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Abstract: This paper deals with systematic approaches for the analysis of stability properties and
controller design for nonlinear dynamical systems. Numerical methods based on sum-of-squares
decomposition or algebraic methods based on quantifier elimination are used. Starting from Lya-
punov’s direct method, these methods can be used to derive conditions for the automatic verification
of Lyapunov functions as well as for the structural determination of control laws. This contribution
describes methods for the automatic verification of (control) Lyapunov functions as well as for the
constructive determination of control laws.
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1. Introduction

Stability is one of the most important properties of control systems. When designing a
controller, the stability must be maintained in the case of a stable system and an unstable
system must be stabilized via feedback.

In the case of nonlinear systems, stability cannot always be decided based on lineariza-
tion. In addition, a stability statement based on linearization is only locally valid at most.
For global and semi-global stability statements, one typically employs Lyapunov’s second
method [1,2]. The difficulty of this approach is finding a suitable Lyapunov candidate
function and proving the corresponding definiteness conditions. This proof is typically
established through adept estimations, which, nonetheless, requires significant expertise.

In its basic form, Lyapunov’s second method allows statements about the stability
of equilibrium points of an autonomous system [3–5]. Input-state stability extended this
approach to systems with inputs [6–8]. While the (classical) Lyapunov function allows
statements about stability, a control Lyapunov function makes statements about stabiliz-
ability [9,10].

In applying Lyapunov’s direct method as well as its control generalizations, one is
confronted, as mentioned above, with difficulties, namely, the choice of an appropriate
candidate function and the proof of appropriate definiteness.

Nevertheless, there are some methods with the help of which it is possible to determine
Lyapunov functions under certain circumstances. Such methods are, for example, the
Krasovskii method, the variable gradient method, or the choice of physically motivated
Lyapunov candidates. For more detailed information and examples, the reader is referred
to [3,4]. A comprehensive introduction to passivity and its use for finding Lyapunov
functions can be found in [11].
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Part of the difficulties associated with Lyapunov’s direct method can be circumvented
by using vector Lyapunov functions [12–14]. In control engineering applications, cascaded
or recursive design approaches, such as backstepping, have become established [11,15].
Instead of analytical computations, numerical approximation methods [16] or neural net-
works in conjunction with machine learning can sometimes be used to determine control
Lyapunov functions [17,18].

In recent years, two methods have been developed that systematically address the
Lyapunov definiteness check. Hence, it could be shown that both sum-of-squares decom-
position and quantifier elimination are suitable to find the appropriate Lyapunov functions.
These results could then be extended to different problems, such as other stability prop-
erties [19], passivity [20], static output feedback [21–23], or determination of the region
of attraction [24] and invariant sets [25,26]. However, both methods are only suitable for
systems with polynomial descriptions, so a large number of problems cannot be considered
in the first step. To circumvent this circumstance, a polynomializing transformation can be
introduced to significantly increase the class of systems that can be studied. In this paper,
we want to recapitulate the results on stability and input-to-state stability, respectively,
and show how control Lyapunov function approaches can be used to generate stable and
input-to-state stable closed-loop systems.

For that purpose, the paper is organized as follows: Section 2 outlines the mathematical
methods used. Section 3 is devoted to stability analysis. The following Section 4 deals with
control Lyapunov functions that can be directly applied to the design of stabilizing state
feedback. The procedure for determining a Lyapunov function for the non-polynomial
Furuta pendulum and that of a control Lyapunov function using a chemical process as an
example is illustrated in Section 5. In Section 6, the results are summarized and discussed.
In addition, we provide an outlook for possible follow-up research. Finally, we draw some
conclusions in Section 7.

2. Methods

In the case of nonlinear systems, one difficulty is that the analysis and design methods
available from control engineering and systems theory are often not constructive, but
exist in conjunction with existential statements. The definiteness conditions that arise in
Lyapunov methods can often only be ensured by clever estimations, which in turn require a
high degree of understanding of the system and can only be applied to the specific problem.

In this section, two different methods are presented, which can be used to check or
guarantee definiteness conditions for given approaches, namely quantifier elimination
and sum-of-squares decomposition. Both approaches have been successfully used to
estimate regions of attraction with Lyapunov methods [25,27,28], but are essentially limited
to polynomial systems. Therefore, a rational transformation is first introduced, which
provides an extension for the treatment of non-polynomial systems [19].

