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Abstract: Ambiguous optical illusions have been a paradigmatic object of fascination, research
and inspiration in arts, psychology and video games. However, accurate computational models of
perception of ambiguous figures have been elusive. In this paper, we design and train a deep neural
network model to simulate human perception of the Necker cube, an ambiguous drawing with
several alternating possible interpretations. Defining the weights of the neural network connection
using a quantum generator of truly random numbers, in agreement with the emerging concepts of
quantum artificial intelligence and quantum cognition, we reveal that the actual perceptual state of
the Necker cube is a qubit-like superposition of the two fundamental perceptual states predicted
by classical theories. Our results finds applications in video games and virtual reality systems
employed for training of astronauts and operators of unmanned aerial vehicles. They are also useful
for researchers working in the fields of machine learning and vision, psychology of perception and
quantum–mechanical models of human mind and decision making.

Keywords: artificial intelligence; deep neural network; machine learning; machine vision; Necker
cube; optical illusion; quantum oscillator; quantum mind hypothesis; quantum random generator

1. Introduction

Optical illusions have fascinated humans since the ancient times [1–3] and served
as both object of inspiration in arts [4,5] and paradigmatic topic of research in the fields
of psychology and behavioural science [6–13]. Nowadays, when artificial intelligence
(AI) is all around, a question arises whether a computer or robotic system can recognise
optical illusions similarly to a human. Apart from a blue-skies research goal of creating
a humanoid robot that both aesthetically resembles a human and can perceive the world
as a human, a practicable model of human perception of optical illusions could revolu-
tionise the way video games and spatial computing systems are designed [14], psychiatric
illnesses are studied [15] and the effect of gravitation on cognition is investigated [16,17].
Moreover, establishing the psychological and physiological origin of perception of ambigu-
ous figures promises to unlock the secrets of human decision making [9], also revealing
a long-hypothesised but yet elusive link between human mental states and quantum
mechanics [8,9,18–23].

We consider the Necker cube [2] shown in Figure 1a. A simple self-examination aimed
to answer the question ‘Is the shaded face of the cube at the front or at the rear?’ results in a
series of possible interpretations that randomly switch between ‘front’ and ’rear’. When the
sequence of the observed front–rear states, which in the following we denote as |0⟩ and |1⟩,
is recorded as a function of time as schematically shown in Figure 1b, one obtains a signal
consisting of rectangular pulses of random duration. The temporal dynamics of the pulses
will vary from one self-examination to another since the perception of optical illusions
depends on the observer’s age and gender [24]. However, the general trend illustrated in
Figure 1b is similar for all observers.
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Figure 1. (a) The Necker cube. The answer to the question ‘Is the shaded face of the cube at the front
or at the rear?’ changes suddenly depending on the observer’s perception, giving rise to a series of
rectangular pulses corresponding to the front, |0⟩, and rear, |1⟩, perceptual states of the cube shown
in panel (b).

On the other hand, electroencephalograms recorded consistently with subjective inputs
given by observers of the Necker cube and other ambiguous figures [25–27] suggest that
the perception does not undergo an abrupt switching as sketched in Figure 1b but exhibits
a rather continuous oscillation-like behaviour between the |0⟩ and |1⟩ states. Data speaking
in favour of such a behaviour were also obtained in eye-tracking experiments, where both
blink and movement of eye were associated with a perceptual reversal [6,28,29].

These experimental results indicate that the perceptual state may not exactly be |0⟩
or |1⟩ state but their combination. Mathematically, this scenario can be described as a
superposition of |0⟩ and |1⟩ [9]. This intriguing observation has motivated the attempts
to apply the methods of quantum mechanics and quantum computing to the analysis of
human perception [9,21,30,31].

A quantum computer uses a quantum bit (qubit) that can be in states |0⟩ =
[

1
0
]

and
|1⟩ =

[
0
1
]
. These states are analogous to the ‘0’ and ‘1’ binary states of a classical digital

computer. However, a qubit exists in a continuum of states between |0⟩ and |1⟩, i.e., its
states are a superposition |ψ⟩ = α|0⟩+ β|1⟩ with |α|2 + |β|2 = 1.

