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Abstract: The global population’s rapid growth necessitates a 70% increase in agricultural production,
posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine
learning (ML) models, particularly convolutional neural networks (CNNs), are employed in precision
agriculture (PA) for weed detection. This study focuses on testing CNN architectures for image
classification tasks using the PyTorch framework, emphasizing hyperparameter optimization. Four
groups of experiments were carried out: the first one trained all the PyTorch architectures, followed by
the creation of a baseline, the evaluation of a new and extended dataset in the best models, and finally,
the test phase was conducted using a web application developed for this purpose. Of 80 CNN sub-
architectures tested, the MaxVit, ShuffleNet, and EfficientNet models stand out, achieving a maximum
accuracy of 96.0%, 99.3%, and 99.3%, respectively, for the first test phase of PyTorch classification
architectures. In addition, EfficientNet_B1 and EfficientNet_B5 stood out compared to all other
models. During experiment 3, with a new dataset, both models achieved a high accuracy of 95.13%
and 94.83%, respectively. Furthermore, in experiment 4, both EfficientNet_B1 and EfficientNet_B5
achieved a maximum accuracy of 96.15%, the highest one. ML models can help to automate crop
problem detection, promote organic farming, optimize resource use, aid precision farming, reduce
waste, boost efficiency, and contribute to a greener, sustainable agricultural future.

Keywords: agriculture; ML algorithms; CNN; flora classification; precision agriculture

1. Introduction

By 2050, the world’s population is expected to grow significantly to nine billion people.
To satisfy the expected demands, agricultural production must rise by almost 70%. The
agricultural industry will nevertheless face several difficulties at that time, including a
decline in the amount of arable land and the requirement for more intense production.
Productivity will also be impacted by additional problems, such as climate change and
water shortages [1].

The productivity and quality of crops can be affected by prejudicial vegetation because
of its ability to spread fast and unintentionally. In the battle for food, water, sunlight, and
growth space, unwanted plants face up to crops. Numerous factors affect how control
tactics are employed to lessen their impact [1].

An over-dependence on herbicides can harm the environment, cause non-target crop
damage, destroy natural flora and soil biodiversity, and be harmful to the general public’s
and farmworkers’ health [2]. Herbicide administration may be decreased by 40% on average
by employing extensive information on the types of weed plants that have emerged, their
growth phases, and plant densities in a field [3].
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Due to rising labor expenses and an increase in public concern for their health and
the environment, automation in weed management has gained popularity. Automated
vegetation control methods may be useful from a sustainability and financial perspective [1].
With its continued development, artificial intelligence (AI) is finding more and more benefits
in agriculture. The Internet of Things (IoT) and the 4th Industrial Revolution (Industry 4.0)
both provide new opportunities for innovation [4].

Image classification, a subfield of computer vision, plays a crucial role in modernizing
the agricultural industry. By utilizing advanced machine learning techniques, such as
deep learning (DL) and AI, image recognition has the potential to transform traditional
farming practices and enhance productivity [4]. Thus, the detection and classification of
flora has been a focus of several machine learning (ML)-based algorithms’ development,
making it a potential topic of research [5]. DL techniques provide several benefits for
picture classification, object identification, and recognition [1].

In recent years, convolutional neural networks (CNNs) have emerged as a game-
changing technology, revolutionizing the field of image classification. With their unique
architecture and sophisticated algorithms, CNN models have propelled the accuracy and
efficiency of image analysis to unprecedented levels [2]. A strong framework for creating,
developing, and deploying neural network (NN) models is offered by PyTorch [1,6].

As we move forward into an increasingly visual world, the importance of CNN models
for accurate image classification and understanding cannot be overstated, opening new
possibilities and driving innovation across a wide range of domains. In this paper, a study
about the different types of NN models for image classification available in PyTorch was
conducted. The objective of this work was to study and understand how different models
work as well as which one was the best, according to the experiments carried out. The
proposal aims to discover which model is the best with both a small and large dataset.

This paper is organized into four sections. Section 1 includes an introduction to the
agricultural problem as well as a shortage of the suggested solution. Section 2 presents
the literature related to the task of weed classification. Section 3 presents the materials
and methods used in the suggested solution. Section 4 presents all the experiments and
results achieved. Section 5 presents a discussion of the results, considering the groups of
experiments carried out in Section 4. Finally, Section 6 presents the conclusions of this work.

2. Related Work
2.1. Neural Network Architectures

CNN models improve image analysis accuracy and efficiency. PyTorch, an open-source
platform, offers flexibility, intuitiveness, and dynamic computing graphs for building and
training NNs. With twenty different architectures, and multiple sub-architectures, it offers
distinct models for various image classification tasks [7].

