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Abstract: The role of academic advising has been conducted by faculty-student advisors, who
often have many students to advise quickly, making the process ineffective. The selection of the
incorrect qualification increases the risk of dropping out, changing qualifications, or not finishing the
qualification enrolled in the minimum time. This study harnesses a real-world dataset comprising
student records across four engineering disciplines from the 2016 and 2017 academic years at a public
South African university. The study examines the relative importance of features in models for
predicting student performance and determining whether students are better suited for extended
or mainstream programmes. The study employs a three-step methodology, encompassing data
pre-processing, feature importance selection, and model training with evaluation, to predict student
performance by addressing issues such as dataset imbalance, biases, and ethical considerations.
By relying exclusively on high school performance data, predictions are based solely on students’
abilities, fostering fairness and minimising biases in predictive tasks. The results show that removing
demographic features like ethnicity or nationality reduces bias. The study’s findings also highlight
the significance of the following features: mathematics, physical sciences, and admission point scores
when predicting student performance. The models are evaluated, demonstrating their ability to
provide accurate predictions. The study’s results highlight varying performance among models and
their key contributions, underscoring the potential to transform academic advising and enhance
student decision-making. These models can be incorporated into the academic advising recommender
system, thereby improving the quality of academic guidance.

Keywords: academic advising; engineering education; real-world datasets; classification; bias in
algorithms; machine learning; predicting student performance

1. Introduction

Low graduation rates in engineering result in the need for more human capital for the
industry, which translates to a shortage of skilled engineers [1]. South Africa is experienc-
ing increased demand for engineering graduates as it looks to expand its infrastructure
and technological capabilities. This demand is exacerbated by challenges in engineering
education, such as high dropouts, low graduation rates, and the need to improve the
quality of engineering education. With this demand, educational institutions in the country
need help addressing challenges related to low graduation rates, as the situation hinders
the industry’s growth. The low graduation rates in engineering are not unique to South
Africa but are a global problem [2]. However, the issue is more pressing in South Africa,
given the country’s need for engineers to spur economic development. Higher education
institutions face an increased demand for academic guidance to aid students in making
informed choices for their academic pathways [3]. Qualification choices heavily influence
the student’s academic path and future professional career. Making an informed choice
may be difficult for students due to the various options available.
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Academic advising is a process where student-faculty advisors and students work
together to help the students attain their most significant learning potential and to lay out
the actions they need to take to reach their personal, academic, and career objectives [4].
Academic advising assists students in improving their performance by providing them
with knowledge about the possibilities for and results of learning and enhancing their
involvement, experience, skill acquisition, and knowledge [5]. Furthermore, academic
advising helps clarify institutional requirements, raise awareness of support programmes
and resources, evaluate student performance and goals, and promote self-direction [6].
However, in reality, student-faculty advisors have to advise many students quickly, leading
to being overworked, which results in some students needing more time to be satisfied
with the calibre of the assistance they get. Additionally, poor advice may hinder students’
academic development [7].

Student performance during the first year of university is directly related to overall
student performance. The most significant predictor of first-year academic achievement
was students’ higher education access mark, which measures their academic readiness [8].
Vulperhorst et al. [9] argued that the most reliable high school score for selection processes
may change. By examining first-year performance, researchers can learn more about
students’ unique settings and backgrounds, enabling a more nuanced understanding of the
factors that predict success in higher education [9]. This information can help streamline
admission standards and increase the precision of selection processes, resulting in a better
match between students and their preferred programmes. A recent study found that
high school performance metrics, such as the grade point average, scholastic achievement
admission test score, and general aptitude test score, can predict students’ early university
performance before admission. The study found that the academic achievement admission
test score was the most reliable indicator of future student achievement, indicating that
admissions processes should give it more weight [10].

This study synthesises and builds on our three recent studies on how data can be
enhanced to improve student performance in engineering education. The first study gave a
general overview of recommender systems and their use in choosing the most appropriate
qualification programmes [11]. In the second study, the authors investigated the factors
that affect students’ choices of and success in STEM programmes [12]. The third study used
exploratory data analysis to investigate engineering student performance trends using a
real-world dataset [13].

Accurately predicting academic student performance in universities is a crucial tool
influencing decisions about student admission, retention, graduation, and tailored student
support. Student performance prediction facilitates the planning of effective academic
advising for students [14]. Machine learning algorithms trained on small datasets may not
produce satisfactory results. Moreover, the accuracy of outcomes can be notably enhanced
through efficient data pre-processing techniques. Despite many studies relying on restricted
data for training machine learning methods, there is a widespread recognition that ample
data is crucial for achieving accurate performance [15]. This study utilises a dataset of
moderate size, incorporating numerous features.

Using real-world data to address student performance problems, especially in en-
gineering, is growing due to the big data collected by higher education institutions [16].
Addressing student dropout and low graduation rates, particularly in engineering within
developing countries, requires diverse tools and techniques. This study focuses on two in-
terconnected areas: it uses a real-world dataset, addresses challenges commonly associated
with such datasets to predict student performance and determine the suitability of students
for qualifications. The study uses historical data from the 2016 and 2017 academic years
for students enrolled for the National Diploma and Bachelor of Engineering Technology
qualifications in civil, electrical, industrial, and mechanical engineering. The study adds
to the body of knowledge by demonstrating steps required to harness real-world data
and develop algorithms that address bias and imbalance in datasets. Unlike previous
work in the field, this study emphasises removing features that could lead to bias while
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maintaining model accuracy and integrity, thereby pushing the boundaries of current
knowledge in this area. Additionally, the study incorporates comparative evaluations of
several different models to verify the research assumptions and draw conclusions within
this new domain from an application perspective. To the best of the authors’ knowledge,
this type of study, which exemplifies and addresses the aforementioned problems, has not
yet been presented and will definitely enhance predictive models for academic advising.
The research questions for the study are:

• Which features from the dataset are the most significant when predicting student
performance and qualification choice?

• What is the performance of classification models when predicting student performance,
qualification enrollment, and determining whether a student is better suited to enrol
for mainstream or extended qualification?

The remainder of the article is as follows. The literature review is presented in Section 2,
followed by the methodology used for the study and the description of the evaluation
techniques in Section 3. The results are shown in Section 4, and their implications are
discussed in Section 5. Section 6 concludes the study by summarising key aspects and
providing limitations and directions for future research.