2.1. Polynomialization

In the following subsections, two mathematical methods are presented to test Lya-
punov approaches systematically concerning their definiteness. However, both quantifier
elimination and sum-of-squares decomposition apply only to polynomials and thus to
polynomial system descriptions. This is a relatively severe limitation since a large number
of problems are described by non-polynomial terms. For example, trigonometric functions
frequently arise in the modeling of mechanical systems. Chemical or process engineering
models often exhibit exponential functions (due to the Arrhenius equation). To overcome
this limitation, an algorithm for polynomialization of non-polynomial system descriptions
is presented below (see Algorithm 1). Thereby systems of the form

ẋi =
νi

∑
j

αj

ηij

∏
k

fijk(x), i = 1, . . . , n (1)
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are considered, where fijk(x) are elementary functions and nested elementary functions,
respectively. By elementary functions in this paper, we mean a fixed set of functions, each of
which is the solution of a rational ordinary differential equation. The algorithm terminates
since the system (1) consists of finitely many functions fijk and each of these functions is
described by an ordinary differential equation of finite order.

Algorithm 1 Rational recast [29,30]

1. Set zi = xi for i = 1, . . . , n.
2. For each fijk(x) not of the form fijk(x) = xa

l , create a new variable zi, where a ∈ Z
and 1 ≤ l ≤ n. This new variable is defined by zi = fijk(x), i = n + 1, . . . , m,
where m− n corresponds to the number of functions fijk(x) 6= xa

l .
3. Calculate the time derivative of zi using the chain rule and system (1).
4. Replace all fijk(x) in the system description with the corresponding zi.
5. Repeat 2–4 until the system has a rational form.

The result of the recasting process is a system of the form

ż1 = f1(z1, z2) (2)

ż2 = f2(z1, z2) (3)

with z1 = x ∈ Rn and z2 ∈ Rm−n. Here, (2) results from the original description (1),
with the non-polynomial terms fijk(x) substituted by the newly introduced variables
(zi, i = n + 1, . . . , m). The subsystem (3) describes the temporal behavior of these variables.
In addition to the newly introduced variables, constraints arise which have to be taken into
account in the following considerations. Thereby the substitution zi = fijk(z1 = x) results
in the constraint

z2 = T(z1) (4)

directly in the course of the recasting process. In addition, polynomial equations and
inequality constraints often arise, whereby

G1(z1, z2) = 0 (5)

G2(z1, z2) ≥ 0 (6)

can be described. On the one hand, these result from the consideration of the possibly
limited definition ranges

D1 ×D2 = {(z1, z2) ∈ Rn ×Rm−n : G2(z1, z2) ≥ 0}, (7)

and on the other hand from derived conditions of substitution (see Example 1 and Section 5).
Here, T, G1 and G2 are column vectors of functions for which the corresponding equation
and inequality conditions hold for each row.

The Algorithm 1 generally produces a rational system. However, polynomial de-
scriptions are necessary for the introduced analysis tools. Therefore, let N(z1, z2) be the
principal denominator of f1(z1, z2) and f2(z1, z2). Thus, the functions N f1 and N f2 are also
polynomials if N(z1, z2) is polynomial. Moreover, N(z1, z2) > 0, ∀(z1, z1) ∈ D1 ×D2 must
hold, i.e., the sign of the principal denominator must not change. Thus, N f1 and f1 as well
as N f2 and f2 always have the same sign. The procedure of that recasting process is now
illustrated with an example taken from ([11] Example 3.45).

Example 1. To illustrate the transformation process, the system

ẋ = x2 + u (8)
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is stabilized using the control law

u(x) = −x2 − x
√

x2 + 1. (9)

The feedback results in the closed-loop system

ẋ = −x
√

x2 + 1 (10)

with an asymptotically stable equilibrium point x = 0.