AlexNet and Visual Geometry Group (VGG) are both influential convolutional neural
network architectures for image classification. AlexNet was one of the first deep models to
gain widespread attention, employing five convolutional layers with max pooling and three
fully connected layers. VGG is characterized by its simplicity, consisting of deeper convolu-
tional layers (up to 19 layers) with small 3 × 3 kernels and max pooling, followed by fully
connected layers. While AlexNet emphasizes the use of Rectified Linear Unit (ReLU) acti-
vations and dropout for regularization, VGG focuses on exploring the impact of increasing
network depth, paving the way for subsequent deep architectures [8]. ConvNeXt employs
group convolutions and path aggregation to efficiently learn features by dividing input
channels into groups. It balances computational efficiency and representational strength
using cardinality, offering various depth and capacity options [9]. SqueezeNet focuses
on compactness, utilizing 1 × 1 convolutions and skip connections to reduce parameters
and address gradient flow issues. It strikes a balance between model size and accuracy,
making it ideal for devices with limited resources [10]. RegNet adopts compound scaling
and adaptive rules, allowing uniform adjustment of network depth, width, and resolution,
providing flexibility in customizing model capacity and computational resources [11].
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GoogLeNet introduced inception modules employing parallel convolutional processes
with filter sizes of 1 × 1, 3 × 3, and 5 × 5, along with max pooling, effectively capturing
local and global information. Also, 1 × 1 convolutional layers are used for dimensionality
reduction, optimizing computational resources. Auxiliary classifiers, with fully connected
and 1 × 1 convolutional layers, address the vanishing gradient problem, promoting dis-
tinctive feature learning. GoogLeNet employs global average pooling instead of fully
connected layers, minimizing overfitting. With 22 layers and more filters per layer, it
showcases advanced performance in deep learning applications [9]. InceptionV3 is an evo-
lution of GoogLeNet. It is a newer version with deeper architecture and fewer parameters,
making it more efficient and accurate. It uses innovative inception modules and factorized
convolutions, allowing it to capture features at various scales [12].

DenseNet and Residual Network (ResNet) are both deep neural network architectures.
DenseNet achieves dense connectivity by connecting each layer to every other layer in a
feed-forward structure. This promotes feature reuse and addresses the vanishing gradient
problem. It emphasizes dense connections between layers, where each layer receives direct
input from all preceding layers, promoting feature reuse and gradient flow. DenseNet’s
dense connections lead to parameter efficiency and feature reuse, enabling better gradient
flow [10]. ResNet also utilizes a similar concept of residual connections, ensuring smooth
gradient flow during training, allowing for the easy training of very deep networks by learn-
ing residual functions. ResNet’s residual connections help in mitigating vanishing gradient
problems, enabling the training of very deep networks. Both approaches have significantly
impacted deep learning but employ different strategies for information propagation within
the network [13].

ResNeXT and Wide ResNet are variants of the original ResNet architecture. ResNet
introduces residual blocks. ResNeXt enhances ResNet by using a split–transform–merge
strategy, aggregating information through parallel paths, and improving representational
capacity [14]. Wide ResNet, on the other hand, increases the width of residual blocks, lead-
ing to a wider network with more feature channels, enhancing the capacity for capturing
complex patterns [15]. While ResNet focuses on depth, ResNeXT emphasizes multi-path
aggregation and Wide ResNet emphasizes increased width, providing different strategies
for improving the expressiveness and learning capabilities of deep neural networks [14,15].

ViT (Vision Transformer), Swin Transformer, and MaxVit are advanced DL architec-
tures for computer vision tasks. ViT pioneered the transformer architecture for vision tasks,
using self-attention mechanisms to process image patches directly, but it struggles with
handling large images due to quadratic complexity. It integrates self-attention layers and
feed-forward networks to process patch embeddings [16]. The Swin Transformer introduces
hierarchical transformers, organizing layers into stages and allowing cross-stage informa-
tion flow, enabling efficient parallel processing of image patches [17]. MaxVit addresses
ViT’s limitations by introducing a novel variant with a maximal pooling strategy, reducing
computational complexity while maintaining strong performance on large images. Each
approach provides unique solutions to leverage transformers for image understanding,
catering to different computational and task-specific requirements. The architecture uses
multi-axis attention and convolution, processing input images with a convolutional stem.
It employs mobile inverted bottleneck convolution blocks for computational efficiency and
a grid structure for object recognition and pattern analysis [18].

Both MobileNet and ShuffleNet V2 architectures focus on computational efficiency
for mobile and edge devices and aim to reduce computational cost and model size while
maintaining accuracy. MobileNet uses depth-wise separable convolutions and introduces
width and depth multipliers, allowing adjustments between model size and accuracy [10].
ShuffleNet V2 combines depth-wise convolutions with compact 1 × 1 convolutions and
introduces channel shuffling and pointwise group convolutions, enabling efficient informa-
tion exchange across channels and reducing computational complexity further [19]. This
process starts with the “Channel Split” procedure, where the input feature map’s channels
are divided into two branches of equal size. One branch remains unaltered, while the
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other undergoes three convolution layers. The outputs of these branches are then merged
using the concatenation operation, “Concat”, after convolution, ensuring an equal number
of channels in the combined output. Subsequently, the “channel shuffle” mechanism is
applied, enabling effective communication and interaction between these branches [10,19].