When a quantum measurement is performed, a closed qubit system interacts in a
controlled way with an external system from which the state of the qubit under measure-
ment can be recovered. For example, using projective measurement operators M0 = |0⟩⟨0|
and M1 = |1⟩⟨1| [32], the measurement probabilities for |ψ⟩ = α|0⟩+ β|1⟩ are P|0⟩ = |α|2

and P|1⟩ = |β|2, which means that the qubit is in one of its basis states. Such a projective
measurement can be visualised using the concept of the Bloch sphere where the qubit is
projected on one of the coordinate axes (e.g., z-axis in Figure 2a).

Computational algorithms based on measurements of the states of a qubit are ex-
ponentially faster than any possible deterministic classical algorithm [32]. Subsequently,
it has been demonstrated that quantum mechanics can explain certain psychological
and decision-making processes better than any classical model [9,31,33,34]. A large and
growing body of research has provided significant evidence speaking in favour of this
hypothesis [8,21,22,34–47].

In Figure 2b that was rendered using the physical ray-tracing software POV-Ray 3.7,
we illustrate how the principle of projective qubit measurement can be generalised to the
Necker cube. The two-dimensional (bottom) images in Figure 2b are the shadows cast by
the three-dimensional cubes. However, while the three-dimensional cubes are visually
different, the shadows cast by them are identical. Yet, the shadows are an ambiguous
Necker cube with the alternating left and right faces (this can be seen by observing them for
5–10 s; some observers may also need to blink to notice the optical illusion [48]). Drawing
an analogy with the projective measurement pictured in Figure 2a, in Figure 2b we consider
the shadows as a qubit-like superposition of the two fundamental perceptual states of the
cube and we virtually project these images back to the three-dimensional space to obtain
an unambiguous (either |0⟩ or |1⟩ basis state) image of the cube.
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Figure 2. (a) Projective measurement of a qubit. (b) Projective qubit-like measurement applied to the
Necker cube. The two-dimensional shadows of the cubes are identical and perceived by an observer
as an ambiguous Necker cube. Considering the shadows as a qubit-like superposition of |0⟩ and |1⟩,
we virtually project the shadows back to the three-dimensional space to obtain an unambiguous cube
that corresponds to one of the basis states.

It is noteworthy that the application of the concepts of qubit and superposition does
not imply the existence of quantum processes in a biological brain. In fact, the analogy with
a qubit serves as a mathematical model that can adequately describe the experimental data.
At the same time, an ultimate verification of the accuracy of the quantum models is not
practicable due to technical immaturity and high cost of quantum computers and adjacent
technologies. Yet, from the neurobiological point of view, an idealised experiment would
also include measurements conducted with a brain–computer interface that can decipher
the human ‘thoughts’. Clearly, such complex tests are not yet feasible and they also raise
ethics concerns.

Subsequently, much of the current research in this area has focused on artificial neural
network modelling and digital twins of perception of optical illusions [25,49–55]. Some
of these works have employed experimental electroencephalogram (EEG) and magne-
toencephalography (MEG) data as the signals that are processed using a neural network
model and then classified and correlated with experimental perceptual states of ambiguous
figures [25,53–55]. In turn, works [50,51,56] have focused on the analysis of the dynamics
of perception of the images of ambiguous figures using neural network architectures that
exhibit chaotic behaviour. However, the results obtained in ref. [51] reproduce the results
obtained in classical models of bistable perception, i.e., they do not predict any superposi-
tion of the two possible perceptual states of the Necker cube (quantum mechanical models
of cognition and perception were not widely accepted when paper [51] was published). On
the other hand, although paper [56] does not discuss the perception of ambiguous figures,
the neural network model proposed in it reveals a possibility of superposition of two states
in principle.

However, despite the advent of quantum mechanical models of perception and the
previous attempts to study ambiguous figures using neural network algorithms, there
have been no demonstrations of quantum neural network models of optical illusions. The
concept of quantum neural networks has become an active topic of scientific research
relatively recently owing to increasing maturity of quantum technologies [57–61]. Never-
theless, quantum neural network architectures have immediately demonstrated a number
of advantages over the classical networks, including higher accuracy of outputs produced
using just several qubits [62–65]. Thus, it is plausible that quantum neural network models
of optical illusions will also outperform their classical counterparts.
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Hence, in this present work, we construct a deep neural network that uses a quantum
random generator to define the weights of the neural connections and we exploit it to model
the perception of ambiguous figures. We demonstrate that the so-designed computational
algorithm reproduces the hypothesised superposition of the possible perceptual states of
the Necker cube. We also show that these results qualitatively agree with the predictions of
a recently proposed quantum oscillator model of optical illusions [14].