For the polynomialization, the new variables z1 = x and z2 =
√

x2 + 1 =
√

z2
1 + 1 are

introduced. With this substitution, we obtain the transformed system

ż1 = −z1z2

ż2 =
z1ż1√
z2

1 + 1
=
−z2

1z2

z2
= −z2

1, (11)

which has a polynomial vector field. It must be noted that z2 ≥ 1 holds. Moreover, the definition

of z2 gives rise to the condition z2 =
√

z2
1 + 1. This condition is not in any polynomial form and

therefore cannot be analyzed by the methods considered here. However, it is possible to convert this
condition into the polynomial conditions

z2 =
√

z2
1 + 1 ⇐⇒ z2

2 − z2
1 − 1 = 0∧ z2 ≥ 1. (12)

Summarizing, one obtains with

ż1 = f1(z1, z2) = −z1z2

ż2 = f2(z1, z2) = −z2
1

z2 = T(z1) =
√

z2
1 + 1

G1(z1, z2) = z2
1 − z2

2 + 1 = 0

G2(z1, z2) = z2 − 1 ≥ 0,

a polynomial vector field with polynomial constraints.

2.2. Quantifier Elimination

Many stability criteria can be expressed as

G(X, Y) := (Q1x1) · · · (Ql xk) F(X, Y) (13)

with the quantifiers Qi ∈ { ∃, ∀ }. Here, F(X, Y) is a quantifier-free formula, which is
derived from the Boolean combination of atomic formulas of the form

f (X, Y) � 0, � ∈ {=,<,>,≤,≥, 6=} (14)

with a polynomial f (x1, . . . , xk, y1, . . . , yl) result. An expression of the form (13) is called
a prenex formula with the quantified variables X = (x1, . . . , xk) and the free variables
Y = (y1, . . . , yl).

Formulas of the prenex form (13) are not very helpful for system analysis or design
because they are not constructive. Rather, we are interested in the solution set expressed
with the free variables Y. To this end, exploiting the fact that the quantifier-free formula
F(X, Y) appearing in (13) describes an semialgebraic set, i.e., a subset of the real vector
space Rn with n = k+ l characterized by finitely many polynomial equations or inequalities.
By the Tarski-Seidenberg theorem [31,32] the projections of such a semialgebraic set onto
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the subsets Rn−1,Rn−2, . . . ,R1 = R along the coordinate axes are again semialgebraic sets.
This projection property does not hold in general for purely algebraic sets described only by
a finite number of polynomial equations.

Example 2. The equation
xy− 1 = 0 (15)

describes an algebraic and thus also semialgebraic subset of R2, which geometrically represents a
hyperbola. The projection of (x, y) from R2 onto x in R yields the inequalities

x < 0∨ x > 0 or x 6= 0 (16)

and thus describes a semialgebraic but not an algebraic set.

Exploiting the projection property of semialgebraic sets, any prenex Formula (13)
can be transformed into an equivalent quantifier-free formula. This transformation is
called quantifier elimination (QE) [33]. In this process, after the projection from Rn into R1,
the equations or inequalities occurring in F(X, Y) in R1 are evaluated and the results are
projected back into Rn. In doing so, one can check step by step for every single quantified
variable xj with j = 1, . . . , k whether the respective quantifier-free formula is always
satisfied in the case of the all quantifier (∀) or for at least one value in the case of the
existential quantifier (∃). In quantifier elimination, all quantified variables are eliminated
and an equivalent quantifier-free formula in the free variables is obtained. If all variables
are quantified, a decision problem results which can only yield “true” or “false” as a result.

Example 3. Adding all of the quantifiers with respect to x to the quantifier-free Formula (15) from
Example 2, we obtain the prenex formula

∀x : xy− 1 = 0. (17)

The projection (16) of (15) onto the x-axis does not contain the point x = 0, so it does not hold
for all x ∈ R. Consequently, is the Formula (17) “false”. If, on the other hand, we complement (15)
with the existential quantifier

∃x : xy− 1 = 0, (18)

then the solution set is nonempty because of (16). The back projection from x > 0 to y > 0 and
from x < 0 to y < 0 yields the quantifier-free formula y 6= 0 equivalent to (18).

The computation of the corresponding quantifier-free equivalent can be performed
by different algorithms. Mentioned here are the cylindrical algebraic decomposition
(CAD) [34]), the virtual substitution [35] and the approaches based on the classification
of real roots (RRC) of polynomials [36,37]. Numerous software tools are now available
to perform quantifier elimination [38–40]. For further details, please refer to the review
article [41].