EfficientNet, EfficientNetV2, and MNASNet are designed with a focus on efficient scal-
ing. EfficientNet optimizes model size, depth, and width simultaneously using compound
scaling, providing a balanced trade-off between accuracy and computational cost [20].
EfficientNetV2, an evolution of it, refines the design principles, introducing improved
factorized convolutions for enhanced efficiency and accuracy [11]. MNASNet employs
an automated neural architecture search (NAS) to discover efficient model architectures
and customize networks to specific hardware constraints and use cases [20]. While Effi-
cientNet and EfficientNetV2 focus on efficient scaling, MNASNet emphasizes automated
search methods, offering distinct approaches to achieving efficiency and accuracy in neural
network design.

2.2. Experimental Studies—Flora Classification

Traditional methods of flora identification require considerable time and expertise. DL
techniques can expedite this process by analyzing real-world data and providing faster and
more accurate results [21].

Also, irrigation planning is crucial in agriculture for maintaining constant yield and
reducing water shortage risks, as it accounts for a significant portion of total water use.

Some studies, like Alibabaei et al. [22] propose the development of an automatic irriga-
tion system using advanced technologies, specifically leveraging deep learning algorithms.
This study employs a Deep Q-Network (DQN) for optimizing irrigation scheduling in a
tomato field in Portugal. The DQN agent interacts with two Long Short Term Memory
(LSTM) models, serving as the environment. One LSTM model predicts the next day’s
total water content in the soil, while the other estimates crop yield based on seasonal
environmental conditions, calculating the net return. The agent uses this information to
determine the necessary irrigation amount.

During training, three neural network architectures—Artificial Neural Network (ANN),
LSTM, and Convolutional Neural Network (CNN)—are utilized to estimate the Q-table, a
critical component in reinforcement learning. Notably, the study observes that, unlike the
LSTM model, both the ANN and CNN struggle to accurately estimate the Q-table, resulting
in a reduction in the agent’s reward during training. The trained DQN model exhibits
promising results, enhancing productivity by 11% and reducing water consumption by
20–30% compared to a traditional method.

Dyrmann et al. [3] developed a CNN for plant species identification in colored photos,
utilizing six datasets containing images from controlled and natural environments with
varying lighting. The training set underwent augmentation and preprocessing, including
excessive green segmentation. The overall accuracy of the model averaged 86.2%. Classes
with more species generally exhibited better accuracy, highlighting challenges faced by
classes with limited photo samples.

Andrea et al. [23] developed an algorithm for the real-time segmentation and classifi-
cation of plants using CNNs. Four CNN models (LeNet, AlexNet, cNet, and sNet) were
employed to differentiate maize plants from weeds using RGB (red, green, blue) and Near-
Infrared (NIR) images obtained from a multispectral camera. The images were processed
to enhance green color detection and then converted to grayscale to distinguish plants from
non-plant features. The cNet model with 16 filters showed the best performance, achieving
a training accuracy of 97.23%.

Gao et al. [24] proposed using a hyperspectral NIR snapshot camera to classify weeds
and maize. They identified critical spectral wavelengths and characteristics for classification
using the Normalized Difference Vegetation Index (NDVI) and Radar Vegetation Index
(RVI). ML techniques, including feature engineering and image processing, were applied
to construct a Random Forest (RF) model. The RF model achieved high recalls, 100% for
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maize, 78.9% for Convolvulus arvensis, 69.1% for Rumex, and 75.2% for Cirsium arvense, and
high accuracies and F1 scores for differentiating crops and weeds.

Bakhshipour and Jafari [25] developed a classification system for sugar beet crops
and four weed types using shape features and image segmentation techniques. They
used support vector machine (SVM) and artificial neural network (ANN) classifiers. For
sugar beet classification, SVM achieved 96.67% accuracy and ANN achieved 93.33%. For
weed classification, SVM and ANN both attained 92.50% accuracy. The shape-based weed
detection algorithm successfully distinguished sugar beets and weeds, using red pixels for
weeds, green pixels for sugar beets, and yellow pixels for misclassified areas. They also
presented a visual representation of their model’s outcomes. NIR, red, and NDVI images
were used as input data for the CNN, with the model’s probability output displaying
crops in red, weeds in green, and the background in blue, compared against annotated
ground truth.

Sa et al. [26] employed multispectral data captured by a Micro Aerial Vehicle (MAV) to
classify sugar beetroot and weed species using CNN. They converted the data into SegNet
format, categorizing images into crops, weeds, or both, using NDVI and image processing
to differentiate vegetation. Six models with varying input channel sizes were trained and
evaluated using F1 scores and AUC measures. The best model achieved an 80% average F1
score and accuracy on test data, showing promise in classifying crops and weeds despite
dataset limitations.