Broadly speaking, the results presented in this paper may be used to enhance the
ability of quantum neural networks to recognise and generate images of similarly looking
human faces and fashion items [66,67], also being useful in the analysis of patterns of
financial behaviours [68]. For example, optical illusion called #theDress has become a
subject of scientific research in the fields neuroscience and vision science [69] following a
viral online dispute between people who believed that the dress was blue and black and
people who perceived its colours as white and gold. The quantum neural network model
presented in this work should be applicable to #theDress because recent research works
have also revealed that both #theDress and Necker cube are ambiguous figures [70].

The remainder of this paper is organised as follows. In Section 2, we present a detailed
theoretical and technical discussion of the deep neural network algorithm proposed in
this work. Then, in Section 3 we introduce a quantum oscillator model of perception of
ambiguous figures. Then, in Section 4 we conduct a detailed comparative analysis of the
results obtained using the neural network and the quantum oscillator model. Finally, we
demonstrate the potential of our model to solve a wide range of practical problems.

2. Deep Neural Network Algorithm

The architecture of the neural network used in this work is illustrated in Figure 3. The
network consists of an input layer that has L = 100 input nodes, three hidden layers each
of which has N = 20 nodes and an output layer that has M = 2 output nodes that are
used to classify the perceptual state of the Necker cube. The weights of the connections of
the network are updated using a cross-entropy-driven back-propagation algorithm [71,72].
The learning rate parameter used in all computations is α = 0.01.

Figure 3. Sketch of the deep neural network architecture used to model the perception of the Necker
cube. The network consists of an input layer, three hidden layers and an output layer that has
two nodes. Labels W(n) with n = 1 . . . 4 denote the matrices of the weights of network connections.
The network is trained using the images of the Necker cube with the shaded front and rear faces
that correspond to |0⟩ = [0 1] and |1⟩ = [1 0] training states, respectively. Characters ‘|0⟩’ and ‘|1⟩’
are not part of the training images. The test input is an image of the ambiguous Necker cube. All
input images consist of a total of 100 pixels. Individual pixels of each image form input vector xj with
j = 1 . . . 100.
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The activation function of the nodes of the hidden layers is represented by the Rectified
Linear Unit (ReLU) that can be defined as [71,72]

ϕReLU(xj) =

{
x, xj > 0
0, xj ≤ 0

, (1)

where j = 1 . . . L is the index denoting the sequential number of the input node and xj is
the output from this node. As the activation function of the output nodes we choose the
Softmax function that accounts not only for the weighted sum of the inputs to the given
node but also for the inputs to the other output nodes [71,72]. This function is

ϕsmax(vi) =
exp(vi)

∑M
k=1 exp(vk)

, (2)

where vi is the weighted sum of the input signals to the ith output node and M is the
total number of the output nodes. The use of Equation (2) enables satisfying probability
normalisation condition ∑M

k=1 ϕsmax(vk) = 1.
The network is trained using the following procedure [72]:

1. Construct two output nodes that correspond to |0⟩ = [1 0] and |1⟩ = [0 1] perceptual
states of the Necker cube;

2. Initialise the weights of the neural network in the range from −1 to 1 using a random
number generator;

3. Enter input data xj and corresponding training data di that encode the perceptual
states of the Necker cube (the top and the middle illustrations on the left of Figure 3);

4. Calculate error ei between output yi and target di as ei = di − yi;
5. Propagate output δi = ei in the backward direction of the network and compute

respective parameters δ
(n)
i of the hidden nodes using equations e(n)i = W(n)⊤δi and

δ
(n)
i = ϕ′

ReLU

(
v(n)i

)
e(n)i , where index n denotes the sequential number of the hidden

layer, prime denotes the derivative of the activation function and W⊤ is the transpose
of the matrix of weights corresponding to each relevant layer of the network.

6. Repeat Step 5 until the back-propagation algorithm reaches the first hidden layer;

7. Update the weights using learning rule w(n)
ij := w(n)

ij +∆w(n)
ij , where w(n)

ij are the weights

between output node i and input node j of the nth layer and ∆w(n)
ij = αδ

(n)
i xj;

8. Repeat Steps 4–7 for all values of the training data set;
9. Repeat Steps 4–8 until the neural network is trained with desired accuracy.

The exploitation process essentially reproduces Steps 1–3 [72]. We establish that it
suffices to use 1000 epochs to obtain convergent results in all calculations.