Example 4. The question of the existence of a real root of a general quadratic polynomial can be
expressed by the prenex formula

∃x : ax2 + bx + c = 0 (19)

with the quantified variable x and the free variables a, b, c. The quantifier elimination yields the
quantifier-free formula equivalent to (19)

4ca− b2 ≤ 0∧ [c = 0∨ b 6= 0∨ 4ca− b2 < 0].
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2.3. Sum-of-Squares Decomposition

One way to numerically implement the definiteness tests associated with Lyapunov
methods is the Sum-of-Squares Decomposition (SOS). It is checked whether a given polynomial
can be decomposed into a sum of squares. From such a representation, definiteness
properties can be read off, which are needed for the stability conditions.

Let P be the set of all polynomials in the considered variables. Then,

S = {p ∈ P|p =
k

∑
i=1

q2
i , qi ∈ P} (20)

denotes the set of SOS polynomials. From the definition (20) it follows immediately that
every polynomial p ∈ S is positive semidefinite. The converse case does not hold, because
the so-called Motzkin polynomial [42]

pMχ(x) = (x2
1 + · · ·+ x2

χ−1 − χx2
χ)x2

1 . . . x2
χ−1 + x2χ

χ (21)

with χ ≥ 3 is positive definite, but cannot be represented as a sum of squares [43]. A more
detailed consideration of the differences between positive definite and SOS polynomials
can be found in [44].

Each SOS polynomial can be expressed in the form

p(x) = m(x)TQ m(x), (22)

with a positive semidefinite matrix Q and a vector m(x) consisting of all monomials up
to degree 1

2 deg(p(x)) [45]. The search for a positive semidefinite matrix Q can be trans-
formed into a semidefinite optimization problem [45]. Efficient tools exist for solving such
semidefinite programs: SeDuMi [46], CSDP [47], SDPNAL [48], SDPNAL+ [49], SDPA [50],
CDCS [51], or SDPT3 [52]. The transformation of a SOS problem into a semidefinite pro-
gram is possible with the toolbox SOSTOOLS under MATLAB (see Figure 1). For this
purpose, the respective conditions formulated with SOS polynomials are defined under
MATLAB. These can subsequently be transformed into a semidefinite program using SOS-
TOOLS. This program can then be solved with one of the previously mentioned tools. The
solutions obtained in this way are thereupon transformed into the solution of the original
SOS constraints by SOSTOOLS. Through this interaction of the individual tools, an efficient
solving of SOS programs is possible.

SOS -
conditions

using
Matlab

SOSTOOLS

SeDuMi,
CSDP,

SDPNAL (+),
SDPA,
CDCS,

or SDPT3

SOS-
program

SOS-
solution

semidefinite
program

SDP-
solution

Figure 1. Relationship between the SOS program, the semidefinite program (SDP) and the MATLAB
Toolbox SOSTOOLS [53,54].

The resulting semidefinite programs can in principle be solved in polynomial time.
However, the size of these programs grows rapidly with the dimension of the state space,
because the matrix Q of a polynomial in n variables with polynomial degree 2d has di-
mension (n+d

d ) × (n+d
d ). Therefore, when applying the sum-of-squares decomposition,

thoughtful problem formulations are not only useful but also necessary.
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3. Stability Analysis
3.1. Lyapunov’s Direct Method

In this section, we present how the previously introduced methods can be used to test
nonlinear systems concerning different stability properties. For the following, autonomous
time-invariant systems of the form

ẋ = f (x) (23)

are considered. Here, x(t) ∈ Rn is the state of the system (23) and f : Rn → Rn is a (locally)
Lipschitz vector field. This is true for polynomial systems as a result of the mean value
theorem of differential calculus. According to the theorem of Picard-Lindelöf, the Lipschitz
condition guarantees the (local) existence and uniqueness of the solution of the system of
differential Equation (23) [4,55].

To formulate the stability conditions, functions of class K and class K∞ are introduced.
A function α : [0, a)→ [0, ∞) with a > 0 belongs to the class K if it is strictly increasing and
α(0) = 0 holds. A function α with a = ∞ belongs to the class K∞ if in addition α(r)→ ∞
holds for r → ∞ [2,3,56].