In a separate study, Yang et al. [27] explored DL methods for hyperspectral image
classification. They developed and refined four models: two-dimensional CNN (2-D-CNN),
three-dimensional CNN (3-D-CNN), 2D CNN based on regions (R-2-D-CNN), and 3D CNN
with a regional focus (R-3-D-CNN). These models considered both spectral and spatial
factors. The R-2-D-CNN and R-3-D-CNN models achieved exceptional accuracy rates, with
the R-3-D-CNN reaching 99.87% and 99.97% accuracy in one dataset, emphasizing the
importance of spectral and spatial considerations in hyperspectral image classification.

In a related study developed by [28], a DL technique using KERAS API and Ten-
sorFlow backend was employed for the picture classification of nine different crops and
their corresponding weeds. The model achieved an impressive accuracy rate of 96.3% by
correctly categorizing plants and weeds using 250 images of each plant type acquired in the
field. The model’s accuracy highlighted its effectiveness in distinguishing between crops
and weeds for agricultural applications.

Jin et al. [29] developed a sophisticated algorithm to identify weeds in vegetable
plantations. The algorithm utilized CenterNet, representing objects as single points with
object centers predicted using a heatmap. Ground truth key points were transformed into
smaller key-point heatmaps through a Gaussian kernel and focal loss for network training.
Weeds were identified as green objects outside the annotated bounding boxes.

The trained CenterNet model exhibited a very good performance with a precision
of 95.6%, recall of 95.0%, and F1 score of 95.3%. It successfully identified vegetables
under various conditions, presenting the final segmentation results with vegetable regions
highlighted in red boxes.

El-Kenawy et al. [30] introduced a novel approach for classifying weeds in wheat
photos taken by a drone. Three machine learning models, ANN, SVM, and the K-nearest
neighbors’ algorithm (KNN), were utilized. AlexNet was used with a binary optimizer to
enhance feature selection. This approach achieved a detection accuracy of 97.70%, F1 score
of 98.60%, specificity of 95.20%, and sensitivity of 98.40%, outperforming other methods.

Koparan et al. [31] investigated weed detection using DL models (VGG16 and ResNet50)
with varying backgrounds. Images of weeds and crops were captured with different back-
grounds (uniform and non-uniform). The models showed better performance on images like
their training backgrounds. A model trained with combined datasets achieved an F1 score
between 92% and 99%.

Zhang et al. [32] compared SVM and VGG16 DL classifiers using RGB images to
classify weeds and crop species. Image processing techniques were employed to extract
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the green portion of the pictures, followed by feature extraction using Local Binary Pat-
tern (LBP) and Gray-level Co-occurrence Matrix (GLCM) features. The VGG16 model
outperformed SVM, with F1 score results ranging from 93% to 97.5%.

Thus, advances in image processing, spectral analysis, and model development have
contributed to more accurate and efficient methods for classifying plants and weeds. These
studies demonstrate the effectiveness of DL and ML techniques in flora classification, offer-
ing promising results for various applications in agriculture and plant species identification.
However, hardware costs for high-end cameras (multispectral and hyperspectral), data
limitations, potential overfitting, computational resource requirements, model complex-
ity, and challenges associated with real-world deployment and interpretability limit the
field applicability of these models. Thus, this paper aims to contribute to this topic by
testing CNN architectures using the PyTorch framework, emphasizing hyperparameter
optimization. It aims to assess the best models to be integrated into technological systems
and methods for selective weed removal such as automatic herbicide sprayers, mechanical
removal, thermal weeders, high-intensity laser weeders, and electric weeding devices,
among others.

3. Materials and Methods

This chapter explores the scientific knowledge development through careful material
and method selection, focusing on the PyTorch framework, and data analysis, providing
insights into algorithm evolution and simulation. The experiments were conducted on
a computer with an NVIDIA GeForce RTX 2080 SUPER, Intel i7-4790 (8-core) CPU, and
32 GB RAM.

3.1. Data Collection and Sample Preparation

In this study, a dataset comprising 172 images of vineyard flora was collected using a
Sony RGB Camera DSC-RX100M2 (sensor: type 1.0 (13.2 × 8.8 mm) Exmor R® CMOS sen-
sor; number of pixels approx. 20.2 Megapixels; lens: ZEISS® Vario-Sonnar® T* Lens; optical
zoom 3.6×; angle of view (35 mm format equivalent) 75◦–24◦ (28–100 mm); focal length
(F=) f = 10.4–37.1 mm). The images were taken during the spring and autumn seasons in
the Douro Natural Park. The images covered five weed classes: Centaurea melitensis, Echium
plantagineum, Erodium moschatum, Lolium rigidum, and Ornithopus compressus. Figure 1
shows examples of the species used to test the architectures available for the classification
task in the PyTorch framework.
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The initial dataset was divided into training (85% of images, 145 images) and validation
(15% of images, 27 images) sets following established protocols [33].

The distribution of images for each species in both the training (represented in blue)
and validation (represented in orange) sets is shown in Figure 2.
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and validation, emphasizing the visualization of species-specific data distribution. The division is
graphically represented with a blue line indicating the number of images allocated for the training
set and an orange line depicting the number of images designated for validation for each species.

