

Algorithms 2024, 17, 113 12 of 15

0 20 40 60 80 100
-20

0

20

1

2

3

0 20 40 60 80 100

0

50

100

Figure 10. Magnitude of the sliding mode control with the neural network control-affine model for
logarithmic spiral curve trajectory tracking.

Figure 11. Three-dimensional trajectory tracking of spiral curve using the sliding mode control with
the neural network control-affine model.

Algorithms 2024, 17, 113 13 of 15

0 20 40 60 80 100
-50

0

50

100

1

2

3

0 20 40 60 80 100

0

50

100

Figure 12. Magnitude of the sliding mode control with the neural network control-affine model for
spiral curve trajectory tracking.

0 200 400 600 800 1000

0

5

10
10

-3

0 200 400 600 800 1000

0

5

10
10

-3

0 200 400 600 800 1000

0

5

10

10
-3

Figure 13. Tracking error of the sliding mode control in Equation (8) for different curves. Up: the
error for spiral trajectory tracking. Middle: the error for logarithmic spiral trajectory tracking. Bottom:
the error for heart curve trajectory tracking.

A detailed summary of the trajectory tracking errors are shown in Table 3. By evaluat-
ing these results, it is found that the maximum value of tracking error for different curves
are the same, and the trajectory tracking errors all converge to zero in a finite time.

Algorithms 2024, 17, 113 14 of 15

Table 3. Summary of different trajectory tracking errors in m.

Desired Trajectory
|ex| |ey| |ez|

max min max min max min

Heart curve 0.011 4.6135 × 10−7 0.011 3.0669 × 10−7 0.011 1.7682 × 10−7

Logarithmic spiral 0.011 3.2416 × 10−6 0.011 2.1551 × 10−7 0.011 9.8488 × 10−9

Spiral 0.011 2.5787 × 10−7 0.011 6.1408 × 10−7 0.011 1.7664 × 10−7

5. Conclusions

Delta robots have highly nonlinear dynamics. Finding a control-affine model to
describe the input–output relationship of the Delta robot analytically with joint angles and
velocities as inputs is difficult. Since it is difficult to obtain the analytical representation of
the input–output model, a neural network representation was developed to represent the
model. This is a completely data-driven model intended for control design consideration,
and it is not derivable from Newton’s law or Lagrange’s equation. The neural networks are
trained with randomly sampled data in a sufficiently large workspace. Then, the sliding
mode control is designed by making use of the control-affine model to track the desired
trajectory. Extensive numerical results have shown that the neural network model-based
sliding mode control can be highly effective for trajectory tracking for paths with varying
complexity. However, in real-world applications, this control approach can be challenging
due to differences in parameters of the frames, arms, and joints, as well as the presence
of backlash and flexibility in the joints of the Delta robot. These factors can affect the
implementation of neural network-based sliding mode control on hardware. Moreover, the
parameters of the sliding mode control need to be fine-tuned based on the specific hardware
being used, and high-frequency data collection is required for successful implementation.
To overcome these challenges, further work is required to implement neural network-based
sliding mode control on hardware. With real data collected from experiments, the method
of transfer learning can be applied to refine the neural network input–output model and to
update the parameters of the sliding mode control.

Author Contributions: Conceptualization, A.Z. and J.-Q.S.; methodology, A.Z. and J.-Q.S.; software,
A.Z.; hardware, A.T. and A.Z.; writing—original draft preparation, A.Z.; writing—review and editing,
A.Z., A.T., R.E. and J.-Q.S.; supervision, R.E., J.H.V. and J.-Q.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the AI Research Institutes program supported by NSF and
USDA-NIFA under the AI Institute: Agricultural AI for Transforming Workforce and Decision
Support (AgAID) award No. 2021-67021-35344.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Angel, L.; Viola, J. Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Trans. 2018,

79, 172–188. [CrossRef] [PubMed]
2. Zubizarreta, A.; Larrea, M.; Irigoyen, E.; Cabanes, I.; Portillo, E. Real time direct kinematic problem computation of the 3PRS

robot using neural networks. Neurocomputing 2018, 271, 104–114. [CrossRef]
3. Abed Azad, F.; Ansari Rad, S.; Hairi Yazdi, M.R.; Tale Masouleh, M.; Kalhor, A. Dynamics analysis, offline-online tuning

and identification of base inertia parameters for the 3-DOF Delta parallel robot under insufficient excitations. Meccanica 2022,
57, 473–506. [CrossRef]

4. Utkin, V.I. Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 1993, 40, 23–36.
[CrossRef]

5. Perruquetti, W.; Barbot, J.P. Sliding Mode Control in Engineering; CRC Press: Boca Raton, FL, USA, 2002.
6. Xu, J.; Wang, Q.; Lin, Q. Parallel robot with fuzzy neural network sliding mode control. Adv. Mech. Eng. 2018,

10, 1687814018801261. [CrossRef]

http://doi.org/10.1016/j.isatra.2018.04.010
http://www.ncbi.nlm.nih.gov/pubmed/29793737
http://dx.doi.org/10.1016/j.neucom.2017.02.098
http://dx.doi.org/10.1007/s11012-021-01464-7
http://dx.doi.org/10.1109/41.184818
http://dx.doi.org/10.1177/1687814018801261