2. Literature Review

Academic advising is essential to improving student performance and retention [17].
Because academic advising can be complex and time-consuming, it requires careful atten-
tion and effort. Academic advising has changed from a straightforward, information-based
strategy to a more thorough and holistic one, considering different facets of a student’s
educational experience [3]. A study by Assiri et al. [18] explored the importance of aca-
demic advising in improving student performance. The authors conclude that there is a
significant transition from traditional advising to artificial intelligence-based approaches.

Academic advising consists of three primary approaches: developmental advising,
prescriptive advising, and intrusive advising, all of which entail interactions between
advisors and students [19]. Developmental advising aids students in defining and exploring
their academic and career aspirations through a structured process. While students often
favour this approach, it is resource-intensive [20]. Prescriptive advising offers students
vital information about academic programmes, policies, requirements, and course options,
with the students taking the lead in discussing their academic progress. Intrusive advising
typically targets at-risk or high-achieving students and involves advisors engaging with
students at critical educational junctures. Although some students may perceive it as
intrusive, this approach positively impacts student retention [21].

Predictive models for students’ academic performance are increasingly popular and
have gained popularity as they can benefit both students and institutions. These models
aid institutions in enhancing academic quality and optimising resources while providing
students with recommendations to improve their performance. A systematic review of
predictive models on students’ academic performance in higher education showed that past
studies have employed diverse methods, such as classification, clustering, and regression,
to predict academic performance [22]. Shahiri et al. [23] pointed out various techniques
for predicting students’ academic performance, with educational data mining being a
prominent method. Educational data mining involves extracting patterns and information
from scholarly databases, which can be used in predicting students’ academic performance.

When predicting students’ academic performance based on degree level, studies in-
corporating university data, mainly grades from the first two years, demonstrated superior
performance than studies solely considering demographics [24] or relying exclusively on
pre-university data [25]. Conversely, when predicting academic performance based on the
year of study, focusing solely on demographic information and pre-university data resulted
in lower accuracy [26]. In contrast, studies that included university data showed improved
results [27]. Predicting actual grades or marks is challenging due to the influence of various
factors, including demographics, educational background, personal and psychological
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elements, academic progress, and other environmental variables [28]. Understanding the
relationships between many variables is difficult, making performance classification a more
popular approach among researchers.

Recommender systems are being investigated as a possible tool to increase the efficacy
and efficiency of academic advising [29]. They have been used for several tasks, including
context-sensitive annotation, identifying valuable objects and resources, and predicting and
supporting student performance [30]. In education, a recommender system can facilitate
student-faculty advisors’ ability to efficiently manage and provide personalised guidance
to many students [3]. Sufficient quality data is needed to develop a recommender system.
Higher education institutions now store large amounts of data, but there are restrictions
on sharing personal data [31]. When there is a need for more data, creating highly ac-
curate recommender systems is more challenging. Fortunately, advances in data mining
have enabled a wide range of tools and approaches to fully utilise the data and produce
insights [32].

The use of real-world datasets faces a challenge where the number of instances for
a particular class could be higher than others. Class imbalance is when a dataset has an
uneven distribution of classes with binary classification issues [33]. This disparity causes
what is known as class imbalance or imbalanced datasets, which creates a challenge in
machine learning [34].

There are limited studies that have been conducted using imbalanced datasets. A study
by Fernández-García et al. [35] uses data mining techniques to predict students’ academic
progress and dropout risk in computer science. The study developed a recommender
system that assists students in selecting subjects. This system is built using a real-world
dataset obtained from a Spanish institution. The method addresses issues of developing
trustworthy recommender systems based on sparse, few, imbalanced, and anonymous data.
The study shows that using decision support tools for students has the potential to improve
graduation rates and reduce dropout rates. Another study analysed students’ previous
academic performance and recommended the most appropriate educational programme
using relevant features collected via correlation-based feature selection. Multiple machine
learning algorithms were deployed to obtain the best results, and the most suitable model
and relevant features were utilised in the recommendation process to ensure students
reached their professional goals [36].

Past studies have suggested several approaches to constructing fair algorithms by
reducing the impact of bias. Due to the link between some features, it has been shown
that avoiding sensitive features is insufficient to eradicate bias because this association
may lead to biased and unfair data [37]. To address data bias and generate unbiased
recommendations, Kamiran and Calders [37] proposed a method for managing data bias
and producing unbiased recommendations by altering the data before model training. This
technique converts biased data into unbiased data by changing and ignoring the sensitive
attribute in favour of predicting the class label using a ranking function learned from the
biased data. Their findings showed that prejudice might be lessened by changing the labels
for the positive and negative classes. Predicting students’ performance has been challenging
for higher education institutions seeking to overcome persistent issues, such as dropping
out, changing qualifications, failure, low academic grades, and prolonged graduation
time. Some researchers have studied the influence of non-academic attributes, like student
demographics and socio-economic status, on student performance [36,38]. While no one
factor guarantees success in Science, Technology, Engineering, and Mathematics (STEM)
fields, several factors, including academic preparation, encouraging family and social
networks, and inclusive learning environments, are essential for attracting and keeping
students in STEM fields [12].

Educational data mining can impact students’ privacy, security, and rights [39].
Ahmed et al. [1] found that students’ decisions to drop out were influenced by a mix
of personal choices and structural factors, providing valuable insights into potential strate-
gies for reducing attrition among academically eligible students. Shahiri, Husain and
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Rashid [23] contributed insights into course-specific determinants influencing student
achievements, demonstrating the relevance of course-specific factors in academic advising.

In their study on tackling imbalanced class learning, Wu et al. [31] underscore the
necessity of recognising and mitigating potential constraints, including data bias and
handling sensitive data information in datasets. Elreedy and Atiya [32] emphasised the
need to explore the critical point where data bias becomes problematic, highlighting the
significance of addressing data imbalance. Given the reliance on data-driven approaches in
academic advising, our study addresses the fair and effective handling of data imbalance,
ensuring that algorithms do not introduce bias that could impact the prediction process.
Petwal et al. [40] demonstrated the effectiveness of K-means clustering in identifying areas
requiring improvement. Table 1 offers a concise overview of several studies within the
field, delineating their respective contributions, strengths, and weaknesses. The review of
the literature and the summary in the table reveal essential facets of academic advising.

