
Citation: Karmitsa, N.; Taheri, S.;

Joki, K.; Paasivirta, P.; Bagirov, A.M.;

Mäkelä, M.M. Nonsmooth

Optimization-Based

Hyperparameter-Free Neural

Networks for Large-Scale Regression.

Algorithms 2023, 16, 444. https://

doi.org/10.3390/a16090444

Academic Editor: Ayan Biswas

Received: 18 August 2023

Revised: 11 September 2023

Accepted: 12 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Nonsmooth Optimization-Based Hyperparameter-Free Neural
Networks for Large-Scale Regression
Napsu Karmitsa 1,* , Sona Taheri 2, Kaisa Joki 3 , Pauliina Paasivirta 4, Adil M. Bagirov 5 and Marko M. Mäkelä 3

1 Department of Computing, University of Turku, FI-20014 Turku, Finland
2 School of Science, RMIT University, Melbourne 3000, Australia; sona.taheri@rmit.edu.au
3 Department of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland; kjjoki@utu.fi (K.J.);

makela@utu.fi (M.M.M.)
4 Siili Solutions Oyj, FI-60100 Seinäjoki, Finland; pauliina.paasivirta@siili.com
5 Centre for Smart Analytics, Federation University Australia, Ballarat 3350, Australia;

a.bagirov@federation.edu.au
* Correspondence: napsu@karmitsa.fi

Abstract: In this paper, a new nonsmooth optimization-based algorithm for solving large-scale
regression problems is introduced. The regression problem is modeled as fully-connected feedforward
neural networks with one hidden layer, piecewise linear activation, and the L1-loss functions. A
modified version of the limited memory bundle method is applied to minimize this nonsmooth
objective. In addition, a novel constructive approach for automated determination of the proper
number of hidden nodes is developed. Finally, large real-world data sets are used to evaluate the
proposed algorithm and to compare it with some state-of-the-art neural network algorithms for
regression. The results demonstrate the superiority of the proposed algorithm as a predictive tool in
most data sets used in numerical experiments.

Keywords: machine learning; regression analysis; neural networks; L1-loss function; nonsmooth
optimization

1. Introduction

Regression models and methods are extensively utilized for prediction and approxi-
mation in various real-world scenarios. When data involve complex relationships between
the response and explanatory variables, regression methods designed using neural networks
(NNS) have emerged as powerful alternatives to traditional regression methods [1]. Hence,
we focus on NNs for regression (NNR): we introduce a new approach for modeling and
solving regression problems using fully-connected feedforward NNS with the rectified linear
unit (RELU) activation function, the L1-loss function, and the L1-regularization. We call
this problem the RELU-NNR problem, and the method for solving it is the limited memory
bundle NNR (LMBNNR) algorithm.

The RELU-NNR problem is nonconvex and nonsmooth. Note that RELU itself is
nonsmooth. Thus, even if we used a smooth loss function and regularization, the under-
lying optimization problem would still be nonsmooth. Conventional global optimization
methods, including those based on global random search, become time-consuming as this
problem contains a large number of variables. In addition, the authors in [2] showed that it
is impossible to give any guarantee that the global minimizer is found by a general global
(quasi-)random search algorithm with reasonable accuracy when the dimension is large.
On the other hand, local search methods are sensitive to the choice of starting points and,
in general, end up at the closest local solutions, which may be significantly different from
the global ones. To address the nonconvexity of the RELU-NNR problem, we propose a
constructive approach. More specifically, we construct initial weights by using the solution
from the previous iteration. Such an approach allows us to find either global or deep local

Algorithms 2023, 16, 444. https://doi.org/10.3390/a16090444 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090444
https://doi.org/10.3390/a16090444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8747-4836
https://orcid.org/0000-0002-0269-8276
https://doi.org/10.3390/a16090444
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090444?type=check_update&version=3

Algorithms 2023, 16, 444 2 of 18

minimizers for the RELU-NNR problem. To solve the underlying nonsmooth optimization
problems, we apply a slightly modified version of the limited memory bundle method (LMBM)
developed by Karmitsa (née Haarala) [3,4]. We use this method since it is one of the few
algorithms capable of handling large dimensions, nonconvexity, and nonsmoothness all
at once. In addition, the LMBM has already proven itself in solving machine learning
problems such as clustering [5], cardinality and clusterwise linear regression [6,7], and
missing value imputation [8].

We consider NNS with only one hidden layer but the number of hidden nodes is
determined automatically using a novel constructive approach and an automated stopping
procedure (ASP). More precisely, the number of nodes is determined incrementally by start-
ing from one node. ASP bases the intelligent selection of initial weights on the iteratively
self-updated regularization parameter. It is applied at each iteration of the constructive
algorithm to stop training if there is no further improvement in the model. Thus, there are
no tuneable hyperparameters in LMBNNR.

To summarize, the LMBNNR algorithm has some remarkable features, including:

• It takes full advantage of nonsmooth models and nonsmooth optimization in solving
NNR problems (no need for smoothing etc.);

• It is hyperparameter-free due to the automated determination of the proper number
of nodes;

• It is applicable to large-scale regression problems;
• It is an efficient and accurate predictive tool.

The structure of the paper is as follows. An overview of the related work is given in
Section 2, while Section 3 provides the theoretical background on nonsmooth optimization
and NNR. The problem statement—the RELU-NNR problem—is given in Section 4, and
in Section 5, the LMBNNR algorithm together with ASP is introduced. In Section 6, we
present the performance of the LMBNNR algorithm and compare it with some state-of-
the-art NNR algorithms. Section 7 concludes the paper.

2. Related Work

Optimization is at the core of machine learning. Although it is a well-known fact that
many machine learning problems lead to solving nonsmooth optimization problems (e.g.,
hinge-loss, lasso, and ReLU), nonsmooth optimization methods are scarcely used in the
machine learning society. The common practice is to minimize nonsmooth functions by
ignoring the nonsmoothness and employing a popular and simple smooth solver (like the
Newton method, e.g., [9]) or by applying some smoothing techniques (see, e.g., [10,11]).
However, there are some successful exceptions. For example, abs-linear forms of prediction
tasks are solved using a successive piecewise linearization method in [12,13], a primal-dual
prox method for problems in which both the loss function and the regularizer are nons-
mooth is developed in [14], various nonsmooth optimization methods are applied to solve
clustering, classification, and regression problems in [5,6,15–17], and finally, nonsmooth
optimization approaches are combined with support vector machines in [18–20].

NNS are among the most popular and powerful machine learning techniques. There
are two main properties in any NNS: an activation function and an error (loss) function.
The simplest activation function is linear, and NNS with this function can be easily trained.
Nevertheless, they cannot learn complex mapping functions, resulting in a poor outcome
in the testing phase. On the other hand, smooth nonlinear activation functions, like the
sigmoid and the hyperbolic tangent activation functions, may lead to highly complex
nonconvex loss functions and require numerous training iterations as well as many hidden
nodes [21].

In [22], it is theoretically discussed that NNS with nonsmooth activation functions
demonstrate high performance. Among these functions, the piecewise linear RELU has
lately become the default activation function for many types of NNS. This function is
nonsmooth, but it has a simple mathematical form of f (x) = max {0, x}. RELU provides
more sensitivity to the summed activation of the node compared with traditional smooth

Algorithms 2023, 16, 444 3 of 18

sigmoid and hyperbolic tangent functions, and it avoids easy saturation. Due to the
computational advantages of its simple structure and, thus, strong training ability, RELU is
preferable for training complex relationships in NNS. In practice, instead of minimizing the
resultant nonsmooth loss function directly, it is often replaced with a smoothed surrogate
loss function (see, e.g., [11]). However, algorithms based on smoothing techniques involve
the choice of smoothing parameters. The number of such parameters becomes large in large
data sets, and their choice becomes problematic, which affects the accuracy of algorithms.

The stochastic (sub)gradient descent method (SGD) is another commonly used method
to minimize the loss function in NNS algorithms. Although this method has been used
intuitively to solve machine learning problems with nonsmooth activation and loss func-
tions for years, its convergence for such functions has been proved only very recently [23].
SGD is efficient since it does not depend on the size of the data, but it is not accurate as
an optimization method and may require a large number of function and subgradient
evaluations. Moreover, SGD may easily diverge if the learning rate (step size) is too large.
These drawbacks are due to the fact that SGD is based on the subgradient method for
convex problems, while NNS problems are highly nonconvex. For more discussions on
NNS, we refer to [24].