The physical processes underpinning the dynamics of switching between the percep-
tual states of ambiguous figures remains a subject of debate [7,73]. One of the currently
accepted theories suggests that the switching is likely to be explained by chaotic processes
observed in nonlinear dynamical systems [51,56,74–76]. Indeed, broadly speaking, the
brain is a dynamical system that exhibits a complex nonlinear and chaotic behaviour at
multiple levels [77–79]. Subsequently, it is plausible that certain highly nonlinear and
chaotic physical system can approximate the behaviour of a brain at least in principle [80].

To implement a chaotic dynamical behaviour in our model, we employ a quantum
physical generator of random numbers [81,82] to define matrices W(n) that contain the
weights of the connections of the neural network. Unlike the output of a pseudo-random
generator such as the one described in ref. [83], a quantum generator produces truly random
numbers [81,82]. In our model, this property implies that the neural network is not biased
towards one of the possible perceptual states of the Necker cube and that its predictions
do not repeat in time [84,85]. Furthermore, as with the purely classical neural network
models [51,56], our quantum random generator-based neural network exhibits a truly
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chaotic dynamical behaviour [86] and therefore can be considered to be a chaos-driven
system [51,56].

As illustrated in Figure 4, we first randomly generate W(n), then we train the network
on the data corresponding to the Necker cubes with the shaded faces, and then we exploit
the trained neural network to predict the perceptual state of the ambiguous Necker cube.
This procedure is repeated in a loop to plot the perceived states of the cube as a function
of time.

Figure 4. Sketch of the recurring computation procedure that involves the generation of the connec-
tion weights using a random generator, training of the network and its exploitation to predict the
perceptual state of the Necker cube. Characters ‘|0⟩’ and ‘|1⟩’ are not part of the training images.

Results: Predictions of the Neural Network Model

Figure 5 shows the prediction by the neural network model obtained as a result of
100 consecutive runs of the algorithm outlined in Figure 4. The states of the output nodes of
the neural network were recorded at the end of each computational run and the respective
results were plotted as a function of time (in arbitrary units). Therefore, every pair of data
points that constitute the curves in Figure 5 was obtained using a unique initial set of neural
weights W(n) obtained from a truly random quantum physical system [81,82].

Figure 5. Perceptual switching curves simulated by the neural network model using quantum
random neural connection weights. The data produced by the two output nodes of the network are
plotted using the solid and dotted curves, respectively. The data points with probability P|0⟩ = 0 or
P|1⟩ = 1 correspond to the fundamental perceptual states of the Necker cube. The remaining data
points are in a superposition of states |0⟩ and |1⟩ with P|0⟩ + P|1⟩ = 1.

We can observe a time-dependent switching between the two possible classical per-
ception states of the cube that correspond to probability values zero and one on the y-axis
of Figure 5. Importantly, the pattern of switching between one fundamental perceptual
state to another is not abrupt, as often depicted in the literature and schematically shown in
Figure 1b of this paper, but it involves certain intermediate states that are a superposition
of the fundamental states.

Thus, the data produced by the neural network model speak in favour of plausibil-
ity of the previous theoretical results [9] and experimental evidence [25–27] demonstrat-
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ing that the actual perception state is a superposition of the two fundamental states, |0⟩
and |1⟩, of the Necker cube. Moreover, this result aligns with the current understand-
ing of optical illusions and adjacent phenomena from the point of view of neuroscience.
In fact, in the last four decades, many authors demonstrated that the perception of the
Necker cube can be modelled as a continuous dynamical system subjected to random
fluctuations [12,41,52,87–95]. Some of those approaches approximate the perception, draw-
ing an analogy with physical wave-like phenomena where phase processes play a role [96]
but the states of the model dynamical system gradually change in time.

Similar results were obtained using a quantum oscillator model of perception of
ambiguous figures. In the following section, we overview the algorithm of that model and
then compare its predictions with the result shown in Figure 5.

3. Quantum Oscillator Model of Perception of Ambiguous Figures

We model the dynamics of perception of the Necker cube using a harmonic motion of
an electron trapped in a parabolic potential well (Figure 6a). This model is inspired by the
quantum mechanical approach to human cognition proposed in ref. [9] and it captures the
complex pattern of perception of the Necker cube [14].

A classical mechanics counterpart of this model is a small ball that rolls back and
forth inside a bowl. While the ball does not have enough energy to surmount or penetrate
a physical barrier inside the bowl, the electron may pass through the barrier due to the
quantum tunnelling effect (Figure 6a).