Table 1. Summary of studies in the field.

Ref. Purpose Advantages Disadvantages

[1]
Addresses the concern of student
retention in engineering and built

environment programmes.

Provides insights into the factors
influencing student persistence and

attrition in higher education.

Does not investigate the relationship
between emotional factors and

academic performance in voluntary
withdrawals.

[23]
To enhance students’ success and
benefit educators and academic

institutions.

We have identified the most
suitable prediction methods for

predicting students’ performance.

Lack of investigations on the factors
affecting students’ achievements in

particular courses within the Malaysian
context

[31]

Proposes an imbalance learning
algorithm that uses Synthetic Minority
Over-sampling Technique (SMOTE) to
augment minority faulty classes and to
address the imbalanced class learning

problem.

Addresses the issue of imbalanced
distributions, leading to more
precise fault diagnostics and

prognostics in industrial systems.

Does not explicitly mention any
disadvantages or limitations of the
algorithm or the research approach

used.

[32]

Investigates the accuracy of SMOTE in
replicating the original data

distribution and evaluates its impact on
classification boundaries and overall

performance.

Provides a comprehensive
theoretical analysis of the popular
over-sampling method, SMOTE,

which needs to be improved in the
literature.

There’s a point where bias becomes
more critical than variance, indicating
the need to stop generating more data.

[40]
Employs the K-means clustering

algorithm to classify students into
performance-based clusters.

Aids students and instructors in
pinpointing areas for improvement.

Needs to provide specific information
about the dataset size used to analyse

students’ performance.

[41]

Introduces an automated student
performance analyser and

recommender system using prediction
algorithms and content-based

recommendations.

Employs an automated data
visualiser to illustrate students’
performance, showcasing their

strengths and weaknesses.

Does not fully implement automation,
with room for improvements, such as
automating processes like attendance

checking.

3. Methodology

This section outlines the methodology followed for the study. The study’s method-
ology is divided into three main steps: data pre-processing, feature importance selection,
and model training with evaluation. In the initial data pre-processing phase, the dataset
undergoes cleaning, categorical feature encoding, standard scaling, and over-sampling.
The second step focuses on feature engineering to identify the most impactful features for
predicting student performance and qualifications. The final stage encompasses model
training and evaluation. During data pre-processing, the dataset is meticulously cleaned
and organised using Python 3.11.2, essential features are systematically chosen, and issues
such as imbalance and biases are addressed. In the third step, predictive models for student
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performance are trained using machine learning techniques. Models are then assessed
based on selected features, employing performance metrics to measure accuracy and effec-
tiveness in predicting student outcomes. Figure 1 depicts the methodology we followed in
the study.

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 24 
 

prediction algorithms and con-
tent-based recommendations. 

performance, showcasing 
their strengths and weak-

nesses. 

such as automating pro-
cesses like attendance 

checking. 

3. Methodology 
This section outlines the methodology followed for the study. The study’s methodol-

ogy is divided into three main steps: data pre-processing, feature importance selection, 
and model training with evaluation. In the initial data pre-processing phase, the dataset 
undergoes cleaning, categorical feature encoding, standard scaling, and over-sampling. 
The second step focuses on feature engineering to identify the most impactful features for 
predicting student performance and qualifications. The final stage encompasses model 
training and evaluation. During data pre-processing, the dataset is meticulously cleaned 
and organised using Python 3.11.2, essential features are systematically chosen, and issues 
such as imbalance and biases are addressed. In the third step, predictive models for stu-
dent performance are trained using machine learning techniques. Models are then as-
sessed based on selected features, employing performance metrics to measure accuracy 
and effectiveness in predicting student outcomes. Figure 1 depicts the methodology we 
followed in the study. 

 
Figure 1. The methodology followed for the study shows the sub-elements in the data pre-pro-
cessing, determining feature importance and module training and evaluation phases. 

3.1. Experimental Setup 
The experiment used Python programming language within a Jupyter Notebook en-

vironment. The computer had the following specs: Intel Core i5-1035G1, 1.19 GHz micro-
processor, 8 GB processor and 64-bit operating system. 

3.2. Dataset Description 
A real-world dataset of information on students enrolled for the 2016 and 2017 aca-

demic years at the University in Johannesburg (UJ), South Africa, was used. The dataset 
was for students pursuing a National Diploma and a Bachelor of Engineering Technology 
qualifications in civil, electrical, industrial, and mechanical engineering. UJ is located in 
Gauteng, the country’s most densely populated province. The Institutional Planning, 

Figure 1. The methodology followed for the study shows the sub-elements in the data pre-processing,
determining feature importance and module training and evaluation phases.

3.1. Experimental Setup

The experiment used Python programming language within a Jupyter Notebook
environment. The computer had the following specs: Intel Core i5-1035G1, 1.19 GHz
microprocessor, 8 GB processor and 64-bit operating system.

3.2. Dataset Description

A real-world dataset of information on students enrolled for the 2016 and 2017 aca-
demic years at the University in Johannesburg (UJ), South Africa, was used. The dataset
was for students pursuing a National Diploma and a Bachelor of Engineering Technology
qualifications in civil, electrical, industrial, and mechanical engineering. UJ is located in
Gauteng, the country’s most densely populated province. The Institutional Planning, Eval-
uation, and Monitoring department sourced the dataset from UJ’s institutional repositories.
The Faculty of Engineering and the Built Environment granted ethical clearance to use the
data, with the ethical clearance number UJ_FEBE_FEPC_00685.

Table 2 shows the variables and their distribution in the initial dataset. The columns
encompass academic-related information (academic year, student number, qualification flag,
qualification, result groupings, and period of study), demographic details (gender, birth
date, marital status, language, nationality, ethnic group, and race), academic performance
indicators (admission point scores (APS), module marks in mathematics and physical
sciences), and information about previous activities. The dataset comprises 29,158 records
and 22 columns. The target variable, ‘result groupings,’ consists of five classes with
the following distribution: ‘may continue studies’—23,689, ‘no/slow progress’—2802,
‘obtained qualification’—1753, ‘no re-admission’—901, ‘no result’—13.
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Table 2. Variables and their distribution in the initial dataset.