For systems of the form (23), the stability of the equilibrium x = 0 can be analyzed
using the direct method of Lyapunov [3,4].

Theorem 1 (Lyapunov’s direct method). Let x = 0 be a equilibrium of (23) with a locally
Lipschitz vector field f and U = {x ∈ Rn, |x| < a}. If there exists a continuously differentiable
function V : U→ [0, ∞) and functions ᾱ,

¯
α ∈ K, defined on [0, a), such that

¯
α(|x|) ≤ V(x) ≤ ᾱ(|x|) (24)

V̇(x) ≤ 0 (25)

for all x ∈ U holds, then the equilibrium is (locally) stable in the sense of Lyapunov. If in addition
there exists a function α of class K defined on [0, a) such that

∀x ∈ U : V̇(x) ≤ −α(|x|) (26)

is satisfied, then x = 0 is a (locally) asymptotically stable equilibrium. If α, ᾱ,
¯
α ∈ K∞ also holds,

then the equilibrium is globally asymptotically stable.

In Equation (27), the (total) time derivative V̇ of V along the solutions of the system (23)
is described by the Lie derivative

V̇(x) = L f V(x) =
∂V
∂x

(x) f (x) (27)

of the scalar field V in the direction of the vector field [4]. A function V satisfying the
conditions of Theorem 1 is called a Lyapunov function.

Given a polynomial system (23), the procedures described in Sections 2.2 and 2.3 can
be used directly to verify the conditions of Theorem 1. For a system (2)–(6) polynomialized
according to Section 2.1, some adjustments are necessary ([30] Proposition 4):

Theorem 2 (Lyapunov conditions for a recasted system). Let a system (2)–(6) with the main
denominator N(z) be given. Moreover, let z2,0 = T(0) hold. Given a polynomial function Ṽ(z),
column vectors of polynomial functions µ1(z), µ2(z); column vectors of SOS polynomials σ1(z),
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σ2(z) and a scalar polynomial function φ(z), φ(z1, T(z1)) > 0, ∀z1 ∈ D1 \ {0} with suitable
dimensions exist such that

Ṽ(0, z2,0) = 0 (28)

Ṽ(z)− µT
1 (z)G1(z)− σT

1 (z)G2(z)− φ(z) ∈ S (29)

−N(z)
(

∂Ṽ
∂z1

(z) f1(z) +
∂Ṽ
∂z2

(z) f2(z)
)
− µT

2 (z)G1(z)− σT
2 (z)G2(z) ∈ S (30)

holds, then x = 0 is a stable equilibrium of the original system (1).

The proof of this theorem is given in [30]. The conditions presented in Theorem 2
suggest only stability and not asymptotic stability. This stems from the fact that the
condition (30) requires only positive semidefiniteness. If it is to be tested for asymptotic
stability, the negatively definite term −φ(z1, z2), with φ(z1, T(z1)) > 0, can be added to the
condition (30). This would guarantee the corresponding negative definiteness of the time
derivative.

To apply the theorem, the functions Ṽ, µ1, µ2, σ1, σ2 and φ in the form of multivariate
polynomials of suitable order are chosen. The numerical determination of the coefficients
of these polynomials is then possible using the methods presented in Section 2.3. The
quantifier elimination described in Section 2.2 makes it possible to check the conditions
from Theorem 1 by extending the resulting prenex formula with the constraints (G1, G2)
resulting from the substitution.

3.2. Input-to-State Stability

The Input-to-State Stability (ISS) [7,8] extends the property of global asymptotic stability
to systems of the form

ẋ = F(x, u) (31)

with a equilibrium x = 0 for u = 0, which means F(0, 0) = 0. The input u(t) ∈ R can be
taken as both a manipulated variable and a disturbance. Let the input-dependent vector
field F be continuous and locally Lipschitz in the first argument. The input-to-state stability
is a generalization of the asymptotic stability, where in addition the influence of the input u
is taken into account. In this paper, the input-to-state stability is introduced directly via the
existence of a corresponding ISS-Lyapunov function [7].

Definition 1 (ISS-Lyapunov function). A continuously differentiable function V : Rn → [0, ∞)
is called ISS-Lyapunov function for a system (31) if it satisfies the following conditions.