The most commonly used NNR algorithms are the feedforward backpropagation
network (FFBPN) [25–28] and the radial-basis network (RBN) [29–31]. FFBPN and most of
its variants converge to only locally optimal solutions [26,27], and they only work under
the precondition that all the functions involved in NNR are differentiable. RBN and its
modifications can be trained without local minima issues [32], but they involve a heuristic
procedure to select parameters and hyperparameters.

The choice of the hyperparameters in NNS is a challenging problem. These parameters
define the structure of NNS , and their optimal choice leads to an accurate model. Generally,
the hyperparameters can be determined either by an algorithm or manually by the user.
Tuning the hyperparameters manually is a tedious and time-consuming process, and thus,
several algorithms with varying levels of automaticity have been proposed for this purpose
(see, e.g., [33–38]). Nevertheless, there is no guarantee that in these algorithms the selected
number of hidden units (usually the number of nodes) is optimal, and the question of
a good hyperparameter tuning procedure remains open. Therefore, it is imperative to
develop algorithms that can minimize nonsmooth loss functions as they are (i.e., without
smoothing) and automate the calibration of the hyperparameters.

3. Theoretical Background and Notations

In this section, we provide some theoretical background and notations that are used
throughout the paper.

3.1. Nonsmooth Optimization

Nonsmooth optimization refers to the problem of minimizing (or maximizing) func-
tions that are not continuously differentiable [39]. We denote the d-dimensional Euclidean
space by Rd and the inner product by x>y = ∑d

i=1 xiyi, where x, y ∈ Rd. The associated L2

and L1-norms are ‖x‖2 = (x>x)1/2 and ‖x‖1 = ∑d
i=1 |xi|, respectively.

A function f : Rd → R is called locally Lipschitz continuous on Rd if for any bounded
subset X ⊂ Rd there exists L > 0 such that

| f (x)− f (y)| ≤ L‖x− y‖2 for all x, y ∈ X.

The Clarke subdifferential ∂ f (x) of a locally Lipschitz continuous function f : Rd → R
at a point x ∈ Rd is given by [39,40]

∂ f (x) = conv
{

lim
i→∞
∇ f (xi) | xi → x and ∇ f (xi) exists

}
,

Algorithms 2023, 16, 444 4 of 18

where “conv” denotes the convex hull of a set. A vector ξ ∈ ∂ f (x) is called a subgradient.
The point x∗ ∈ Rd is stationary, if 0 ∈ ∂ f (x∗). Note that stationarity is a necessary condition
for local optimality [39].

3.2. Neural Networks for Regression

Let A be a given data set with n samples: A = {(xi, yi) ∈ Rm × R | i = 1, . . . , n},
where xi ∈ Rm are the values of m input features and yi ∈ R are their outputs. In regression
analysis, the aim is to find a function ϕ : Rm → R such that ϕ(xi) is a “good approximation”
of yi. In other words, the following regression error is minimized:

n

∑
i=1
|ϕ(xi)− yi|p, p > 0. (1)

Applying NNS to the regression problem can lead to significantly higher predictive
power compared with traditional regression. In addition, it can model more complex
scenarios just by increasing the number of nodes. This concept is proved in the universal
approximation theorem, which states that a single hidden layer feedforward network of
sufficient complexity is able to approximate any given regression function on a compact set
to an arbitrary degree [41].

In practice, NNS take several input features and, as a part of the learning process,
multiply them by their weights and run them through an activation function and a loss
function, which closely resemble the regression error (1). The loss function is used to
estimate the error in the current model so that the weights can be updated to reduce this
error on the next evaluation. The most commonly used loss function for NNR problems is
the mean squared error (MSE or L2-norm). However, there are at least two valid reasons to
choose the mean absolute error (MAE or L1-norm) over the L2-norm: first, the L1-norm makes
the loss function with the RELU activation function simpler, and second, the regression
models with the L1-norm are more robust to outliers (see, e.g., [42]). Once the NN is trained,
the optimal weights for the model (regression coefficients) are found to fit the data.

4. Nonsmooth Optimization Model of RELU-NNRRELU-NNRRELU-NNR

In this section, we formulate the nonsmooth optimization model for the RELU-NNR
problem, but first, we give some notations. Let us denote the number of hidden nodes in
NNS by H and let w be the weight connection vector and ws be its element in the index
place s, where s is the index triplet s = abc (see Figure 1). Then wabc states the weight that
connects a-th layer’s b-th node to (a + 1)-th layer’s c-th node. In addition, denote by P an
output index value for the weights connecting the hidden layer’s nodes to the output node
of the NN. In contrast to the hidden nodes, no activation function is applied to the output
node. Finally, let B denote the middle index value for the weights connecting a layer’s bias
term to a node in the next layer. The bias terms with this index can be thought of as the
last node in each layer. The weight connection vector w for m input features and H hidden
nodes has H(m + 2) + 1 components. For the sake of clarity, we organize w = wH in an
“increasing order” as

wH = (w011, w012, . . . , w01H , w021, w022, . . . , w02H , . . . ,

w0m1, w0m2, . . . , w0mH , w0B1, w0B2, . . . , w0BH ,

w11P, w12P, . . . , w1HP, w1BP)
>.

Algorithms 2023, 16, 444 5 of 18

B

Input layer Hidden layer Output layer

B

P
.
.
.

.

.

.

Figure 1. A simple NN model with one output, one hidden layer and H hidden nodes.

We define the following

sij = w0Bj +
m

∑
k=1

w0kjxi
k, i = 1, . . . , n, j = 1, . . . , H,

ti = w1BP +
H

∑
j=1

w1jP max{0, sij}, i = 1, . . . , n,

where xi
k denotes the k-th coordinate of the i-th sample. The loss function using the L1-norm

(cf. regression error (1) with p = 1) is

FH(w) =
n

∑
i=1
|ti − yi|. (2)

To avoid overfitting in the learning process, we add an extra element to the loss
function FH . In most cases, L1-regularization is preferable as it reduces the weight values
of less important input features. In addition, it is robust and insensitive to outliers. Thus,
we rewrite (2) as

fH(w) = FH(w) + ρH‖w‖1,

where ρH > 0 is an iteratively self-updated regularization parameter (to be described later).
Furthermore, the nonsmooth, nonconvex optimization formulation for RELU-NNR can be
expressed as {

minimize fH(w)

subject to w ∈ RH(m+2)+1.
(3)

5. LMBNNRLMBNNRLMBNNR Algorithm

To solve the RELU-NNR problem (3), we now introduce the LMBNNR algorithm. In
addition, we recall the LMBM in the form used here and briefly discuss its convergence. A
more detailed description of the algorithm can be found in the technical report [43].

The LMBNNR algorithm computes hidden nodes incrementally and uses ASP to
detect the proper number of these nodes. More precisely, it starts with one node in the
hidden layer and adds a new node to that layer at each iteration of the algorithm. It is worth
noting that each time a node is added, m + 2 new connection weights appear. Starting from
the initial weight w1 ∈ Rm+3, the LMBNNR algorithm (Algorithm 1) applies the LMBM
(Algorithm 2) to solve the underlying RELU-NNR problem. The solution is employed
to generate initial weights for the next iteration. This procedure is repeated until ASP is
activated or the maximum number of hidden nodes Hmax is reached. ASP is designed
based on the value of the objective function; if the value of the objective is not improved
in three subsequent iterations, then the LMBNNR algorithm is stopped. Note that the
initialization of weights and the regularization parameter (described below) are determined

Algorithms 2023, 16, 444 6 of 18

in such a way that we have fH ≥ fH+1 for all H = 1, . . . , Hmax and fH is an optimal value
of (3) with H nodes.

We select the initial weights w1 as

w1 =
(1

m
,

1
m

, . . . ,
1
m

, 0, 1, 0
)>
∈ Rm+3.