Column Description Count Data Type

Academic Year Year of registration 29,158 Int8
Student Number Student’s unique identifier 29,158 Int16
Qualification Flag Type of qual (mainstream or extended) 29,158 Int8

Qualification The qualification enrolled for 29,158 Int8
Result Groupings Student’s results for the year 29,158 Int8
Period of Study Student’s year of study 29,158 Int8

Gender Student’s gender 29,158 Int8
Birthdate Student’s date of birth 29,158 Int16

Marital Status Student’s marital status 29,158 Int8
Language Student’s native language 29,158 Int8

Nationality Student’s country of birth 29,158 Int8
Ethnic Group Student’s ethnicity 29,158 Int8

Race Student’s race group 29,158 Int8
APS The student’s admission point score 29,158 Int8

Urban-Rural Student’s home location—urban or rural 29,158 Int8
Study Address Student’s residence 29,158 Int16

Previous Activity Student’s activity the previous year 29,158 Int8
Matric Date Year Year student completed matric 29,158 Int8

Module Name Name of module enrolled for 29,158 Int16
Module Mark Mark obtained from the module 29,158 Int8
Mathematics Mathematics mark in high school 29,158 Int8

Physical Sciences Science mark in high school 29,158 Int8

3.3. Data Pre-Processing

This step involves putting the raw data into a comprehensible format through several
stages. Real-world data is frequently inconsistent, lacks particular behaviours, and is almost
certainly full of mistakes. Data preparation is a tried-and-true technique for addressing
these critical problems with the raw data. Data pre-processing prepares the raw data for
further analysis [42].

3.3.1. Data Cleaning

Using real-world datasets in the educational setting may be biased because women
are underrepresented in STEM. When the user’s demographic information, such as gender,
ethnicity, and age, is used in classification problems, this bias is proliferated in the classifi-
cations made [43]. To establish a just and inclusive algorithm, it is crucial to ensure that
concerns of bias and ethics are excluded from the dataset used for building the predicting
qualifications. Therefore, it was necessary to remove demographic characteristics from the
dataset. Gender, birthdate, marital status, language, nationality grouping, ethnic group,
international race, urban-rural and study address were removed. Table 3 describes the data
types of the features contained in the dataset after cleaning. The elimination of demographic
characteristics aids in reducing any potential biases that may result from elements like
ethnicity or nationality. This ensures that predictions are only based on student’s abilities
and achievements, which reduces the possibility of perpetuating discriminatory practices.

Table 3. Variables Retained in the Dataset.

Feature Type Classes/Value Range

Academic year Categorical 2 (2016, 2017)
Qualification flag Categorical 2 (mainstream, extended)

Qualification Categorical 8 (list of qualifications)

Result Grouping Categorical 5 (obtained qualification, continuing with studies,
no/slow progress, no result, no readmission)

Period of study Numerical 4 (1, 2, 3, 4)
APS Numerical 18–46
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Table 3. Cont.

Feature Type Classes/Value Range

Previous activity Categorical 6 (employed, unemployed, grade 12, college, university,
national service)

Module name Categorical 92 (list of modules)
Module mark Numerical 0–100
Mathematics Numerical 0–100

Physical Sciences Numerical 0–100

3.3.2. Data Encoding

Data encoding involves transforming the categorical data into numerical data while
preserving the dataset’s structure (i.e., the same column names and index). Encoding
ensures that the categorical data is represented numerically and can be used as input for the
algorithm. This can help improve the accuracy and performance of the algorithm. Encoding
converts raw data into a format that machine learning algorithms may employ [44].

Popular encoding methods include one-hot encoding since it is an easy process. In one-
hot encoding, each object or feature is represented by a separate binary vector representing
a category [45]. In contrast to embedding, which means each object or feature is a dense
vector in a continuous space, label encoding gives each category a number label [46]. The
appropriate encoding method must be used for the recommender system to be accurate and
practical since it affects how the data is stored. In this study, we employed one-hot encoding.

3.3.3. Feature Scaling

To ensure that all features, regardless of how they may appear, are equally important,
feature scaling is necessary. Feature scaling is an often-used process in machine learning to
normalise features [46]. By permitting fair and accurate feature comparisons, feature scaling,
explicitly employing the standard scaler, is an essential pre-processing step that enhances
model performance and accuracy. Additionally, the features in the dataset were scaled
using the StandardScaler function from the Scikit-Learn library. This scaling process ensures
that the features are comparable, avoiding any potential bias arising from differences in
their magnitudes.

3.3.4. Oversampling

Advances in data science have led to the development of techniques to deal with
class imbalance, such as data augmentation, over-sampling, under-sampling and ensemble
methods. Two basic approaches can address the challenges of using imbalanced datasets:
algorithm-level and data-level strategies [31]. Data-level methods, such as the SMOTE
technique, entail modifying the class distribution of imbalanced data through under-
sampling, over-sampling, or a mix of the two [32]. Oversampling is the suggested strategy
for highly imbalanced datasets with few minority samples [16]. These techniques could,
however, result in overfitting or the loss of valuable traits in majority classes. Algorithm-
level approaches, such as bagging, boosting, or hybrid ensemble methods, entail modifying
the classifier to imbalanced data. These approaches have improved the accuracy of decision
tree models and other classifiers [47].

The dataset displays a high-class imbalance for the feature ‘results groupings’. There-
fore, the performance of the classification model may improve if the imbalanced dataset is
handled correctly [33]. The model can then correlate to the majority class and ignore the
minority class. After splitting the dataset into training and testing sets using a 75:25 ratio,
the distribution of classes within the target variable was as follows: ‘may continue studies’—
17,771, ‘no/slow progress’—2112, ‘obtained qualification’—1320, ‘no re-admission’—655,
‘no result’—10. It’s important to note that employing the target variable with such im-
balanced class proportions may introduce a bias toward the largest class, ‘May continue
studies’. The evaluation metrics may also be biased and may fail to consider the minority
class. This study used the SMOTE technique from the imbalanced-learn library (imblearn)
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to address the class imbalance challenges. After this, the classes were balanced, as shown
in Table 4 below.

Table 4. Target variable class distribution before and after SMOTE.