Figure 6. (a) An electron trapped in a parabolic well behaves as a harmonic oscillator and it can
pass through a barrier due to the quantum tunnelling effect. The arrows indicate the direction of
movement. (b) Illustrative example (numerical simulation) of quantum tunnelling through a barrier.
The dashed line denotes an snapshot of the incident Gaussian pulse. The solid line denotes the
snapshots of the portions of the pulse that are reflected from and transmitted through the barrier (the
green line, right y-axis). The labels |0⟩ and |1⟩ correspond to the perceptual states of the Necker cube.
The arrows indicate the direction of propagation of the pulses with respect to the barrier.

We model the quantum tunnelling effect by solving the Schrödinger equation in a
one-dimensional space [97],

ih̄
∂ψ(x, t)

∂t
=

[
− h̄2

2m
∂2

∂x2 + V(x)

]
ψ(x, t) , (3)

where ψ(x, t) is a wave function, i is the imaginary unit, m is the mass of the electron, h̄
is Plank’s constant and V(x) is the parabolic potential well profile. We numerically solve
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Equation (3) using a finite-difference time-domain (FDTD) method [98] that represents the
wave function as ψ(x, t) = ψre(x, t) + iψim(x, t). We obtain

∂ψre(x, t)
∂t

= − h̄
2m

∇2ψim(x, t) +
1
h̄

V(x)ψim(x, t), (4)

∂ψim(x, t)
∂t

=
h̄

2m
∇2ψre(x, t)− 1

h̄
V(x)ψre(x, t) .

Representing coordinate x and time t as the vectors of discrete elements xk = k∆x
and tn = n∆t, respectively, where k and n are integer numbers, and applying the Courant
stability criterion [98], we define

∆t =
1
8

2m
h̄
(∆x)2 . (5)

Thus, a spatio-temporally discretised Equation (4) becomes

ψn
re(k) = ψn−1

re (k)− 1
8

[
ψn−1/2

im (k + 1)− 2ψn−1/2
im (k) + ψn−1/2

im (k − 1)
]
+ ∆t

h̄ V(k)ψn−1/2
im (k),

ψn
im(k) = ψn−1

im (k) + 1
8

[
ψn−1/2

re (k + 1)− 2ψn−1/2
re (k) + ψn−1/2

re (k − 1)
]
− ∆t

h̄ V(k)ψn−1/2
re (k) .

(6)

We model the electron as a Gaussian energy wave packet:

ψ0
re(k) = exp

(
−0.5

(
k−k0

σ

)2
)

cos
(

2π(k−k0)
λ

)
,

ψ0
im(k) = exp

(
−0.5

(
k−k0

σ

)2
)

sin
(

2π(k−k0)
λ

)
,

(7)

where λ is the wavelength, σ is the width of the Gaussian pulse and k0 is the spatial
coordinate of origin of the pulse. The amplitudes of the wave functions are normalised as∫ ∞

−∞
ψ∗(x)ψ(x) dx = 1 . (8)

The probabilities of funding the electron in the |0⟩ and |1⟩ regions of the potential well are
calculated as

P|0⟩ =
∫ xcentre

−∞
ψ∗(x)ψ(x) dx, (9)

P|1⟩ =
∫ ∞

xcentre
ψ∗(x)ψ(x) dx , (10)

where P|0⟩ + P|1⟩ = 1.
Using model parameters ∆x = 0.1 × 10−11 m, λ = 1.6 × 10−10 m and

σ = 1.6 × 10−10 m, in Figure 6b we present the results of modelling of the electron tun-
nelling through a potential barrier. Calculating the modulus square of the wave function,
we obtain the probability density of finding the electron at a certain position in the parabolic
potential well. We can see that one part of the incident wave packet is reflected from the
barrier but another part is transmitted through it. We label the left and right side of the
parabolic potential well as |0⟩ and |1⟩ and associate them with the possible perceptual
states of the Necker cube. In this particular demonstration simulation scenario, we obtain
P|0⟩ = 0.35 and P|1⟩ = 0.65.