Here, the first m components are the weights from the nodes of the input layer to the node
of the hidden layer. The weights from the bias terms w1BP and w0B1 are set to zero, and
the weight w11P from the hidden layer to the output is set to one. Figure 2 illustrates the
weights in different iterations and the progress of the LMBNNR algorithm.

. . .

B

Input layer Hidden layer Output layer

B

P

.

.

.

Iteration 1

B

Input layer Hidden layer Output layer

B

P

.

.

.

Iteration 2

B

Input layer Hidden layer Output layer

B

P

Iteration H

.

.

.
.
.
.

Figure 2. Construction of model by LMBNNR.

At subsequent iterations H = 2, . . . , Hfinal (i.e., when we add a new node to the hidden
layer, here Hfinal is the final number of hidden nodes), we initialize the weights wH as
follows: let w̄H−1 be the solution to the (H − 1)-th RELU-NNR problem. First, we set
weights for all but the last two hidden nodes in the output layer as

wH
1jP = w̄H−1

1jP for all j = 1, . . . , H − 2, (4)

wH
1BP = w̄H−1

1BP

and the weights from the input layer to all but the last two hidden nodes as

wH
0ij = w̄H−1

0ij for all i = 1, . . . , m, j = 1, . . . , H − 2, (5)

wH
0Bj = w̄H−1

0Bj for all j = 1, . . . , H − 2.

Note that in the case of H = 2, we set w2
1BP = w̄1

1BP. Otherwise, we skip this step as there
are only two nodes in the hidden layer. Then we take the most recent weights obtained at
the previous iteration and split these weights to get the initial weights connecting the input
layer and the last two hidden nodes of the current iteration, that is,

wH
0iH = wH

0i(H−1) =
1
2

w̄H−1
0i(H−1) for all i = 1, . . . , m, (6)

wH
0BH = wH

0B(H−1) =
1
2

w̄H−1
0B(H−1).

Weights from the last two hidden nodes to the output are

wH
1HP = wH

1(H−1)P = w̄H−1
1(H−1)P. (7)

To update the regularization parameter ρH , we use the value of the objective at the
previous iteration and the weight connecting the newest node of the hidden layer to the
output as follows:

ρH = ρH−1 ·
fH−1

fH−1 + |wH
1HP|

, with ρ1 = 1.0. (8)

Algorithms 2023, 16, 444 7 of 18

Remark 1. With the used initialization of weights wH and the regularization parameter ρH we
always have fH ≥ fH+1 for H = 1, . . . , Hfinal. ASP is activated if the value of the objective is no
longer improving. In other words, when adding more nodes to the hidden layer does not give us a
better model after optimization of the weights.

Now we are ready to give the LMBNNR algorithm.

Algorithm 1: LMBNNR
Data: Data set A, the number of input features m, and the maximum number of hidden nodes

Hmax > 0.
Result: The final number of hidden nodes Hfinal and the solutions w̄H to the H-th RELU-NNR

problem, H = 1, . . . , Hfinal.
Set the initial weights w1 ∈ Rm+3 and the regularization parameter ρ1 = 1.0;
Set H = 1;
Apply the LMBM to solve the RELU-NNR problem (3) with one hidden node starting from w1.

Denote the solution by w̄1 and the corresponding value of the objective by f1;
while H < Hmax do

Set H = H + 1;
Initialize weights wH ∈ RH(m+2)+1 using the previous solution w̄H−1 and Equations (4)–(7);
Update the regularization parameter ρH using (8);
Apply the LMBM to solve the RELU-NNR problem (3) with H hidden nodes starting from wH .

Denote the solution by w̄H and the corresponding value of the objective by fH ;
if H > 2 and fH−2 = fH then

Set Hfinal = H;
STOP with the current model;

end
end
Set Hfinal = Hmax;

STOP with the current model.

Remark 2. There are no tuneable hyperparameters in LMBNNR. Hence, there is no need for a
validation set. It is sufficient to choose the maximum number of hidden nodes Hmax big enough (see
Section 6 for suitable values).

Next, we describe the LMBM with slight modifications to its original version for
solving the underlying RELU-NNR problems in the LMBNNR algorithm. This method is
called at every iteration of LMBNNR. For more details of the LMBM, we refer to [3,4].

Remark 3. We use a nonmonotone line search [4,44] to find step sizes tk
L and tk

R when Algorithm 2
is combined with Algorithm 1. In addition, as in [9], we use a relatively low maximum number of
iterations, kmax, to avoid overfitting.

Remark 4. The search direction in Algorithm 2 is computed using the L-BFGS update after a
serious step and the L-SR1 update after a null step. The updating formulae are similar to those in the
classical limited memory variable metric methods for smooth optimization [45]. Nevertheless, the
correction vectors uk and sk are obtained using subgradients instead of gradients and the auxiliary
point instead of the new iteration point.

Remark 5. The classical linearization error may be negative in the case of a nonconvex objective
function. Therefore, a subgradient locality measure βk, which is a generalization of the linearization
error for nonconvex functions (see, e.g., [46]), is used in Algorithm 2.

Algorithms 2023, 16, 444 8 of 18

Algorithm 2: LMBM for RELU-NNR problems
Data: wH

1 ∈ RH(m+2)+1, D0 = I, m̂c ≥ 3, kmax > 0, and ε > 0.
Result: Final weight vector wH

k .
Compute ξ1 ∈ ∂ fH(wH

1);
Set k = 1, k̃ = 1, d1 = −ξ1, ξ̃1 = ξ1, and β̃1 = 0;
while k ≤ kmax and the termination condition −ξ̃ >k dk + 2β̃k ≤ ε is not met do

Find step sizes tk
L and tk

R , and the subgradient locality measure βk+1;
Set wH

k+1 = wH
k + tk

Ldk and vk+1 = wH
k + tk

Rdk ;
Evaluate fH(wH

k+1) and ξk+1 ∈ ∂ fH(vk+1);
Store the new correction vectors sk = vk+1 − wH

k and uk = ξk+1 − ξ k̃ ;
Set m̂k = min{k, m̂c};
if tk

L > 0 then (Serious step)
Compute the search direction dk+1 = −Dkξk+1, where Dk is calculated using the L-BFGS update with m̂k

most recent correction vectors;
Set k̃ = k + 1 and β̃k+1 = 0;

else (Null step)
Determine multipliers λk

i satisfying λk
i ≥ 0 for all i ∈ {1, 2, 3}, and ∑3

i=1 λk
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξ k̃+λ2ξk+1+λ3 ξ̃k]
>Dk−1[λ1ξ k̃+λ2ξk+1+λ3 ξ̃k] + 2(λ2 βk+1 + λ3 β̃k)

and compute the aggregate values

ξ̃k+1 = λk
1ξ k̃ + λk

2ξk+1 + λk
3 ξ̃k and β̃k+1 = λk

2 βk+1 + λk
3 β̃k ;

Compute the search direction dk+1 = −Dk ξ̃k+1, where Dk is calculated using the L-SR1 update with m̂k
most recent correction vectors;

end
Set k = k + 1;

end

We now recall the convergence properties of the LMBM in the case of RELU-NNR prob-
lems. Since the objective function fH : RH(m+2)+1 → R is locally Lipschitz continuous and
upper semi-smooth (see e.g., [47]), and the level set {wH ∈ RH(m+2)+1 | fH(wH) ≤ fH(wH

1) }
is bounded for every starting weight wH

1 ∈ RH(m+2)+1, all the assumptions needed for the
global convergence of the original LMBM are satisfied. Therefore, the theorems on the
convergence of the LMBM proved in [3,4] can be modified for the RELU-NNR problems
as follows.

Theorem 1. If the LMBM terminates after a finite number of iterations, say at iteration k, then
the weight wH

k is a stationary point of the RELU-NNR problem (3).

Theorem 2. Every accumulation point w̄H of the sequence {wH
k } generated by the LMBM is a

stationary point of the RELU-NNR problem (3).

6. Numerical Experiments

Using some real-world data sets and performance measures, we evaluate the per-
formance of the proposed LMBNNR algorithm. In addition, we compare it with three
different widely used NNR algorithms whose implementations are freely available. That is,
the backpropagation NNR (BPN) algorithm utilizing TensorFlow (https://www.tensorflow.
org/(accessed on 10 September 2023)), Extreme Learning Machine (ELM) [48], and Mono-
tone Multi-Layer Perceptron Neural Networks (MONMLP) [49].