Class Before SMOTE After SMOTE

May continue studies 17,771 17,771
No/slow progress 2112 17,771

Obtained qualification 1320 17,771
No re-admission 655 17,771

No result 10 17,771

3.4. Determining Feature Importance
Cross-Correlations

Cross-correlations can discover closely related characteristics and acquire insights into
the relationships between various dataset features. Figure 2 shows the correlation matrix of
the dataset produced using a heatmap of the Seaborn library.
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The correlation matrix is calculated using the correlation function. Linear solid rela-
tionships between feature pairs are shown by high correlations (close to 1 or −1) between
them. When examining the generated heatmap, it appears that the features in the dataset
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do not have any significant linear correlations (correlation coefficients close to 1 or −1).
APS and physical sciences have a moderately positive link, as indicated by the highest
correlation coefficient, 0.73. This correlation coefficient is also shared by mathematics and
physical sciences. APS and mathematics have a correlation coefficient of 0.64, indicating a
moderately positive link. In this situation, deleting closely linked features was unnecessary
because there were no highly associated features. A correlation coefficient of 0.53 between
the period of study and According to the matrix, the correlation coefficient between APS
and module mark is 0.13, indicating a weak positive relationship. Similarly, the correlation
coefficients for mathematics, module marks, and physical sciences marks are 0.12, meaning
weak positive associations. These findings suggest a slight tendency for higher scores in
APS, mathematics, and physical sciences, which tend to be associated with slightly higher
module marks at the university level.

3.5. Model Training and Evaluation

Several data mining classification techniques have been applied to predict student
performance. For example, decision trees and random forests were used by Huynh-
Cam et al. [48] to predict first-year students’ learning performance using pre-semester
variables, focusing on family background factors. The sample comprised 2407 first-year
students from a vocational university in Taiwan. Another study employed multiple algo-
rithms for predicting students’ performance. The study used k-nearest neighbours (KNN),
decision tree, random forest, gradient boosting, extreme gradient boosting (XGB) and light
gradient boosting machine (LGBM) [49].

Scikit-learn is an open-source machine learning module in Python that includes a
variety of classification, clustering, and regression techniques. The main goal of this module
is to solve supervised and unsupervised problems [50]. In this study, the training and test
sets were split in a 75:25 ratio, meaning that 75% of the records in the dataset were used to
train the algorithms, and the remaining 25% were used to evaluate their performance. The
following briefly describes the models employed in predicting qualifications.

Decision trees are a tree-based method where each path originating from the root is
determined by a sequence that separates the data until a Boolean result is achieved at the
leaf node [51].

KNN algorithms classify objects in the feature space based on recent training samples.
The Euclidean distance is a distance metric that is used to determine proximity. As a result,
in this study, the students are categorised by their closest k neighbours, with the object
assigned to the class with the highest percentage of those neighbours [52].

LGBM is a highly efficient gradient-boosting decision tree which speeds up the training
process while obtaining practically the same accuracy [53].

Random forests are multiple decision trees trained in an ensemble process to produce
a single class label for each ensemble [54]. The decision trees are constructed using boot-
strapped samples, limiting the features available at each stage of the algorithm and random
split selection, where each tree is grown on a different subset of the training data [55].

XGB is a gradient-boosting technique with optimised speed and efficiency. It uses a
regularised model to create a robust classifier by combining many weak classifiers. It also
uses a cutting-edge method called gradient boosting, using second-order derivatives to
increase accuracy [56].

The performance metrics can generally be divided into three groups. Firstly, metrics
based on a confusion matrix: precision, recall, F-measure, Cohen’s kappa, accuracy, etc.
Secondly, metrics that measure the deviation from the actual probability are based on a
probabilistic understanding of mistakes, such as mean absolute error (MAE), accuracy
ratio, and mean squared error. The third group is metrics based on discriminatory power,
such as receiver operating characteristics and variants, the area under the curve (AUC),
precision-recall curve, Kolmogorov-Smirnov, lift chart, etc. [57].

Accuracy, precision, recall, F1-score, specificity and AUC are the most often used
metrics for binary classification based on the values of the confusion matrix. The most often
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used metrics for multi-class classification are accuracy, precision, recall, and F1-score [58].
The accuracy and coverage of a recommendation algorithm are two examples of the many
metrics that may be used to evaluate its quality. The metrics that are used depend on the
type of filtering method that is used. Accuracy measures the proportion of correct predic-
tions among all potential predictions instead of coverage, which gauges the percentage
of objects in the search space for which the system can generate recommendations [59].
Statistical accuracy measures assess the correctness of a filtering approach by directly
comparing the projected ratings with the actual user rating. Statistical accuracy measure-
ments commonly include MAE, root mean square error (RMSE), and correlation. MAE
is the most widely used and well-known metric of suggestion divergence from a user’s
particular value [60]. Precision, recall, and F-measure are commonly used for decision
support accuracy [61].

The receiver operating characteristic (ROC) curves are powerful tools in machine
learning to evaluate a classifier’s predictive capacity irrespective of class distribution or
error costs. They represent a performance by positioning the model relative to the y = x
diagonal line, where better performance is denoted by the curve rising above it. ROC is a
two-dimensional graph with false positives on the horizontal axis and true positives on the
vertical axis [62]. The AUC curve is frequently used in machine learning but only applies to
classification problems with just two classes [63]. For this reason, the two metrics, ROC and
AUC, were not used in this study. This study used statistical and decision support accuracy
measurements to evaluate the performance of the models. These metrics are described in
Table 5.

Table 5. Description of Evaluation Metrics.

Metric Description

Accuracy Measures the classification’s correctness.

Precision Measures how accurately a classification is made. It represents a categorisation
model’s capacity to return only pertinent instances.

Recall Measures how accurately a classification was made. It represents a categorisation
model’s capacity to find all pertinent examples.

F1 score The standard harmonic mean of the precision and recall results in a single score
representing the model’s quality.

MAE Calculates the average square of the errors or the average square of the differences
between the estimated and actual values.

RMSE Indicates either the quadratic mean of these discrepancies or the square root of the
second sample moment of the differences between expected and observed values.

4. Results

By removing features like ethnicity or nationality and utilising high school perfor-
mance features, we attempt to make predictions based solely on students’ abilities and
achievements, not demographics, thereby promoting fairness in prediction tasks and pre-
venting biases.