3.2. Algorithm Execution

The study focuses on finding the most effective model for classifying vineyard flora
through experiments involving various hyperparameter combinations. Hyperparameters
such as batch size, number of epochs, learning rate, weight decay, and number of fully
connected layers significantly influence the model’s learning and performance.

The batch size, limited to four due to memory constraints, represents the number of
samples processed before updating the model. The number of epochs determines how
many times the learning algorithm processes the training dataset [34].

The learning rate present in optimization algorithms controls the step size during
the iterative process of updating model parameters to minimize the loss function. Weight
decay is a regularization technique in machine learning that discourages overly complex
models by adding a penalty term to the loss function, effectively reducing the magnitudes
of the model parameters [35].

The number of fully connected layers in a neural network refers to the depth of the
network architecture, which determines the network’s capacity for modeling complex
functions, with two tested configurations: linear (Lin.) and sequential (Seq.) [36].

In neural network terminology, fully connected layers are integral components of a
neural network architecture. In these layers, every neuron is linked to all neurons in both
the preceding and subsequent layers. This intricate interconnection allows each neuron
to receive input from every neuron in the previous layer and transmit its output to all
neurons in the subsequent layer. When referring to a linear number of layers, the number
of neurons in the last layer was replaced with the number of classes. On the other hand, in
a sequential number of layers, layers were modified and added to decrease the original
number of neurons until the number of classes was reached [1].
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Twelve different hyperparameter combinations were explored for each model, aiming
to identify optimal settings for vineyard flora classification. These combinations were care-
fully chosen and tested for each architecture. Different combinations of hyperparameters
refer to various configurations of the adjustable parameter values in an ML algorithm.
Exploring different combinations allowed us to find the ideal configuration to optimize the
model’s performance. Thus, the learning rate used three different values (0.01, 0.001, and
0.0001), the weight decay used two values (0 and 0.0001), and the two configurations of
layers (Lin. and Seq.). According to these values, all the hyperparameters were joined to
create the 12 combinations.

Furthermore, the inference time of the models was tested as well. The inference
time for each image was measured independently, and the average inference time across
all photos was calculated. The inference time was used to determine whether there are
substantial variances in execution time. The distribution of these times can reveal how
consistently the model works across diverse inputs. The average inference time provides a
broad assessment of the model’s efficiency throughout the whole test set. If the average
time is reasonable and consistent, it indicates stable performance.

The metric used to evaluate the models was accuracy (acc). This is a metric used to
measure the proportion of correct predictions made by a model, expressed as the ratio of ac-
curate predictions to the total predictions. The calculation of the accuracy is represented in
Equation (1), where True Positive (TP) represents the correctly predicted positive-class sam-
ples, while True Negative (TN) indicates the accurately predicted negative-class samples.
False Positive (FP) refers to negative-class samples incorrectly predicted as positive, and
False Negative (FN) signifies positive-class samples inaccurately predicted as negative [1].

acc =
TP + TN

TP + FP + TN + FN
(1)

4. Results
4.1. Experiment 1: Testing PyTorch Classification Architectures Using Different Combinations
of Hyperparameters

In the initial experiment, the architectures available in the PyTorch framework were
tested using different combinations of hyperparameters. All the executions were trained
with a fixed batch size of four, 200 epochs, and 12 distinct parameter combinations in Py-
Charm. The objective was to identify the most effective model for vineyard flora classifica-
tion. PyTorch has 20 available architectures; however, some of them have sub-architectures,
giving a total of 80 [7]. As the combinations of hyperparameters provide 12 different
simulations for each model, there is a total of 960 algorithms to run. However, some
models were impossible to run due to the graphics of the computer because it did not have
enough memory, especially Vit_l_16, Vit_l_32, Vit_h_14, and InceptionV3. Several models
demonstrated high accuracy, with results ranging from 0% to 100%.

Figure 3 shows the best accuracies achieved by each model using the small and initial
dataset. The values of accuracy presented correspond to the maximum value acquired in
each architecture.

All the best accuracies achieved by each sub-architecture are shown in Table 1. The
table is organized in the following order: name of the model, value of the learning rate,
weight decay, number of layers, best validation accuracy, best test accuracy, and finally, the
inference time in seconds (sec).
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Table 1. Accuracy performance across PyTorch classification models.