6.1. Data Sets and Performance Measures

A brief description of data sets is given in Table 1 and the references therein. The
data sets are divided randomly into training (80%) and test (20%) sets. To get comparable
results, we use the same training and test sets for all the methods. We apply the following
performance measures: root mean square error (RMSE), mean absolute error (MAE), coeffi-
cient of determination (R2), and Pearson’s correlation coefficient (r) (see the Supplementary
Material for more details).

https://www.tensorflow.org/
https://www.tensorflow.org/

Algorithms 2023, 16, 444 9 of 18

6.2. Implementation of Algorithms

The proposed LMBNNR algorithm was implemented in Fortran 2003, and the com-
putational experiments were carried out on an iMac (macOS Big Sur 11.6) with a 4.0
GHz Intel(R) Core(TM) i7 machine and 16 GB of RAM. The source code is available at
http://napsu.karmitsa.fi/lmbnnr (accessed on 10 September 2023). There are no tuneable
parameters in the LMBNNR algorithm.

Table 1. Brief description of data sets.

Data Set No. of Samples No. of Features Reference

Combined cycle power plant 9568 5 [50,51]
Airfoil self-noise 1503 6 [52]
Concrete compressive strength 1030 9 [53]
Physicochemical properties

of protein tertiary structure 45,730 10 [52]
Boston housing data 506 14 [54]
SGEMM GPU kernel performance 1 241,600 15 [55,56]
Online news popularity 39,644 59 [57]
Residential building data set 1 372 108 [58]
BlogFeedback 2 52,397 281 [59]
ISOLET 7797 618 [52]
CIFAR-10 60,000 3073 [60]
Greenhouse gas observing network 2921 5232 [61]

1 Used with the first output feature. 2 Only the training data set.

The BPN algorithm is implemented using TensorFlow in Google Colab. We use
the RELU activation for the hidden layer, the linear activation for the output layer, and
the MSE loss function. We use MSE since it usually worked better than MAE in our
preliminary experiments with the BPN algorithm. This is probably due to the smoothness
of MSE. Naturally, with the proposed LMBNNR algorithm, we do not have difficulties
with the nonsmoothness as it applies the nonsmooth optimization solver LMBM. In the
BPN algorithm, the Keras optimizer SGD with the default parameters and the following
three different combinations of batch size (the number of samples that will be propagated
through the network) and number of epochs (the number of complete passes through the
training data) are used:

• Mini-Batch Gradient Descent (MBGD): batch size = 32 and number of epochs = 1.
These are the default values for the BPN algorithm;

• Batch Gradient Descent (BGD): batch size = size of the training data and number of
epochs = 1. These choices mimic the proposed LMBNNR algorithm;

• Stochastic Gradient Descent (SGD): batch size = 1 and number of epochs = 100 for
data sets with less than 100,000 samples and number of epochs = 10 for larger data.
We reduce the number of epochs in the latter case due to very long computational
times and the fact that the larger number of epochs often leads to NaN loss function
values. SGD aims to be as a stochastic version of the BPN algorithm as possible.

The algorithms ELM and MONMLP are implemented in R using the packages “elmN-
NRcpp” (ELM is available at https://CRAN.R-project.org/package=elmNNRcpp (accessed
on 10 September 2023)) and “monmlp” (MONMLP is available at https://CRAN.R-project.
org/package=monmlp (accessed on 10 September 2023)). The parameters are the default
values provided in the given references, but the number of hidden layers with MONMLP
was set to one. The tests with ELM and MONMLP were run on Windows, 2.6 GHz Intel(R)
Core(TM) i7-9750H. We run ELM, MONMLP, and the BPN algorithms with the number of
hidden nodes set to 2, 5, 10, 50, 100, 200, 500, and 5000. Moreover, since SGD is used as an
optimizer in the BPN algorithms as a stochastic method, we run the BPN algorithms ten
times for all problems and report the average. Note that LMBNNR needs to be applied to
solve the RELU-NNR problem only once for each data set.

http://napsu.karmitsa.fi/lmbnnr
https://CRAN.R-project.org/package=elmNNRcpp
https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=monmlp

Algorithms 2023, 16, 444 10 of 18

Remark 6. At every iteration of the LMBNNR algorithm, we solve an optimization problem
with the dimension H(m + 2) + 1, where H is the number of hidden nodes and m is the number
of features in training samples. The convergence rate of the LMBM, employed as an underlying
solver in the proposed LMBNNR algorithm, has not been studied extensively, but, as a bundle
method, it is at most linear (see, e.g., [62]), while the search direction can be computed within O(m)
operations [3]. For comparison purposes, we mention that the time complexity of a BPN algorithm
is typically O(n), where n is the number of training samples. A more specific analysis of the time
complexity of LMBNNR remains a subject for future research.

6.3. Results and Discussion

The results of our experiments are given in Tables 2 and 3, where we provide the
RMSE values for the test set and the used CPU time in seconds. The results using the other
three performance measures (MAE, R2, and r) are given as Supplementary Material for
this paper. Since the algorithms are implemented in different programming languages
and run on different platforms, the CPU times reported here are not directly comparable.
Nevertheless, we can still compare the magnitudes of the computational times used. For
the BPN algorithms, the results (including CPU times) are the average of results over ten
runs, unless some of the runs lead to NaN loss function values. In that case, the results
are the average of the successful runs. Note that obtaining a NaN loss function value is
a natural property of SGD and related methods if the learning rate is too large. If there is
“NaN” in the tables, then all ten runs lead to the NaN solution. In all separate runs, the
maximum time limit is set to 1 h when n×m < 106 (n and m are the number of samples
and features, respectively) and 2 h otherwise. In tables, “t-lim” means that an algorithm
gives no solution within the time limit.

To evaluate the reliability of ASP, we force LMBNNR to solve RELU-NNR problems
up to 200 nodes. With LMBNNR , the results with smaller numbers of nodes are obtained
as a side product. In tables, we report the results obtained with different numbers of nodes
(the same numbers that we used for testing the other algorithms), the best solution with
respect to the RMSE of the test set, and the results when applying ASP. The last two are
denoted by “Best” and “ASP”, respectively.

As we report all the results with different model parameter combinations (i.e., results
with different numbers of nodes or different combinations of batch sizes and epochs), we
do not use separate validation sets in our experiments. Instead, we use the best results,
namely the smallest RSME of the test set, obtained with any other NNR algorithm than
LMBNNR , in our comparison. Naturally, in real-world predictions, we would not know
which result is the best, and a separate validation set should be employed to tune the
hyperparameters with NNR algorithms but LMBNNR. Note that this kind of experimental
setting favors the other methods over the proposed one. In tables, the best results obtained
with any other NNR algorithm than LMBNNR are presented using boldface font. To make
the comparison even more challenging for the LMBNNR algorithm, we compare the result
that it gives with ASP to the best result obtained with any other tested algorithm. We point
out that the results using the other three performance measures support the conclusions
drawn from RMSE. Nevertheless, MAE often indicates slightly better performance of the
LMBNNR algorithm than RMSE (see the Supplementary Material). This is, in particular,
due to the used loss function or the regularization term.

Algorithms 2023, 16, 444 11 of 18

Table 2. Results with relatively small numbers of features.