Algorithms 2024, 17, 113 15 of 15

7. Boudjedir, C.E.; Boukhetala, D.; Bouri, M. Nonlinear PD plus sliding mode control with application to a parallel Delta robot. J.
Electr.-Eng.-Elektrotechnicky Cas. 2018, 69, 329–336. [CrossRef]

8. Pham, P.C.; Kuo, Y.L. Robust adaptive finite-time synergetic tracking control of Delta robot based on radial basis function neural
networks. Appl. Sci. 2022, 12, 10861. [CrossRef]

9. Yen, V.T.; Nan, W.Y.; Van Cuong, P. Robust adaptive sliding mode neural networks control for industrial robot manipulators. Int.
J. Control. Autom. Syst. 2019, 17, 783–792. [CrossRef]

10. Zhao, R.; Wu, L.; Chen, Y.H. Robust control for nonlinear Delta parallel robot with uncertainty: An online estimation approach.
IEEE Access 2020, 8, 97604–97617. [CrossRef]

11. Castañeda, L.A.; Luviano-Juárez, A.; Chairez, I. Robust trajectory tracking of a Delta robot through adaptive active disturbance
rejection control. IEEE Trans. Control Syst. Technol. 2014, 23, 1387–1398. [CrossRef]

12. Boudjedir, C.E.; Bouri, M.; Boukhetala, D. Iterative learning control for trajectory tracking of a parallel Delta robot. At-Autom.
2019, 67, 145–156. [CrossRef]

13. Boudjedir, C.E.; Bouri, M.; Boukhetala, D. Model-free iterative learning control with nonrepetitive trajectories for second-order
MIMO nonlinear systems—Application to a Delta robot. IEEE Trans. Ind. Electron. 2020, 68, 7433–7443. [CrossRef]

14. Ghafarian Tamizi, M.; Ahmadi Kashani, A.A.; Abed Azad, F.; Kalhor, A.; Masouleh, M.T. Experimental study on a novel
simultaneous control and identification of a 3-DOF Delta robot using model reference adaptive control. Eur. J. Control 2022,
67, 100715. [CrossRef]

15. Gholami, A.; Homayouni, T.; Ehsani, R.; Sun, J.Q. Inverse Kinematic Control of a Delta Robot Using Neural Networks in
Real-Time. Robotics 2021, 10, 115. [CrossRef]

16. Gholami, A.; Sun, J.Q.; Ehsani, R. Neural Networks Based Optimal Tracking Control of a Delta Robot With Unknown Dynamics.
Int. J. Control. Autom. Syst. 2023, 21, 3382–3390. [CrossRef]

17. Zhao, A.; Toudeshki, A.; Ehsani, R.; Sun, J.Q. Data-Driven Inverse Kinematics Approximation of a Delta Robot with Stepper
Motors. Robotics 2023, 12, 135. [CrossRef]

18. Gosselin, C.; Angeles, J. Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 1990, 6, 281–290.
[CrossRef]

19. Romdhane, L.; Affi, Z.; Fayet, M. Design and singularity analysis of a 3-translational-DOF in-parallel manipulator. J. Mech. Des.
2002, 124, 419–426. [CrossRef]

20. Mueller, A. Modern robotics: Mechanics, planning, and control. IEEE Control Syst. Mag. 2019, 39, 100–102. [CrossRef]
21. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg, Germany,

2012; pp. 421–436.
22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
23. Liu, J. Sliding Mode Control Using MATLAB; Academic Press: Cambridge, MA, USA, 2017.
24. Ahmad, S.; Uppal, A.A.; Azam, M.R.; Iqbal, J. Chattering free sliding mode control and state dependent Kalman filter design for

underground gasification energy conversion process. Electronics 2023, 12, 876. [CrossRef]
25. Aghababa, M.P.; Akbari, M.E. A chattering-free robust adaptive sliding mode controller for synchronization of two different

chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 2012, 218, 5757–5768. [CrossRef]
26. Ioannou, P.A.; Sun, J. Robust Adaptive Control; PTR Prentice-Hall: Upper Saddle River, NJ, USA, 1996; Volume 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2478/jee-2018-0048
http://dx.doi.org/10.3390/app122110861
http://dx.doi.org/10.1007/s12555-018-0210-y
http://dx.doi.org/10.1109/ACCESS.2020.2997093
http://dx.doi.org/10.1109/TCST.2014.2367313
http://dx.doi.org/10.1515/auto-2018-0086
http://dx.doi.org/10.1109/TIE.2020.3007091
http://dx.doi.org/10.1016/j.ejcon.2022.100715
http://dx.doi.org/10.3390/robotics10040115
http://dx.doi.org/10.1007/s12555-022-0745-9
http://dx.doi.org/10.3390/robotics12050135
http://dx.doi.org/10.1109/70.56660
http://dx.doi.org/10.1115/1.1480815
http://dx.doi.org/10.1109/MCS.2019.2937265
http://dx.doi.org/10.3390/electronics12040876
http://dx.doi.org/10.1016/j.amc.2011.11.080

	Introduction
	Dynamic Model of Delta Robot
	Neural Network Model
	Sliding Mode Control
	Conclusions
	References