¯
α(|x|) ≤ V(x) ≤ ᾱ(|x|), (32)

|x| ≥ γ(|u|) =⇒ V̇(x, u) ≤ −α(|x|) (33)

with
V̇(x, u) = LFV(x, u) =

∂V
∂x

(x) F(x, u)

for all x ∈ Rn and u ∈ R with
¯
α, ᾱ ∈ K∞ and α, γ ∈ K is satisfied.

For u(t) ≡ 0 we obtain the asymptotic stability of the equilibrium at the origin.
Alternatively, ISS-Lyapunov functions can also be defined by a so-called “dissipation”
characterization ([7] Remark 2.4):

Lemma 1 (Alternative characterization). A continuously differentiable function V : Rn →
[0, ∞) is an ISS-Lyapunov function for a system (31) if and only if it satisfies conditions

¯
α(|x|) ≤ V(x) ≤ ᾱ(|x|) (34)

V̇(x, u) ≤ γ(|u|)− α(|x|) (35)
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for all x ∈ Rn and u ∈ R with
¯
α, ᾱ, α, γ ∈ K∞ fulfilled.

3.3. Input-to-State Stability of the Recasted System

First, we consider the ISS property for polynomial systems. Afterward, these results
are extended to non-polynomial systems.

For polynomial input-dependent vector fields F of the form (31), the statements (34)
and (35) from Lemma 1 can be translated into the sufficient conditions

V(x)−
¯
α(|x|) ∈ S , (36)

ᾱ(|x|)−V(x) ∈ S , (37)

−∂V
∂x

F(x, u)− α(|x|) + γ(|u|) ∈ S . (38)

ISS analysis for such polynomial systems was performed by Ichihara [57]. Here, an
SOS-compatible formulation for the comparison functions must be found, since any ISS
condition is based on them. The following theorem [57] provides a possible SOS condition
for K∞ functions.

Theorem 3. A univariate real even polynomial without a constant term

α∗(s) =
N

∑
i=1

c2is2i, (39)

with at least one coefficient c2i 6= 0, belongs to the class K∞ if and only if

s · dα∗(s)
ds

≥ 0 (40)

holds for all s ∈ R.

It seems unusual that the condition (40) should be satisfied for all s as functions of
norms are considered. This requirement follows the SOS procedure. Thus, it is verified
that (40) is a sum of squares and thus must also hold for negative s.

To apply these considerations to transformed or polynomialized systems, the resulting
peculiarities have to be taken into account. Thus, a function α∗(s) which is a K∞-function
in the transformed coordinates is in general not a K∞-function in the original coordinates
x. The first requirement that must be ensured is that a K∞-function passes through the
coordinate origin. This can be achieved with

α(x) = α∗(z1, z2)− α∗(0, z2,0)|z1=x,z2=T(x). (41)

Moreover, the resulting function is not a function in |x|, but in |z| = |x, T(x)|. Thus,
the function defined in (41) guarantees monotonicity and radial unboundedness in the
transformed, but not in the original coordinates. The terms depending on T(x) must
therefore be estimated upward or downward with terms depending on |x| to overcome this
problem. In the condition (36), a lower bound on the function

¯
α must be determined. It can

be shown that
¯
α(x, 0) is an adequate comparison function for conditions (36) and (38) in the

original coordinates if
¯
α(z1, z2) is a comparison function in the transformed variables [19,54].

For the condition (37), however, an upward estimate is needed, which cannot be generalized
but is straightforward to determine in most cases (cf. [19] Table 2). Furthermore, if the
polynomialization process is applied to systems of the form F(x, u), the result is analogous
to (2) and (3) a system

ż1 = F1(z1, z2, u) (42)

ż2 = F2(z1, z2, u) (43)
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as a polynomial description.
With these considerations, the following theorem can be formulated [19,54].