N. Models Learning
Rate

Weight
Decay

N.er of
Layers

Best Acc
(%)

Test
Accuracy

(%)

Inference
Time (sec) N. Models Learning

Rate
Weight
Decay

N.er of
Layers

Best Acc
(%)

Test
Accuracy

(%)

Inference
Time (sec)

1 MobileNetV2 0.0001 0.0001 Seq. 44.0 16.67 0.005 39 ShuffleNet_v2_x0_5 0.0001 0 Lin. 99.3 46.66 0.004
2 MobileNetV3_Large 0.0001 0 Lin. 44.0 16.67 0.006 40 ShuffleNet_v2_x1_0 0.001 0 Lin. 99.3 66.67 0.034
3 MobilenetV3_Small 0.001 0.0001 Seq. 44.0 26.67 0.005 41 ShuffleNet_v2_x1_5 0.001 0.0001 Lin. 99.3 16.67 0.005
4 MaxVit 0.001 0.0001 Lin. 96.0 76,67 0.055 42 ShuffleNet_v2_x2_0 0.001 0.0001 Lin. 96.0 66.67 0.005
5 AlexNet 0.0001 0 Seq. 96.0 33.33 0.001 43 EfficientNet_b0 0.001 0 Lin. 99.3 63.33 0.008
6 GoogLeNet 0.01 0 Lin. 96.0 10.00 0.007 44 EfficientNet_b1 0.0001 0 Lin. 99.3 86.66 0.010
7 Vit_b_16 0.0001 0 Seq. 96.0 56.67 0.006 45 EfficientNet_b2 0.001 0.0001 Seq. 99.3 50.00 0.011
8 Vit_b_32 0.0001 0.0001 Lin. 96.0 60 0.029 46 EfficientNet_b3 0.001 0 Lin. 99.3 60.00 0.012
9 ResNeXt50_32x4d 0.0001 0.0001 Lin. 80.0 13.33 0.006 47 EfficientNet_b4 0.001 0.0001 Lin. 99.3 73.33 0.014

10 ResNeXt101_32x8d 0.01 0.0001 Seq. 48.0 16.67 0.013 48 EfficientNet_b5 0.0001 0 Seq. 99.3 83.33 0.017
11 ResNeXt101_64x4d 0.0001 0.0001 Seq. 76.0 46.67 0.014 49 EfficientNet_b6 0.001 0 Lin. 99.3 23.33 0.020
12 ResNet18 0.0001 0 Lin. 84.0 43.33 0.002 50 EfficientNet_b7 0.001 0 Seq. 96.0 53.33 0.056
13 ResNet34 0.0001 0 Seq. 84.0 46.67 0.004 51 SqueezeNet1_0 0.0001 0 Lin. 96.0 20.00 0.034
14 ConvNeXt_Tiny 0.0001 0 Seq. 99.3 70.00 0.005 52 SqueezeNet1_1 0.0001 0 Lin. 96.0 46.67 0.002
15 ResNet50 0.0001 0 Lin. 80.0 43.33 0.021 53 VGG11 0.0001 0 Seq. 96.0 63.33 0.020
16 Convnext_small 0.001 0.0001 Lin. 99.3 26.67 0.038 54 RegNet_y_400mf 0.001 0 Seq. 96.0 66.66 0.022
17 Wide_ResNet50_2 0.0001 0.0001 Lin. 64.0 50.00 0.008 55 VGG11_bn 0.001 0 Lin. 96.0 63.33 0.034
18 Wide_ResNet101_2 0.0001 0 Seq. 96.0 33.33 0.014 56 RegNet_y_800mf 0.001 0 Seq. 96.0 56.66 0.032
19 Convnext_base 0.0001 0 Seq. 96.0 86.67 0.010 57 VGG_13 0.0001 0 Seq. 96.0 70.00 0.004
20 Convnext_large 0.0001 0 Seq. 96.0 90.00 0.041 58 RegNet_Y_1_6GF 0.001 0 Seq. 96.0 63.33 0.021
21 EfficientNet_v2_s 0.0001 0.0001 Seq. 65.0 20.00 0.015 59 VGG13_bn 0.0001 0 Seq. 96.0 76.67 0.004
22 EfficientNet_v2_m 0.0001 0.0001 Lin. 48.9 16.67 0.022 60 RegNet_y_3_2gf 0.001 0 Seq. 96.0 63.33 0.005
23 EfficientNet_v2_l 0.0001 0 Seq. 48.0 20.00 0.061 61 RegNet_y_8gf 0.001 0 Lin. 96.0 56.66 0.002
24 Swin_t 0.0001 0 Seq. 68.0 16.67 0.012 62 RegNet_y_16gf 0.001 0.0001 Lin. 96.0 53.33 0.034
25 Swin_s 0.0001 0 Seq. 72.0 20.00 0.024 63 VGG16 0.0001 0 Seq. 96.0 46.67 0.005
26 Swin_b 0.0001 0 Seq. 76.0 20.00 0.023 64 VGG16_bn 0.0001 0 Seq. 96.0 56.66 0.020
27 Swin_v2_t 0.0001 0 Seq. 99.3 36.67 0.016 65 VGG19 0.0001 0.0001 Lin. 96.0 46.67 0.004
28 Swin_v2_s 0.0001 0 Lin. 64.0 36.67 0.033 66 VGG19_bn 0.0001 0 Seq. 96.0 70.00 0.005
29 Swin_v2_b 0.0001 0 Seq. 72.0 26.67 0.031 67 RegNet_y_32gf 0.01 0 Lin. 96.0 46.67 0.004
30 DenseNet201 0.001 0 Seq. 96.0 20.00 0.034 68 RegNet_y_128gf 0.01 0.0001 Seq. 72.0 50.00 0.034
31 DenseNet161 0.01 0 Lin. 96.0 16.67 0.019 69 RegNet_x_400mf 0.001 0 Seq. 96.0 56.66 0.005
32 DenseNet169 0.01 0 Seq. 99.3 23.33 0.033 70 RegNet_x_800mf 0.001 0 Seq. 96.0 53.33 0.005
33 DenseNet121 0.01 0 Lin. 99.3 20.00 0.013 71 RegNet_x_1_6gf 0.001 0 Seq. 96.0 46.67 0.020
34 MNASNet0_5 0.001 0 Seq. 96.0 56.67 0.005 72 RegNet_x_3_2gf 0.01 0.0001 Lin. 96.0 50.00 0.004
35 MNASNet0_75 0.0001 0 Seq. 99.3 43.33 0.005 73 RegNet_x_8gf 0.01 0 Lin. 96.0 50.00 0.020
36 MNASNet1_0 0.0001 0.0001 Lin. 99.3 36.67 0.004 74 RegNet_x_16gf 0.01 0 Seq. 96.0 16.67 0.013
37 MNASNet1_3 0.0001 0 Seq. 96.0 40.00 0.005 75 RegNet_x_32gf 0.001 0 Lin. 96.0 33.33 0.018
38 ResNet101 0.0001 0 Lin. 96.0 20.00 0.004 76 ResNet152 0.0001 0 Seq. 96.0 16.67 0.0005
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4.2. Experiment 2: Testing the Best-Performing PyTorch Classification Architectures