LMBNNR MBGD BGD SGD ELM MONMLP

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU

Combined cycle power plant

2 4.433 0.14 8.472 1.45 19.061 0.51 4.582 1036.42 18.987 0.00 6.811 17.10
5 4.267 0.61 6.091 0.97 20.547 0.58 4.415 790.27 5.192 0.00 6.692 40.72
10 4.216 2.02 5.784 0.78 17.809 0.47 4.278 650.95 5.192 0.02 6.667 97.91
50 4.140 12.72 4.712 1.04 18.790 0.66 4.215 679.02 5.192 0.17 9.424 1347.99
100 4.139 17.70 4.612 0.65 17.213 0.38 4.167 639.65 5.192 0.49 17.007 1154.44
200 4.139 31.92 4.566 0.66 17.649 0.69 4.190 691.76 5.192 2.34 t-lim –
500 4.534 1.00 16.514 0.63 4.168 761.36 5.192 8.03 t-lim –
5000 4.533 1.81 16.710 1.53 4.205 897.52 5.192 1347.99 t-lim –

Best: 4.138 8.14 H = 29
ASP: 4.139 13.73 H = 61

Airfoil self-noise

2 4.907 0.02 6.756 0.36 10.129 0.29 4.387 102.65 87.622 0.00 5.709 4.98
5 4.407 0.10 6.580 0.35 9.465 0.30 3.688 102.13 30.274 0.00 5.634 9.05
10 4.410 0.30 5.888 0.35 8.950 0.33 2.804 101.01 30.274 0.00 5.648 19.72
50 4.344 7.05 5.595 0.34 7.114 0.30 2.386 100.87 30.274 0.00 6.308 231.75
100 1.897 19.80 5.516 0.40 6.840 0.33 2.018 102.91 30.274 0.05 6.727 224.88
200 1.897 29.04 5.346 0.38 6.967 0.32 2.044 108.73 30.274 0.17 6.723 890.39
500 5.319 0.35 6.743 0.30 2.194 116.60 30.274 1.27 t-lim –
5000 5.299 0.42 6.689 0.37 2.035 133.00 30.274 46.66 t-lim –

Best: 1.897 17.29 H = 83
ASP: 1.897 20.15 H = 105

Concrete compressive strength

2 11.657 0.02 17.554 0.37 30.305 0.33 7.659 70.00 16.511 0.00 6.339 5.43
5 6.808 0.10 15.736 0.37 23.220 0.32 6.372 74.19 14.173 0.00 5.026 15.21
10 6.104 0.34 15.156 0.38 23.949 0.36 5.577 71.78 9.861 0.00 4.338 33.68
50 5.235 6.94 13.729 0.39 17.824 0.35 4.918 74.42 9.861 0.02 15.042 139.85
100 5.224 15.60 13.277 0.39 18.069 0.31 5.019 72.87 9.861 0.05 15.899 472.58
200 5.224 22.42 12.472 0.36 17.365 0.31 4.807 76.91 9.861 0.25 15.895 1573.22
500 12.379 0.40 16.515 0.42 4.771 79.92 9.861 0.57 t-lim –
5000 12.362 0.45 16.496 0.41 4.468 94.33 9.861 9.89 t-lim –

Best: 5.224 15.06 H = 96
ASP: 5.225 13.22 H = 74

Algorithms 2023, 16, 444 12 of 18

Table 2. Cont.

LMBNNR MBGD BGD SGD ELM MONMLP

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU

Physicochemical properties of protein

2 5.304 1.06 5.223 2.29 7.838 0.71 5.127 (1) 3368.54 6.703 0.00 4.962 111.60
5 5.095 4.89 5.122 2.14 8.366 0.72 NaN – 6.457 0.03 4.798 296.25
10 5.062 17.76 5.082 2.09 8.168 0.73 4.856 (2) 3356.05 5.215 0.08 4.947 771.12
50 4.794 109.34 4.975 2.05 6.784 0.73 NaN – 5.215 0.72 t-lim –
100 4.793 151.02 4.952 1.86 6.466 0.69 NaN – 5.215 2.56 t-lim –
200 4.793 259.12 4.941 2.31 6.155 0.77 NaN – 5.215 10.80 t-lim –
500 4.972 3.06 6.130 1.07 NaN – 5.215 26.48 t-lim –
5000 4.942 5.79 6.043 4.68 NaN – 5.215 2761.84 t-lim –

Best: 4.793 114.31 H = 56
ASP: 4.793 131.93 H = 79

(1) 2/10 runs led to NaN loss function value.
(2) 8/10 runs led to NaN loss function value.

Boston housing

2 5.539 0.01 10.983 0.47 13.335 0.33 4.675 40.02 9.883 0.01 2.773 4.72
5 5.534 0.04 9.345 0.49 12.203 0.33 4.019 33.65 8.922 0.00 2.432 7.90
10 4.551 0.22 8.753 0.51 12.663 0.32 3.936 34.16 6.433 0.00 2.591 17.06
50 4.228 4.03 8.061 0.49 10.831 0.33 3.784 35.72 4.786 0.00 3.967 80.14
100 4.228 7.75 7.702 0.54 10.636 0.29 3.794 37.22 4.786 0.05 5.842 275.42
200 4.228 12.37 7.498 0.33 10.516 0.55 3.609 38.10 4.786 0.19 7.588 967.62
500 7.699 0.47 10.410 0.32 3.656 38.44 4.786 0.22 t-lim –
5000 7.625 0.50 9.956 0.37 3.669 47.45 4.786 2.31 t-lim –

Best: 4.228 1.87 H = 30
ASP: 4.228 2.97 H = 39

SGEMM GPU kernel performance

2 223.258 1.37 168.971 8.11 515.647 2.15 148.531 1536.53 327.404 0.05 91.07 970.11
5 118.697 5.87 128.186 7.98 549.201 2.18 105.851 1812.15 310.172 0.15 68.93 2551.58
10 94.826 19.60 116.195 8.02 502.793 2.14 78.309 1839.19 289.019 0.36 81.37 6779.13
50 93.362 75.16 108.867 8.09 429.332 2.32 43.959 1669.78 285.953 4.56 t-lim –
100 93.362 234.57 106.440 8.09 402.935 2.31 41.323 1809.20 285.953 15.92 t-lim –
200 93.362 887.41 104.307 8.44 385.360 2.52 37.311 1835.75 285.953 60.72 t-lim –
500 102.033 10.12 383.167 3.25 34.283 1679.94 285.953 147.90 t-lim –
5000 101.886 23.86 367.074 23.83 28.524 2243.39 t-lim – t-lim –

Best: 93.362 26.94 H = 19
ASP: 94.270 25.78 H = 18

Algorithms 2023, 16, 444 13 of 18

Table 3. Results with large numbers of features.

LMBNNR MBGD BGD SGD ELM MONMLP

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU

Online news popularity

2 12,387.46 0.75 12,301.20 1.68 15,701.63 0.63 12,475.79 (1) 2664.11 11,228.42 0.03 10,626.67 692.14
5 12,377.17 3.78 12,304.05 1.65 18,562.27 0.65 NaN – 11,189.21 0.05 9500.96 2310.14
10 12,365.38 13.27 12,351.97 1.62 18,095.87 0.69 NaN – 11,098.65 0.09 9548.60 2554.58
50 12,365.19 52.38 12,670.86 1.77 16,461.91 0.67 NaN – 11,046.39 0.94 t-lim –
100 12,365.19 202.50 12,714.96 1.78 14,731.39 0.68 NaN – 11,043.69 3.07 t-lim –
200 12,365.19 782.59 12,937.68 1.80 13,977.35 0.74 NaN – 11,043.69 10.28 t-lim –
500 12,519.33 2.10 13,089.17 0.91 NaN – 11,043.69 23.44 t-lim –
5000 12,322.53 6.27 12,364.06 3.52 NaN – t-lim – t-lim –

Best: 12,365.19 16.49 H = 19
ASP: 12,365.19 16.49 H = 19

(1) 7/10 runs led to NaN loss function value.

Residential building

2 239.14 0.09 1163.96 0.54 1635.84 0.32 236.87 (1) 25.92 1838.86 0.00 60.93 22.39
5 240.63 0.37 1048.95 0.35 1350.82 0.33 192.68 (2) 25.93 1832.78 0.00 399.07 25.40
10 183.46 1.40 1046.23 0.36 1524.37 0.31 155.14 (3) 26.91 976.84 0.00 1200.13 49.06
50 183.11 8.34 1014.72 0.35 1217.39 0.32 148.19 (3) 27.61 170.17 0.00 1200.32 966.99
100 183.11 12.93 998.60 0.36 1119.60 0.33 NaN – 128.27 0.03 t-lim –
200 183.11 23.77 956.51 0.35 1018.66 0.31 NaN – 128.27 0.06 t-lim –
500 972.95 0.35 998.18 0.33 NaN – 128.27 0.14 t-lim –
5000 775.80 0.45 916.63 0.40 NaN – 128.27 1.38 t-lim –

Best: 182.94 1.69 H = 11
ASP: 183.12 6.18 H = 27

(1) 2/10 runs led to NaN loss function value.
(2) 1/10 runs led to NaN loss function value.
(3) 4/10 runs led to NaN loss function value.