Results: Predictions of the Quantum Oscillator Model

Figure 7 shows the results produced by the quantum oscillator model. We consider
a single parabolic well (Figure 7a.i) and a double parabolic well with a barrier formed
by two overlapping parabolic wells (Figure 7b.i). Assuming that the energy packet that
represents the electron originates from the left side of the potential well (this corresponds
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to a visual cue to the cube orientation [9]), we simulate the dynamics of the oscillator in the
time interval from 0 to 200 arbitrary units (these arbitrary units are different from those
used in the neural network model). The result of this simulation is plotted in Figure 7a.ii,
where the probability of finding the electron in the |0⟩ and |1⟩ regions of the potential well
are denoted by the solid and dotted curves, respectively. The result of the simulation of the
double parabolic well is presented in Figure 7b.ii.

Figure 7. (a) A single parabolic potential well model and the Necker cube perception switching
predicted by it. (b) The respective double parabolic model with a barrier and its predictions. In both
panels, labels |0⟩ and |1⟩ denote the fundamental perceptual states of the Necker cube. The time units
used in this figure are different from those in Figure 5.

4. Discussion
4.1. Neural Network Model versus Quantum Oscillator Model

In Figure 7a.ii, we can see that the quantum oscillator model with a single potential
well predicts a periodic switching between the two fundamental perceptual states, with
a quick but not instantaneous change from one fundamental perceptual state to another.
This result is in good agreement with the prediction of the previous quantum mechanical
models proposed, for example, in Refs. [9,21], and it implies the existence of a superposition
of the fundamental perceptual states. Qualitatively similar results are also predicted by the
neural network, which can be seen in Figure 5 in the time intervals from approximately
T = 5 to T = 20.

Furthermore, a periodic switching between the two fundamental perceptual states
predicted by the neural network model alternates with the periods of irregular switching
between these states (e.g., from T = 80 to approximately T = 90 in Figure 5). This
behaviour is qualitatively reproduced by the quantum oscillator model that uses the double
periodic well with the barrier (Figure 7b.ii). We note that the time units used in the
quantum oscillator model are different from those used in the neural network model, which
means that the timescale of alternations between the perceptual states is different in these
two models. This difference is inconsequential for the current discussion and, if needed, it
can be eliminated using a different profile of the parabolic potential wells.

Thus, we conclude that the quantum oscillator model can reproduce the predictions of
the neural network model provided that the outputs of the single and double parabolic
potential well oscillators are combined together, which can be achieved, for example, by
coupling them into a chain oscillator. While the discussion of an implementation of this
approach is beyond the scope of this paper, the similarity of the outputs of the neural
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network model and the quantum oscillator model has a clear physical meaning: both
models are dynamical systems that operate according to the fundamental laws of quantum
mechanics [99–101].

Moreover, the results obtained using the neural network model speak in favour of
the hypothesis that originates from the quantum oscillator model and that suggests that
the phase change in the response of the dynamical system has the effect of eye blinking,
an action known to induce a reversal of the perceptual state of the Necker cube [11,14,48].
Although this hypothesis has not been verified yet, it is known that the dynamics of eye
blinks can be studied using the methods developed to investigate highly nonlinear and
chaotic processes [102–104]. Hence, since the neural network model employs data produced
by a generator of truly random numbers, its predictions should be consistent with the
dynamics of the eye blink [84,105].

It is plausible that one can obtain, at least in principle, a quantitative agreement
between two or more different models. However, such a comparison must be preceded by
research aimed to compare the outcomes of a particular theoretical model with experimental
psychological or neurobiological data. Although several attempts to conduct such studies
have been undertaken (see, e.g., refs. [106–108]), a comprehensive validation of different
models against the same experimental dataset is yet to be carried out.

4.2. Potential Applications in Artificial Intelligence and Virtual Reality Systems

The proposed neural network algorithm can be used as a model of optical illusions
in filmmaking, architecture design and game development [4,109,110]. For example, the
video game Superliminal uses forced perspective techniques that manipulate human visual
perception to make an object appear larger or smaller than it actually is [111]. Typically,
the design of such games requires an input from psychologists and experts in vision
science, yet relying on subjective feedback provided by testers and professional video
games players. The application of the model proposed in this work can help reduce the
impact of subjectivity from game design procedures.

The models proposed in this work can be used in an advanced machine vision system
intended to simulate the human perception and decision making. In particular, the so-
designed machine vision system may be tasked to play a video game such as Superliminal
and its actions can be compared with the actions of a human operator, providing a valuable
feedback for engineers, neuroscientists and psychologists. Intriguingly, a number of recent
research works have demonstrated that the psychological perception of game scenarios
can also be modelled using the laws of physics [112]. Subsequently, the outcomes if
this work can help improve deep learning models developed to play video games like
a human [113,114].