In the second experiment, only the best-performing models, namely, MaxVit, Shuf-
fleNetV2, and EfficientNet, were further simulated. The analysis of the results of these
architectures indicated that 25 epochs were sufficient to achieve optimal results. There-
fore, the twelve models were trained using the same dataset, the same combination of
hyperparameters, and a reduced training period of 25 epochs instead of the initial 200.

The outcomes of these experiments for each model can be found in Figure 4.
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4.3. Experiment 3: Testing a New Dataset with Re-Trained PyTorch Classification Architectures

Smaller datasets, such as the initial one of 172 images, pose challenges for training
complex deep learning models. Such models require large data to generalize effectively,
and with limited data, overfitting risks increase. For smaller datasets, overly complex
architectures might not be suitable, as they demand extensive data for effective training.
So, in this phase of the research, the twelve architectures were re-trained using the ini-
tial combination of hyperparameters that yielded the best results and the new dataset,
extending the simulation to 200 epochs. The aim was to assess whether these models could
maintain their performance when trained with varying quantities of images and more
variance in the backgrounds. The updated dataset was obtained by downloading several
images from various platforms, including Flora-On [37], INaturalist [38], UTAD Botanical
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Garden [39], and the Global Biodiversity Information Facility (GBIF) [40]. This dataset
comprises 6730 images categorized into the five classes that were defined in the dataset. The
images were randomly split, following the standard practice of an 85% training set and a
15% validation set, as recommended in the literature [33]. Consequently, 5724 images were
used for training, while 1006 photos were reserved for model validation. The distribution
of these images across different species in both the training and validation sets is shown in
Figure 5.
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During this phase, images of the five plant species were sequentially uploaded to the 
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In the testing stage, the MaxVit model and various versions of ShuffleNet and Effi-
cientNet, which were utilized in previous sections, were employed. Each model was 
tested with the same test images.  

Users can upload an image of a plant species, request its classification, and receive 
the species’ name in return.  

The results, shown in Figure 7, show that both EfficientNet_B5 and EfficientNet_B1 
achieved superior accuracy. 

Figure 5. The extended dataset of 6730 images is visually represented, showcasing the distribution
of images for training and validation across different species. The blue line indicates the number of
training images per species, and the orange line represents the validation images. In comparison, the
green line shows training images and the red line depicts validation images from the initial dataset.

Figure 6 shows the results of the accuracy of the top twelve models trained with the
new and extended dataset.
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4.4. Experiment 4: Testing Best-Performing Models of PyTorch Classification Architectures with
New Images

To evaluate the models, a web application was developed using Gradio [41]. New
testing images were captured (26 images) in the field, with the same camera used in
experiment 1, after completing all training and experiments, averaging five images per
species. These images were taken using a phone camera for further assessment.

During this phase, images of the five plant species were sequentially uploaded to the
web application’s interface, and their classifications were verified.
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In the testing stage, the MaxVit model and various versions of ShuffleNet and Effi-
cientNet, which were utilized in previous sections, were employed. Each model was tested
with the same test images.

Users can upload an image of a plant species, request its classification, and receive the
species’ name in return.

The results, shown in Figure 7, show that both EfficientNet_B5 and EfficientNet_B1
achieved superior accuracy.
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5. Discussion of Results

The following findings and challenges can be determined by the results of the ac-
tual tests.