BlogFeedback

2 29.14 3.83 NaN – NaN – NaN – 32.51 0.07 28.61 5877.94
5 29.14 17.59 NaN – NaN – NaN – 32.03 0.13 t-lim –
10 27.02 68.04 NaN – NaN – NaN – 28.26 0.17 t-lim –
50 27.02 405.20 NaN – NaN – NaN – 27.53 1.08 t-lim –
100 27.02 1449.46 NaN – NaN – NaN – 27.50 3.45 t-lim –
200 27.02 5598.74 NaN – NaN – NaN – 27.37 18.83 t-lim –
500 NaN – NaN – NaN – 27.37 96.81 t-lim –
5000 NaN – NaN – NaN – 27.37 4178.65 t-lim –

Best: 27.02 68.04 H = 10
ASP: 27.02 75.07 H = 12

Algorithms 2023, 16, 444 14 of 18

Table 3. Cont.

LMBNNR MBGD BGD SGD ELM MONMLP

H RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU RMSE CPU

ISOLET

2 4.82 1.71 5.32 0.71 9.25 0.42 NaN – 13.01 0.06 2.83 3190.22
5 4.20 8.53 4.91 0.68 11.01 0.43 NaN – 10.53 0.09 t-lim –
10 3.88 31.19 4.76 0.68 9.90 0.42 NaN – 9.08 0.07 t-lim –
50 3.89 128.68 4.69 0.74 9.75 0.45 NaN – 6.55 0.54 t-lim –
100 3.89 409.63 4.66 0.78 9.65 0.46 NaN – 6.00 1.33 t-lim –
200 3.89 1953.21 4.66 0.87 9.04 0.50 NaN – 4.95 3.54 t-lim –
500 4.83 1.20 9.23 0.66 NaN – 4.34 6.97 t-lim –
5000 NaN – 8.22 2.90 NaN – 4.09 467.00 t-lim –

Best: 3.88 31.19 H = 10
ASP: 3.89 35.48 H = 14

CIFAR-10

2 2.83 74.22 NaN – NaN – NaN – 5.05 4.89 t-lim –
5 2.80 345.60 NaN – NaN – NaN – 3.18 5.10 t-lim –
10 2.78 683.83 NaN – NaN – NaN – 3.18 7.06 t-lim –
50 2.77 4845.04 NaN – NaN – NaN – 2.98 25.42 t-lim –
100 t-lim – NaN – NaN – NaN – 2.96 45.22 t-lim –
200 t-lim – NaN – NaN – NaN – 2.93 88.11 t-lim –
500 NaN – NaN – NaN – 2.92 250.08 t-lim –
5000 NaN – NaN – NaN – t-lim – t-lim –

Best: 2.77 755.45 H = 12
ASP: 2.77 968.08 H = 17

Greenhouse gas observing network

2 25.07 5.09 67.65 (1) 0.70 362.12 0.58 NaN – 75.04 0.18 t-lim –
5 23.51 25.60 NaN – 315.62 0.54 NaN – 52.22 0.34 t-lim –
10 23.18 94.54 NaN – 506.36 0.59 NaN – 47.97 0.50 t-lim –
50 23.18 404.90 NaN – 488.83 0.84 NaN – 27.91 1.73 t-lim –
100 23.18 1338.38 NaN – 455.62 0.68 NaN – 23.88 3.55 t-lim –
200 23.18 6084.58 NaN – 493.25 0.80 NaN – 20.65 6.75 t-lim –
500 NaN – 576.69 1.55 NaN – 17.39 7.30 t-lim –
5000 NaN – 1189.71 10.83 NaN – fail – t-lim –

Best: 23.18 94.54 H = 10
ASP: 23.18 100.38 H = 12

(1) 4/10 runs led to NaN loss function value.

Algorithms 2023, 16, 444 15 of 18

The predictions with the LMBNNR algorithm in termination are better than those of
any other tested NNR algorithm in 5 data sets out of 12. In addition, MONMLP with the
selected best number of hidden nodes is the most accurate algorithm in five data sets, and
both SGD and ELM are in one data set. MBGD and BGD never produce the most accurate
results in our experiments. Therefore, in terms of accuracy, the only noteworthy challenger
for LMBNNR is MONMLP. However, the pairwise comparison of these two algorithms
shows that the required computational times are clearly in favor of LMBNNR. Indeed,
MONMLP is the most time-consuming of the algorithms tested (sometimes together with
SGD): in the largest data sets, CIFAR-10 and Greenhouse, MONMLP finds no solution
within the time limit, and even in the smallest data tested, it fails to give a solution
with larger numbers of hidden nodes (H = 500 and 5000). Moreover, MONMLP has
a big deviation in the prediction accuracy obtained with different numbers of hidden
nodes. For example, in residential building data it gives the most accurate prediction
of all tested algorithms (RMSE = 60.932) with two hidden nodes and almost the worst
prediction (RMSE = 1200.323) with 50 hidden nodes. In practice, this means that finding
good hyperparameters for MONMLP may become an issue.

Although SGD is the most accurate version of the BPN algorithm when the number of
features is relatively low, it usually requires a lot more computational time than LMBNNR.
Moreover, SGD fails almost always when the number of features is large.

If we only consider computational times, then MBGD, BGD, and ELM would be our
choices. From these, BGD is out of the question, as the predictions it produces are not
at all accurate. Obviously, the parameter choices used in BGD are not suitable for the
BPN algorithm, and the main reason to keep this version here is purely theoretical as these
parameters mimic the LMBNNR algorithm. In addition, MBGD, a version using the default
parameters of the BPN algorithm, often fails to produce accurate predictions, although it
is clearly better than BGD. The pairwise comparison with LMBNNR shows that MBGD
produces more accurate prediction results only in one data set: online news popularity.
Moreover, similar to SGD, MBGD fails when the number of features is large. Therefore,
in large data sets, the only real challenger for LMBNNR is ELM. Indeed, ELM is a very
efficient method, usually using only a few seconds to solve an individual RELU-NNR
problem. Nevertheless, LMBNNR produces more accurate predictions than ELM in 9 data
sets out of 12, and it is fairly efficient as well.

ASP seems to work pretty well: it usually triggers within a few iterations after the
best solution is obtained, and the accuracy of the prediction is very close to the best one.
The average number of hidden nodes used before ASP is 40. This is considerably less than
what is needed to obtain an accurate prediction with any of the BPN algorithms.

It is worth noting that finding good hyperparameters for most NNR algorithms is
time-consuming and may require the utilization of a separate validation. For instance, if
we just run a NNR algorithm with two different numbers of nodes, the computational time
is doubled—not to mention the time needed to prepare the separate runs and validate the
results. With the LMBNNR algorithm, the intermediate results are obtained within the
time required by the largest number of nodes without the necessity of separate runs. In
addition, there is no need to use a validation set to fit hyperparameters in LMBNNR, as
there is none.

7. Conclusions

In this paper, we introduce a novel neural networks (NNS) algorithm, LMBNNR , to
solve regression problems in large data sets. The regression problem is modeled using NNS

with one hidden layer, the piecewise linear activation function known as RELU, and the
L1-based loss function. We utilize a modified version of the limited memory bundle method
to minimize the objective, as this method is able to handle large dimensions, nonconvexity,
and nonsmoothness very efficiently.

The proposed algorithm requires no hyperparameter tuning. It starts with one hidden
node and gradually adds more nodes with each iteration. The solution of the previous

Algorithms 2023, 16, 444 16 of 18

iteration is used as a starting point for the next one to obtain either global or deep local
minimizers for the RELU-NNR problem. The algorithm terminates when the optimal
value of the loss function cannot be improved in several successive iterations or when the
maximum number of hidden nodes is reached.