4.1. Important Features When Predicting Student Performance

This study used result grouping as the target to ascertain the important features when
predicting students’ performance. The result grouping feature consists of five observations—
obtained qualification, continuing with studies, no/slow progress, no result and no read-
mission. Figure 3 shows the importance of the feature obtained from running the random
forest classifier. The feature with the highest coefficient score (0.24) is the period of study.
This means that the period of study influences the model’s predictions most. Physical
sciences (0.16), mathematics (0.16), and APS (0.12) have relatively high coefficient scores,
indicating that they all contribute significantly to the model’s predictions. These features
have a substantial influence on the overall performance of the model. On the other hand,
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features like module mark (0.08), qualification (0.08), qualification flag (0.06), module name
(0.06) and previous activity (0.05) exhibit lower importance.
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Figure 3. The importance of the bar feature when predicting student performance using the random
forest classifier.

4.2. Important Features When Predicting Qualifications

We used ‘qualification’ as the target to ascertain the influential features when predict-
ing qualifications. The qualification feature consists of eight observations—four National
Diplomas in civil, electrical, industrial, and mechanical engineering and four Bachelor
of Engineering Technology qualifications in civil, electrical, industrial, and mechanical
engineering. Figure 4 shows the important features obtained using the random forest’s
feature importance attribute. As shown, some features do not influence the performance
of the models. The figures show which features are more significant for the classification
job but do not affect the model’s predictions. The predictions are based on the model’s
parameters, which encapsulate the learned relationship between the characteristics and the
target features.
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The module name is the feature with the highest coefficient score (0.37). This implies
that the feature significantly impacts the results or predictions of the model. Additionally,
significant importance ratings for features like physical sciences (0.15), mathematics (0.15),
and APS (0.12) are displayed, suggesting their usefulness in the model’s decision-making
process. Some features have comparatively lower significance scores than others, indicating
that they impact the model’s predictions less. These features include previous activity,
period of study, qualification flag and result groupings. Although these features influence
the model, their impact is relatively less than that of the more significant features.

4.3. Training and Evaluating the Performance of the Models
4.3.1. Predicting Overall Students’ Performance

Figure 5 presents the performance metrics for different models applied to the entire
dataset for the first, second, third and fourth years to determine overall student perfor-
mance. The algorithms tested the ability to predict the student’s performance in the uni-
versity based on three features from their performance in high school—APS, mathematics,
and physical sciences.
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Figure 5. Predicting result grouping (students’ performance) using all students’ data for features—
APS, mathematics and physical sciences.

These models were evaluated using the following metrics: accuracy, precision, recall,
F1 score, RMSE and MAE. All models had an accuracy above 82%, demonstrating their
ability to predict student performance. KNN has the highest accuracy, followed by LGBM
and then XGB. KNN also has the highest precision, with 83.8%, followed by the random
forest model. A recall of more than 82% was attained by all models, indicating their capacity
to identify positive instances. The F1 score, which balances precision and recall, was more
than 80% for all models. Lower RMSE and MAE values indicate better accuracy. With
reasonable levels of prediction error, the models perform similarly. The RMSE values vary
from 1.206 to 1.243, and the MAE values range from 0.454 to 0.486.
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4.3.2. Predicting First-Year Students’ Performance

The findings from the correlation map show that higher scores in APS, mathematics,
and physical sciences show a slightly positive association with module marks at the
university level, leading us to investigate the effect of these three features on student
performance. Figure 6 presents the performance metrics for different classification models
to predict first-year students’ performance. The algorithms used APS, mathematics and
physical sciences as input parameters and the result grouping as the target. The first-year
data consisted of 705 student records.
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Figure 6. Predicting result grouping (students’ performance) using first-year students’ data for
features—APS, mathematics and physical sciences.

When considering accuracy, four models achieved high accuracy rates, with an accu-
racy of 98.3% for the decision tree, KNN, random forest, and XGB models. LGBM has a
slightly lower accuracy of 96.4%. This implies that these models can accurately predict
first-year students’ performance. Regarding precision, which measures the ability to avoid
false positives, all models perform consistently. Each model achieved 96.6% and 98.3%
precision scores, indicating that they can minimise false positives. Similarly, the models
demonstrate high recall scores, ranging from 96.4% to 98.3%. Regarding the F1 score, LGBM
has a slightly lower score of 96.5%. The other models all achieved a score of 98.3%. The
values in the table indicate that the models perform consistently. The RMSE values are
between 0.130 and 0.221, and MAE values range from 0.017 to 0.040 between predicted and
actual student performance.

When comparing Figure 5 with Figure 6, notable differences emerge in the perfor-
mance of the models. Figure 6 exhibits higher accuracy values, ranging from 96.4% to 98.3%,
compared to Figure 5’s 82% to 83.8% range. Additionally, the models in Figure 5 consis-
tently demonstrate slightly higher precision, recall, and F1 scores, indicating better overall
performance in correctly identifying the data and striking a balance between precision and
recall. Moreover, Figure 6’s models display significantly lower RMSE and MAE values,
reflecting higher accuracy and more minor average deviations in their predictions. These
results suggest that using APS, mathematics, and physical sciences as input parameters
to predict student performance yields better results for first-year students than overall
student performance.
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4.3.3. Predicting Qualifications for All Students

Figure 7 shows the performance metrics for different models predicting qualifications
for all students. The model used APS, mathematics and physical sciences as input pa-
rameters and qualification as the target. The accuracy of the models ranges from 94.9%
to 96.7%, demonstrating their ability to predict the qualifications students enrolled for
correctly. Among the models, the decision tree achieved an accuracy of 96.7%, followed
closely by the random forest and XGB models, which also achieved an accuracy of 96.6%.
In terms of precision and recall, all models consistently performed well, with precision and
recall scores ranging from 94.9% to 96.8%.
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Figure 7. Predicting qualifications selected using all students’ data for features—APS, mathematics
and physical sciences.

The decision tree, KNN, random forest, and XGB models achieved precision and recall
scores of 96.8%. The LGBM model also exhibited strong precision and recall at 94.9%. The
F1 scores, which balance precision and recall, ranged from 95.8% to 96.7% for the models.
The decision tree, random forest, and XGB models achieved F1 scores of 96.7%. The LGBM
model attained an F1 score of 95.8%, showcasing its solid performance. The RMSE values
ranged from 0.525 to 0.635. The MAE values ranged from 0.082 to 0.122. The decision tree
model achieved the lowest RMSE and MAE values, at 0.525 and 0.082, respectively, of the
models’ overall accuracy.