The first experiment effectively found both the ideal hyperparameter combination
and the top-performing simulated models. A default weight decay setting was utilized
in 56 instances, while a variable weight decay was selected in 20 cases. Sequential fully
connected layers outperformed linear configurations in 42 instances out of 76 tests. The
selection of hyperparameters such as learning rate, weight decay, and layer configuration
significantly influences model performance. Lower learning rates, such as 0.0001, con-
tribute to stable convergence and prevent the overshooting of optimal solutions. Default
weight decay (with a value of zero) served as effective regularization, enhancing model
generalization. Sequential fully connected layers proved efficient in capturing complex
patterns and relationships in the data [34–36].

According to the results, the three architectures were chosen as the better ones and used
in the following experiments. The study identified MaxVit, ShuffleNet, and EfficientNet
as superior models. Despite MaxVit only reaching a maximum accuracy of 96%, this
architecture was chosen because it achieved this accuracy value during several epochs
and repeated the process in several tests with different combinations of hyperparameters.
On the other hand, the other architectures that achieved an accuracy of 99.3%, such as
ConvNeXt_Tiny, Convnext_small, Swin_v2_t, DenseNet121, DenseNet169, MNASNet0_75,
and MNASNet1_0, were not considered the best because they reached their maximum
in a lower number of epochs than MaxVit and fewer tests with different hyperparameter
configurations. The three architectures achieved a high accuracy and good results over
the 200 epochs, and they were the ones that achieved this accuracy more times over the
12 combinations. These models distinguished themselves through innovative, resource-
efficient designs, leveraging available resources optimally and striking a balance between
depth and complexity. The fine-tuning of hyperparameters and high-quality, meticulously
labeled data were crucial contributors to their success [18,19].
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According to the inference times, some images take only a few seconds (e.g., 0.001 s),
while others might take longer (e.g., 0.055 s). Inference times that differ plenty may indicate
that some images are more difficult or time-consuming for the model to process. Despite
this, all the inference timings were less than one second. However, the sub-architectures’
average time inside the same architectures was consistent, indicating a stable performance.

In the second experiment, the ShuffleNet_v2_x0_5 model exhibited the lowest accuracy
at 84%, followed by EfficientNet_B2 and EfficientNet_B6 with an accuracy of 92%. The rest
of the models achieved a maximum accuracy of 96%.

With only 25 epochs, these models might not have had enough time to converge to
an optimal solution. It is recommended to extend the training duration by increasing the
number of epochs, allowing these models a better opportunity to converge and extract
valuable insights from the dataset [42].

For the third experiment, it is possible to conclude that with a larger dataset, these three
models achieved very good accuracy as well. However, it reached accuracy values slightly
lower than the original dataset that was developed for this purpose. These disparities
can introduce different complexities for the models, potentially posing a slightly greater
challenge in achieving the same level of accuracy [43]. Furthermore, it is possible to
distinguish EfficientNetB1 from the other models.

The larger dataset may have unique characteristics and variations compared to the
smaller dataset, introducing complexities for models. The larger dataset offers a more
diverse array of examples, making it more challenging for models to overfit. Hyperpa-
rameters used in the smaller dataset may not be optimally suited for the larger dataset,
and the distribution of classes or patterns may differ. Data quality issues within the new
dataset can also lead to diminished accuracy. However, training on extensive distributed
computing systems with abundant data and computational resources can improve model
resilience and adaptability to real-world applications [43,44].

Finally, in the last experiment, during the test phase, Centaurea melitensis was often
mistaken for Erodium moschatum, while Echium Plantagineum was frequently categorized
as Erodium moschatum due to its leaf and flower similarities. Lolium rigidum’s misclassi-
fications were attributed to training errors, as it lacked similarities with other species.
Ornithopus compressus was occasionally misclassified as Centaurea melitensis due to shared
yellow flowers.

6. Conclusions

This paper discusses the use of AI in agriculture to fight unwanted flora. ML algo-
rithms are employed to identify and manage unnecessary flora, addressing economic and
environmental threats. The research focuses on testing NN models and hyperparameters
for plant classification optimizing architectures and training methods to achieve the best
accuracy possible. The study contributes to sustainable agriculture by reducing pesticide
use, automating weed classification, and minimizing manual labor. Three stand-out models,
MaxVit, ShuffleNet, and EfficientNet, achieved a maximum accuracy of 96%, 99.3%, and
99.3%, respectively, in the first group of experiments. In the second experiment, these
elevated accuracies were maintained at 96% for all three models. However, in the third
experiment, where an extended dataset was tested, the models EfficientNet_B1 and Effi-
cientNet_B5 stood out, reaching 95.13% and 94.83%, respectively. These two models once
again proved their high accuracy in the fourth experiment, where they both achieved an
accuracy of 96.15%. The research demonstrates the effectiveness of these algorithms and
highlights the potential of AI and ML to address real-world challenges in agriculture.
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