The LMBNNR algorithm is tested using 12 large real-world data sets and compared
with the backpropagation NNR (BPN) algorithm using TensorFlow, Extreme Learning
Machine (ELM), and Monotone Multi-Layer Perceptron Neural Networks (MONMLP). The
results show that the proposed algorithm outperforms the BPN algorithm, even if we tested
the latter with different hyperparameter settings and used the best results in comparison.
In addition, the LMBNNR algorithm is far more accurate than ELM and significantly faster
than MONMLP. Thus, we conclude that the proposed algorithm is accurate and efficient
for solving regression problems with large numbers of samples and large numbers of input
features.

The results presented in this paper demonstrate the importance of nonsmooth opti-
mization for NNS: the use of simple but nonsmooth activation functions together with
powerful nonsmooth optimization methods can lead to the development of accurate and
efficient hyperparameter-free NNS algorithms. The approach proposed in this paper can
be extended to model NNS for classification and to build NNS with more than one hidden
layer in order to develop robust and effective deep learning algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/a16090444/s1, Description of used performance measures with
Tables S1–S12 including obtained MAE, R2 and r results in various data sets.

Author Contributions: Investigation, N.K. and S.T.; Methodology, N.K., P.P. and A.M.B.; Software,
N.K., K.J. and P.P.; Writing—original draft, N.K., S.T., K.J., A.M.B. and M.M.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was financially supported by Research Council of Finland grants #289500,
#319274, #345804, and #345805, and by the Australian Government through the Australian Research
Council’s Discovery Projects funding scheme (Project no. DP190100580).

Data Availability Statement: The proposed LMBNNR algorithm is available at http://napsu.
karmitsa.fi/lmbnnr (accessed on 10 September 2023). The algorithms ELM and MONMLP are
implemented in R using the packages “elmNNRcpp” and “monmlp” available in CRAN. More
precisely, ELM is available at https://CRAN.R-project.org/package=elmNNRcpp (accessed on 10
September 2023) and MONMLP is available at https://CRAN.R-project.org/package=monmlp
(accessed on 10 September 2023). The used data sets are from UC Irvine Machine Learning Repository
(UCI, https://archive.ics.uci.edu/ (accessed on 10 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malte, J. Artificial neural network regression models in a panel setting: Predicting economic growth. Econ. Model. 2020,

91, 148–154.
2. Pepelyshev, A.; Zhigljavsky, A.; Žilinskas, A. Performance of global random search algorithms for large dimensions. J. Glob.

Optim. 2018, 71, 57–71. [CrossRef]
3. Haarala, N.; Miettinen, K.; Mäkelä, M.M. Globally Convergent Limited Memory Bundle Method for Large-Scale Nonsmooth

Optimization. Math. Program. 2007, 109, 181–205. [CrossRef]
4. Karmitsa, N. Limited Memory Bundle Method and Its Variations for Large-Scale Nonsmooth Optimization. In Numerical

Nonsmooth Optimization: State of the Art Algorithms; Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S., Eds.;
Springer: Cham, Switzerland, 2020; pp. 167–200.

5. Bagirov, A.M.; Karmitsa, N.; Taheri, S. Partitional Clustering via Nonsmooth Optimization: Clustering via Optimization; Springer:
Cham, Switzerland, 2020.

6. Halkola, A.; Joki, K.; Mirtti, T.; Mäkelä, M.M.; Aittokallio, T.; Laajala, T. OSCAR: Optimal subset cardinality regression using the
L0-pseudonorm with applications to prognostic modelling of prostate cancer. PLoS Comput. Biol. 2023, 19, e1010333. [CrossRef]

7. Karmitsa, N.; Bagirov, A.M.; Taheri, S.; Joki, K. Limited Memory Bundle Method for Clusterwise Linear Regression. In
Computational Sciences and Artificial Intelligence in Industry; Tuovinen, T., Periaux, J., Neittaanmäki, P., Eds.; Springer: Cham,
Switzerland, 2022; pp. 109–122.

https://www.mdpi.com/article/10.3390/a16090444/s1
https://www.mdpi.com/article/10.3390/a16090444/s1
http://napsu.karmitsa.fi/lmbnnr
http://napsu.karmitsa.fi/lmbnnr
https://CRAN.R-project.org/package=elmNNRcpp
https://CRAN.R-project.org/package=monmlp
https://archive.ics.uci.edu/
http://doi.org/10.1007/s10898-017-0535-8
http://dx.doi.org/10.1007/s10107-006-0728-2
http://dx.doi.org/10.1371/journal.pcbi.1010333

Algorithms 2023, 16, 444 17 of 18

8. Karmitsa, N.; Taheri, S.; Bagirov, A.M.; Mäkinen, P. Missing value imputation via clusterwise linear regression. IEEE Trans. Knowl.
Data Eng. 2022, 34, 1889–1901. [CrossRef]

9. Airola, A.; Pahikkala, T. Fast Kronecker product kernel methods via generalized vec trick. IEEE Trans. Neural Netw. Learn. Syst.
2018, 29, 3374–3387.

10. Bian, W.; Chen, X. Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation. IEEE Trans.
Neural Netw. Learn. Syst. 2014, 25, 545–556. [CrossRef]

11. JunRu, L.; Hong, Q.; Bo, Z. Learning with smooth Hinge losses. Neurocomputing 2021, 463, 379–387.
12. Griewank, A.; Rojas, A. Treating Artificial Neural Net Training as a Nonsmooth Global Optimization Problem. In Machine

Learning, Optimization, and Data Science. LOD 2019; Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V., Eds.; Springer:
Cham, Switzerland, 2019; Volume 11943.

13. Griewank, A.; Rojas, A. Generalized Abs-Linear Learning by Mixed Binary Quadratic Optimization. In Proceedings of
African Conference on Research in Computer Science CARI 2020; Thes, Senegal, 14–17 October 2020. Available online: https:
//hal.science/hal-02945038 (accessed on 10 September 2023).

14. Yang, T.; Mahdavi, M.; Jin, R.; Zhu, S. An efficient primal dual prox method for non-smooth optimization. Mach. Learn. 2015,
98, 369–406. [CrossRef]

15. Astorino, A.; Gaudioso, M. Ellipsoidal separation for classification problems. Optim. Methods Softw. 2005, 20, 267–276. [CrossRef]
16. Bagirov, A.M.; Taheri, S.; Karmitsa, N.; Sultanova, N.; Asadi, S. Robust piecewise linear L1-regression via nonsmooth DC

optimization. Optim. Methods Softw. 2022, 37, 1289–1309. [CrossRef]
17. Gaudioso, M.; Giallombardo, G.; Miglionico, G.; Vocaturo, E. Classification in the multiple instance learning framework via

spherical separation. Soft Comput. 2020, 24, 5071–5077. [CrossRef]
18. Astorino, A.; Fuduli, A. Support vector machine polyhedral separability in semisupervised learning. J. Optim. Theory Appl. 2015,

164, 1039–1050. [CrossRef]
19. Astorino, A.; Fuduli, A. The proximal trajectory algorithm in SVM cross validation. IEEE Trans. Neural Netw. Learn. Syst. 2015,

27, 966–977. [CrossRef]
20. Joki, K.; Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M.; Taheri, S. Clusterwise support vector linear regression. Eur. J. Oper. Res.

2020, 287, 19–35. [CrossRef]
21. Selmic, R.R.; Lewis, F.L. Neural-network approximation of piecewise continuous functions: Application to friction compensation.

IEEE Trans. Neural Netw. 2002, 13, 745–751. [CrossRef]
22. Imaizumi, M.; Fukumizu, K. Deep Neural Networks Learn Non-Smooth Functions Effectively. In Proceedings of the Machine

Learning Research, Naha, Okinawa, Japan, 16–18 April 2019; Volume 89, pp. 869–878.
23. Davies, D.; Drusvyatskiy, D.; Kakade, S.; Lee, J. Stochastic subgradient method converges on tame functions. Found. Comput.

Math. 2020, 20, 119–154. [CrossRef]
24. Aggarwal, C. Neural Networks and Deep Learning; Springer: Berlin, Germany, 2018.
25. Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1988, 323, 533–536.