4.3.4. Predicting Qualifications for First-Year Students

Figure 8 shows the performance metrics for different models applied to first-year
students’ data (for both the mainstream and the extended programmes). The model used
APS, mathematics and physical sciences as input parameters and qualification as the target.
Regarding accuracy, all models showcase high values, ranging from 96.1% to 96.3%. The
decision tree, LGBM, and XGB models all achieve an accuracy of 96.2%, closely followed
by the KNN and random forest models, with an accuracy of 96.3%. Precision and recall
scores exhibit consistency across the models, ranging from 96.1% to 96.3%. The decision
tree, KNN, LGBM, random forest, and XGB models demonstrate precision and recall rates
of 96.1% to 96.3%.
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Figure 8. Predicting qualifications selected using first-year students’ data for features—APS, mathe-
matics and physical sciences.

F1 scores range from 96.0% to 96.2% for the models. The decision tree, KNN, LGBM,
random forest, and XGB models achieve F1 scores of 96.0% to 96.2%. The RMSE values
range from 0.645 to 0.667, and the MAE values range from 0.109 to 0.116. The models
display consistently high accuracy, precision, recall, and F1 scores. They showcase the
capability to predict the qualification of first-year data students accurately. The RMSE
and MAE values suggest a relatively low level of prediction error, further underlining the
models’ accuracy in classification tasks.

When comparing Figure 7 with Figure 8, the models demonstrate high accuracy, pre-
cision, recall, and F1 scores. However, when predicting qualification for first-year data
students, the models exhibit slightly higher accuracy and more accurate predictions based
on RMSE and MAE values. These findings suggest that the models perform well in accu-
rately predicting qualifications in both contexts, with a slightly more robust performance
predicting qualifications specifically for first-year data students.

4.3.5. Predicting Qualification Flag for First-Year Students

We sought to determine the ability to predict whether students are best suited to study
in mainstream or extended qualification using students’ first-year data. Figure 9 shows the
performance metrics for different models applied to first-year students’ data using APS,
mathematics and physical sciences as input parameters and qualification flag (mainstream
or extended) as the target. Across the models, accuracy values range from 98.1% to 98.6%.
The decision tree and random forest models achieve the highest accuracy of 98.6%, closely
followed by the KNN model at 98.5%. Precision and recall scores consistently surpass
98% for all models, with the decision tree, KNN, and random forest models achieving
98.6% precision and recall. The LGBM and XGB models demonstrate slightly lower but
impressive precision and recall scores of 95.8% and 98.1%, respectively. F1 scores range
from 95.6% to 98.6%. The decision tree, KNN, and random forest models exhibit F1 scores
of 98.6%. RMSE values range from 0.118 to 0.208, and MAE values range from 0.014 to
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0.043. These results indicate that the models effectively predict the qualification flag chosen
using students’ first-year data with high accuracy and minimal prediction error.
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Figure 9. Predicting qualification flag that was chosen using students’ first-year data for features—
APS, mathematics and physical sciences.

5. Discussion

This study used a real-world dataset of students enrolled in four engineering disci-
plines in 2016 and 2017 at a public South African university. We identified the important
features from the dataset that influence student performance and investigated the use of
these features to predict student performance at the University. Our approach included
data pre-processing, identifying the important features and model training and evaluation.
In this section, we discuss the study’s findings and their implications.

Feature scaling ensures fair and accurate feature comparisons by bringing all features
to a uniform scale, preventing any one feature from controlling the learning process of the
model purely based on its magnitude. This normalisation eliminates the bias resulting
from larger-scale features dominating smaller-scale features. Increasing machine learning
models’ convergence rate and stability is another benefit of standardising features [64].
When features are scaled to a similar range, optimisation techniques converge more quickly,
enabling the model to arrive at an optimal solution quickly. Additionally, feature scaling
can prevent potential numerical instabilities that could arise during the training process
and minimise the model’s sensitivity to the initial values.

5.1. Important Features When Predicting Student Performance and Predicting Qualifications

Feature importance helps us understand why some features are important in a
model [65]. Feature importance shows how a model generates predictions by analysing the
relative contributions of various features. This knowledge benefits model interpretation by
creating explainable models, not just black box models. Furthermore, feature importance
makes it feasible to identify prospective areas for development and improvement, whether
by enhancing current features or introducing new ones to improve the model’s functionality
and predictive accuracy.

When predicting student performance and determining qualification enrolment, cer-
tain features from the dataset demonstrate varying levels of significance. The module name
feature shows the highest coefficient score, indicating its substantial impact on the model’s
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predictions. Features such as mathematics, physical sciences, and APS also exhibit notable
importance ratings. These can be used to predict first-year student performance at the
university. These findings align with other research showing that high school students with
low marks in mathematics and sciences who enrol for engineering studies are at a higher
risk of dropping out [66]. Physical science and mathematics are fundamental subjects
frequently required for admission in engineering fields. A good comprehension of core
concepts and analytical abilities, which are essential in higher education, are suggested by
substantial success in these areas.

5.2. Performance of Models

The findings show that when utilising APS, mathematics, and physical sciences as
input parameters, some models perform better than others when predicting student perfor-
mance and qualification enrolment, especially for first-year students. The study reveals
that employing these particular features will likely generate more accurate predictions for
first-year student performance relative to overall student performance among the models
studied, including decision trees, LGBM, KNN, random forests, and XGB.

The models evaluated for predicting student performance and qualification enrolment
demonstrate varying performance levels. The KNN model performs the best for overall stu-
dent performance, followed closely by the decision tree, LGBM, and random forest models.
All models perform exceptionally well when predicting first-year students’ performance,
achieving identical high scores. This study suggests that APS, mathematics, and physical
sciences are valuable features for predicting first-year students’ academic performance.

The decision tree and random forest models consistently demonstrate strong per-
formance when predicting qualification enrolment for all students and the qualification
flags using first-year data. At the same time, the KNN and XGB models also exhibit high
accuracy and precision. The decision tree, KNN, random forest, and XGB models show
consistent and strong performance across multiple prediction tasks, with the LGBM model
also demonstrating good performance in some instances.