The neural network model of optical illusions can be used to study the impact of
weightlessness on the ability of astronauts to undertake complex tasks during and after
spaceflights. On Earth, the majority of observers of ambiguous figures such as the Necker
cube perceive one interpretation more often than the other. However, in weightlessness,
this asymmetry gradually disappeared and, after spending several months in orbit, both
interpretations have the same occurrence [16,17]. At present, such studies rely on experi-
mental data that are often obtained in microgravity conditions or provided by individuals
who experiences the effect of microgravity [115]. It is plausible that a virtual reality system
that simulate the effect of microgravity on the ability of humans to perceive optical illusions
will improve the fidelity of experimental results by reducing the effect of subjectivity. Such
virtual reality systems can also enable anyone to experience the world thought the eyes of
an astronaut.

The operation of unmanned aerial vehicles (UAVs), commonly known as drones, is
another area where models of optical illusions may help extend the abilities of both humans
and AI. For example, at present, the skills of human race drone operators significantly
exceed the performance of the most advanced machine vision algorithms [116]. A better
understanding of the ability of a human pilot to select appropriate motor commands from
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highly dynamic visual information may provide key insights for solving current challenges
in vision-based autonomous navigation.

Yet, the neural network model of optical illusions can be used to validate certain
neuroscience and psychological perception theories that are complimentary to the quan-
tum mind hypothesis [117,118]. According to some mainstream theories, our subjective
perception of the world is unitary coherent [119]. Here, unitary means that we perceive
one interpretation at a time (e.g., one of the two possible states of the Necker cube) rather
than a blur of the possible interpretations (i.e., we never see the two possible states of
the cube together). In turn, coherent means that we perceive scenes that do not contain
contradictory parts (e.g., we do not see a part of one cube and a part of another one at the
same time).

However, such an intuitive approach contradicts the theories of optimal decision
making and Bayesian brain [117,118]. These theories suggest that an optimal decision can be
made only integrating the utility of all actions while considering all possible interpretations
of sensory data.

To verify these alternative theories, a video game involving two scenarios was
designed [119], where the players were first trained in a visually unambiguous scenario
and then they played the same game but in an optical illusion scene that involved an image
of the Necker cube. The proposed neural network model can be integrated with that game
to address the weaknesses of the experiment identified in ref. [119].

5. Conclusions

This paper demonstrates the potential of a deep neural network algorithm powered by
a quantum random number generator to simulate the human perception of optical illusions
exemplified by the Necker cube. The results produced by the quantum neural network
indicate that observers are likely to perceive a superposition of the fundamental perceptual
states of the cube.

This finding aligns with the emerging psychology theories suggesting that certain
psychological phenomena can be adequately described using such quantum mechanical
concepts as qubit, superposition of states and projective measurement. In particular, we
compare the results produced by the neural network with the predictions of a recently
proposed quantum oscillator model of optical illusions and we establish that both models
consistently predict a qubit-like superposition of perceptual states.

The proposed neural network model can be used in various AI systems ranging
from video games and virtual reality and metaverse products, also being a useful tool
for psychological and neuroscience studies. It can also be utilised to train astronauts and
operators of UAVs to perform in visually challenging environments.

From the methodological point of view, the algorithm presented in this work is
unique in terms of combining the emergent concept of quantum neural networks with
quantum mechanical models of human mind and perception. This model can be further
modified by incorporating the elements of biologically inspired artificial neural networks
designed to understand certain functions of the brain [52,80,120]. Yet, the proposed quan-
tum neural network architecture should be of interest to experts in machine learning and
machine vision, which are the fields where quantum neural networks play an increasingly
important role [121].

Finally, the images of the Necker cube can be used to test the performance of advanced
neural network architectures such as reservoir computing (RC) systems [80,122–124]. Usu-
ally, RC systems are validated using nonlinear and chaotic time series, including Mackey–
Glass time series and the Lorenz attractor [125,126]. Quantum RC systems are expected
to forecast chaotic time series more efficiently than their classical counterparts [65], which
means that more challenging test problems are needed. Therefore, since quantum RC
systems are also efficient in completing complex classification tasks [65], a computational
problem involving the recognition of the Necker cube and other ambiguous figures should
be suitable for testing the performance of novel quantum RC algorithms.
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