[CrossRef]
26. Huang, G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003,

14, 274–281. [CrossRef]
27. Reed, R.; Marks, R.J. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; The MIT Press: Cambridge,

MA, USA, 1998.
28. Vicoveanu, P.; Vasilache, I.; Scripcariu, I.; Nemescu, D.; Carauleanu, A.; Vicoveanu, D.; Covali, A.; Filip, C.; Socolov, D. Use of a

feed-forward back propagation network for the prediction of small for gestational age newborns in a cohort of pregnant patients
with thrombophilia. Diagnostics 2022, 12, 1009. [CrossRef]

29. Broomhead, D.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royals Signals and
Radar Establishment: Great Malvern, UK, 1988.

30. Olusola, A.O.; Ashiribo, S.W.; Mazzara, M. A machine learning prediction of academic performance of secondary school students
using radial basis function neural network. Trends Neurosci. Educ. 2022, 22, 100190.

31. Zhang, D.; Zhang, N.; Ye, N.; Fang, J.; Han, X. Hybrid learning algorithm of radial basis function networks for reliability analysis.
IEEE Trans. Reliab. 2021, 70, 887–900. [CrossRef]

32. Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall: Upper Saddle River, NJ, USA, 2007.
33. Faris, H.; Mirjalili, S.; Aljarah, I. Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer

based on a hybrid encoding scheme. Int. J. Mach. Learn. Cybern. 2019, 10, 2901–2920. [CrossRef]
34. Huang, D.S.; Du, J.X. A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks.

IEEE Trans. Neural Netw. 2008, 19, 2099–2115. [CrossRef] [PubMed]
35. Odikwa, H.; Ifeanyi-Reuben, N.; Thom-Manuel, O.M. An improved approach for hidden nodes selection in artificial neural

network. Int. J. Appl. Inf. Syst. 2020, 12, 7–14.
36. Leung, F.F.; Lam, H.K.; Ling, S.H.; Tam, P.S. Tuning of the structure and parameters of a neural network using an improved

genetic algorithm. IEEE Trans. Neural Netw. 2003, 11, 79–88. [CrossRef]
37. Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2020.3001694
http://dx.doi.org/10.1109/TNNLS.2013.2278427
https://hal.science/hal-02945038
https://hal.science/hal-02945038
http://dx.doi.org/10.1007/s10994-014-5436-1
http://dx.doi.org/10.1080/10556780512331318254
http://dx.doi.org/10.1080/10556788.2020.1855171
http://dx.doi.org/10.1007/s00500-019-04255-1
http://dx.doi.org/10.1007/s10957-013-0458-6
http://dx.doi.org/10.1109/TNNLS.2015.2430935
http://dx.doi.org/10.1016/j.ejor.2020.04.032
http://dx.doi.org/10.1109/TNN.2002.1000141
http://dx.doi.org/10.1007/s10208-018-09409-5
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.3390/diagnostics12041009
http://dx.doi.org/10.1109/TR.2020.3001232
http://dx.doi.org/10.1007/s13042-018-00913-2
http://dx.doi.org/10.1109/TNN.2008.2004370
http://www.ncbi.nlm.nih.gov/pubmed/19054734
http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1080/01431160802549278

Algorithms 2023, 16, 444 18 of 18

38. Tsai, J.T.; Chou, J.H.; Liu, T.K. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm.
IEEE Trans. Neural Netw. 2006, 17, 69–80. [CrossRef]

39. Bagirov, A.M.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization: Theory, Practice and Software; Springer: Cham,
Switzerland, 2014.

40. Clarke, F.H. Optimization and Nonsmooth Analysis; Wiley-Interscience: New York, NY, USA, 1983.
41. Wilamowski, B.M. Neural Network Architectures. In The Industrial Electronics Handbook; CRC Press: Boca Raton, FL, USA, 2011.
42. Kärkkäinen, T.; Heikkola, E. Robust formulations for training multilayer perceptrons. Neural Comput. 2004, 16, 837–862.

[CrossRef]
43. Karmitsa, N.; Taheri, S.; Joki, K.; Mäkinen, P.; Bagirov, A.; Mäkelä, M.M. Hyperparameter-Free NN Algorithm for Large-Scale

Regression Problems; TUCS Technical Report, No. 1213; Turku Centre for Computer Science: Turku, Finland, 2020. Available online:
https://napsu.karmitsa.fi/publications/lmbnnr_tucs.pdf (accessed on 10 September 2023).

44. Zhang, H.; Hager, W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim.
2004, 14, 1043–1056. [CrossRef]

45. Byrd, R.H.; Nocedal, J.; Schnabel, R.B. Representations of quasi-Newton matrices and their use in limited memory methods.
Math. Program. 1994, 63, 129–156. [CrossRef]

46. Kiwiel, K.C. Methods of Descent for Nondifferentiable Optimization; Lecture Notes in Mathematics 1133; Springer: Berlin, Germany,
1985.

47. Bihain, A. Optimization of upper semidifferentiable functions. J. Optim. Theory Appl. 1984, 4, 545–568. [CrossRef]
48. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans.

Syst. Man Cybern. 2011, 42, 513–529. [CrossRef]
49. Lang, B. Monotonic Multi-Layer Perceptron Networks as Universal Approximators. In Artificial Neural Networks: Formal Models

and Their Applications—ICANN 2005; Duch, W., Kacprzyk, J., Oja, E., Zadroźny, S., Eds.; Springer: Berlin/Heidelberg, Germany,
2005; Volume 3697.

50. Tüfekci, P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine
learning methods. Int. J. Electr. Power Energy Syst. 2014, 60, 126–140. [CrossRef]

51. Kaya, H.; Tüfekci, P.; Gürgen, S.F. Local and Global Learning Methods for Predicting Power of a Combined Gas & Steam Turbine.
In Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering ICETCEE 2012,
Dubai, United Arab Emirates, 24–25 March 2012; pp. 13–18.

52. Dua, D.; Karra Taniskidou, E. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed
on 25 November 2020).

53. Yeh, I. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.
[CrossRef]

54. Harrison, D.; Rubinfeld, D. Hedonic prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102. [CrossRef]
55. Paredes, E.; Ballester-Ripoll, R. SGEMM GPU kernel performance (2018). In UCI Machine Learning Repository. Available online:

https://doi.org/10.24432/C5MK70 (accessed on 10 September 2023).
56. Nugteren, C.; Codreanu, V. CLTune: A Generic Auto-Tuner for OpenCL Kernels. In Proceedings of the MCSoC: 9th International

Symposium on Embedded Multicore/Many-core Systems-on-Chip, Turin, Italy, 23–25 September 2015.
57. Fernandes, K.; Vinagre, P.; Cortez, P. A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News.

In Proceedings of the 17th EPIA 2015—Portuguese Conference on Artificial Intelligence, Coimbra, Portugal, 8–11 September 2015.
58. Rafiei, M.; Adeli, H. A novel machine learning model for estimation of sale prices of real estate units. ASCE J. Constr. Eng. Manag.

2015, 142, 04015066. [CrossRef]
59. Buza, K. Feedback Prediction for Blogs. In Data Analysis, Machine Learning and Knowledge Discovery; Springer International

Publishing: Cham, Switzerland, 2014; pp. 145–152.
60. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.cs.toronto.edu/

~kriz/cifar.html (accessed on 14 November 2021).
61. Lucas, D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T.; Weiss, R.; Keeling, R. Designing optimal

greenhouse gas observing networks that consider performance and cost. Geosci. Instrum. Methods Data Syst. 2015, 4, 121–137.
[CrossRef]

62. Diaz, M.; Grimmer, B. Optimal convergence rates for the proximal bundle method. SIAM J. Optim. 2023, 33, 424–454. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNN.2005.860885
http://dx.doi.org/10.1162/089976604322860721
https://napsu.karmitsa.fi/publications/lmbnnr_tucs.pdf
http://dx.doi.org/10.1137/S1052623403428208
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1007/BF00938396
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1016/j.ijepes.2014.02.027
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.24432/C5MK70
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001047
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.5194/gi-4-121-2015
http://dx.doi.org/10.1137/21M1428601

	Introduction
	Related Work
	Theoretical Background and Notations
	Nonsmooth Optimization
	Neural Networks for Regression

	Nonsmooth Optimization Model of ReLU-NNR -.4
	LMBNNR -.4 Algorithm
	Numerical Experiments
	Data Sets and Performance Measures
	Implementation of Algorithms
	Results and Discussion

	Conclusions
	References