When predicting overall student performance, this study’s results closely resemble
those of Atalla et al. [3]. In their research, random forest achieved an accuracy of 86%, with
the AdaBoost regressor following closely at 85%. Meanwhile, KNN had an accuracy of
82%, and the decision tree scored 81%. Our study observed similar accuracies: the decision
tree at 82%, KNN at 84%, LGBM at 84%, the random forest at 82%, and XGB at 83%. The
minor variations in accuracy between our study and Atalla et al.’s [3] research may be
attributed to factors like dataset size. Nonetheless, these results indicate a remarkable
similarity between the two studies.

A study by Al-kmali et al. [67] used traditional classifiers that demonstrated excep-
tional accuracy, with SVM and Naïve Bayes achieving accuracy scores of 89.6% and 90.3%,
respectively. The decision tree achieved 93.1% accuracy, and the random forest classifier
96.9% accuracy. Our study presented slightly lower accuracy values ranging from 82% to
84% but introduced diverse classifiers, such as KNN, LGBM, and XGB, demonstrating their
adaptability in various contexts. This study also provided insights into prediction error
through RMSE and MAE metrics, showcasing reasonable prediction accuracy.

A recent study suggested a method to remove bias by excluding data about protected
features that are not biased against race without sacrificing predictive accuracy [68]. This
study followed the same process of eliminating demographic factors, which helps to reduce
the risk of perpetuating discriminatory practices. By removing features like ethnicity or
nationality and using high school performance features, the models ensure that predictions
are based solely on their abilities and achievements, not demographics. This approach
also safeguards against discriminatory or unfair practices from considering personal in-
formation, fostering a more equitable commitment to responsible and ethical data mining
practices [31].

The high accuracy means that a recommender system is good at differentiating be-
tween students who can succeed in mainstream and those who are more likely to benefit
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from extended programmes. Using this predictive study, academic advisors and institu-
tions can identify students who may be in danger of falling behind and need more help
to meet academic standards. Universities can increase their chances of success and fill in
any gaps in their fundamental knowledge by proactively targeting and offering the right
interventions for students in extended programmes.

6. Conclusions

The study aimed to identify the important features using a dataset when predicting stu-
dent performance and identifying the most suitable qualifications. We identified important
features and used these in model training. Moreover, the specified features can be utilised
to determine whether a student is better suited for mainstream or extended qualifications.
This study adds to the literature on improving academic advising in engineering education
by using a machine-learning approach.

This study used a real-world dataset from a public university in South Africa to identify
features that significantly influence the task of identifying the most suitable qualifications
from a dataset. The study also assessed and compared how well various classification
techniques performed using these features. This study employed a comprehensive method-
ology encompassing data pre-processing, feature engineering, imbalanced data handling,
and model training. The study showed that mathematics, physical sciences, and APS
are important features when predicting student performance and qualification enrolment.
These features were used in models to predict overall student performance, first-year
student performance, qualification enrollment for all students, qualification enrollment for
first-year students, and predicting the qualification flag for first-year students successfully.

The KNN model exhibited exceptional performance in predicting overall student
performance, while decision trees, LGBM, and random forest models also excelled. When
predicting first-year student performance, all models demonstrated equally high accuracy.
When predicting qualification enrollment, models yielded consistently strong performance,
with decision trees and random forests leading the pack. These findings underscore the
value of features like APS, mathematics, and physical sciences in predicting first-year
student performance. This study represents a positive step toward harnessing student data
to improve academic advising and promote student success. It highlights the potential
of data-driven interventions to address student attrition in engineering education. As
education continues to evolve, incorporating predictive modelling into academic advising
can contribute to more personalised and effective student support.

Given the strong influence of features like mathematics, physical sciences, and APS
on predicting student success, it is possible to use these features as important inputs
in recommender systems that incorporate student performance data from high school.
These recommender systems can be used by faculty-student advisors to improve decision-
making in student advising. By combining these data-driven advising systems, educational
institutions may better serve students on an ongoing basis, help them succeed academically,
and increase their overall success rates. The application of recommender systems by
student-faculty advisors has the potential to revolutionise how students navigate their
academic and professional journeys.

This study shows that using a real-world dataset makes accurate prediction of student
performance and qualifications possible. These models can be incorporated into recom-
mender systems to better support students in their academic and professional careers by
arming faculty-student advisors with making data-driven recommendations. This can
save student-faculty advisors time and effort since they will not have to manually access
enormous amounts of data. This aligns with a study that showed that recommender
systems enable advisors to evaluate a broader range of scenarios efficiently, facilitating
better-informed and cost-effective decisions, particularly in challenging situations [69].

There are a few limitations to this study. The study’s use of the engineering student
cohort from 2016 and 2017 has several limitations due to the limited range of the data
that can be analysed. This limitation may constrain the generalisability of the results to
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other cohorts or students in different periods, as various factors may have transformed the
educational landscape. Furthermore, using a medium dataset of student records enrolled
in engineering may be challenging. Another area for improvement is that the dataset only
contained students who qualified to study engineering. It excluded students who may have
shown interest but could not register as they needed to meet the minimum requirements.
As a result, it is possible that the findings need to accurately reflect the complete diversity
and range of students who want to major in engineering.

Future studies could focus on investigating the integration of student performance
prediction within recommender systems. This includes exploring gender-based biases
in predicting student performance and understanding how prediction accuracy varies
across different student age groups. Additionally, it includes investigating biases based on
ethnicity or race, examining the influence of socioeconomic backgrounds on predictions,
and assessing how prediction accuracy may differ based on a student’s geographic location.
Given the reliance on traditional machine learning methods in current research, there
is substantial potential for advancing the field by shifting focus towards implementing
deep learning approaches. This evolution in methodology holds promise for refining
the accuracy and inclusivity of academic performance prediction within recommender
systems. This strategic approach contributes to a targeted understanding of academic
performance prediction, particularly for engineering students, and lays the groundwork for
future recommender system developments. Integrating student performance prediction as
a key input for recommender systems underscores its potential to effectively recommend
the most suitable courses based on insights from student performance prediction and
personal information.

This study contributes to the corpus by using machine learning techniques to analyse
real-world data, predict student performance, and determine the suitability of students for
mainstream or extended programmes, exemplifying the integration into recommendation
systems for academic advising in engineering education. These findings enhance advising
strategies, offering more effective support for students across their educational journey.
The demonstrated efficacy of the prediction models in engineering student performance
underscores their potential scalability to encompass diverse subject domains.
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