Theorem 4 (ISS of the recasted system). Let the system (42) and (43) and functions T(z1),
G1(z), G2(z) and N(z) be given. If there exist a polynomial function Ṽ(z), column vectors of
polynomial functions µ1(z), µ2(z) and column vectors of SOS polynomials σ1(z), σ2(z) with
suitable dimensions such that

Ṽ(z)− µT
1 (z)G1(z)− σT

1 (z)G2(z)− ˜
¯
α(z) ∈ S (44)

˜̄α(z)− Ṽ(z) + µT
1 (z)G1(z) + σT

1 (z)G2(z) ∈ S (45)

−N(z)
(

∂Ṽ
∂z1

(z)F1(z, u) +
∂Ṽ
∂z2

(z)F2(z, u)
)

−µT
2 (z)G1(z)− σT

2 (z)G2(z)− α̃(z) + γ(w) ∈ S (46)

for

ξ̃ = ξ∗ − ξ∗(0, z2,0), ∀ξ̃ ∈ { ˜̄α, ˜
¯
α, α̃}, (47)

as well as the class K∞ functions ᾱ∗,
¯
α∗ and α∗ holds, then the original system (31) is ISS if there

exists a corresponding upward estimate for ᾱ.

An application of this theorem can be found in ([19] Example 3).

4. Controller Design
4.1. Control Lyapunov Function

Consider the system (31) with an equilibrium at the origin. In the controller design,
the question arises whether this equilibrium can be stabilized with a state feedback

u = k(x). (48)

This problem leads to the concept of the control Lyapunov functions. In this general-
ization of the Lyapunov function, the focus is not on stability, but on stabilizability ([10]
Theorem 4.1).

Theorem 5 (Artstein’s Theorem). Let the function V : Rn → [0, ∞) be continuously differen-
tiable, positive definite, and radially unbounded. A system of the form (31) is stabilizable with a
state feedback (48) if and only if

∀x 6= 0 : inf
u

V̇(x, u) < 0 (49)

holds.

A function V satisfying the conditions of Theorem 5 is called a control Lyapunov function
(CLF). For an input affine system

ẋ = f (x) + g(x)u (50)

with vector fields f , g : Rn → Rn, the function V along the system dynamics has the
time derivative

V̇(x, u) = L f V(x) + LgV(x)u.

Thus, the condition (49) can be expressed in the form

∀x 6= 0 : inf
u

(
L f V(x) + LgV(x)u

)
< 0. (51)
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The condition (51) can also be specified via the expression

∀x 6= 0 : LgV(x) = 0 =⇒ L f V(x) < 0, (52)

if no access to the system dynamics is possible via the control input because of LgV(x) = 0,
the system must be stable in its dynamics (L f V(x) < 0), see, e.g., [11,58] . Once a control
Lyapunov function has been found for a given system (50), then the system can be stabilized
via a state feedback (48) of the form

u = k(x) =

{
0 for b = 0

− 1
b

(
a +
√

a2 + b4
)

for b 6= 0,
(53)

with a = L f V(x) and b = LgV(x). To justify this, consider the time derivative of V along
the solution of the closed-loop system

V̇(x, k(x)) = a + b k(x) =

{
a < 0 for b = 0, x 6= 0,
−
√

a2 + b4 for b 6= 0, x 6= 0,

which is negative definite. Thus, the closed-loop equilibrium x = 0 is globally asymptoti-
cally stable. The state feedback (53) is called Sontag’s formula [9,58]. Similar formulas are
also obtained via other approaches, such as inverse or modified optimal control [59–61] if
the control Lyapunov function is known.

The question now arises whether a CLF V exists and respectively how such a function
can be found. For this purpose, one sets up an approach V(x, q) for a positive definite
function with a parameter vector q, e.g., as a quadratic form

V(x, q) = xT P(q) x with P(q) = PT(q) � 0,

where the vector q contains the free entries of the positive definite matrix P. The posi-
tive definiteness of the functions V is then ensured [41] via Courant-Fischer’s theorem
(minimum-maximum principle). As more general approaches, functions with even powers
can be used [57].

For a positive definite initial function V(x, q) and a system of the form (31), the
condition (49) can be expressed by the prenex formula

∃q ∀x ∃u : x 6= 0 =⇒ LFV(x, u, q) < 0 (54)

and thus address it by quantifier elimination. Here, the statement (54) formulates a decision
problem that verifies the suitability of the approach V(x, q) as a CLF.

For an input affine system (50), the condition (52) leads to the prenex formula

∃q ∀x :
(

x 6= 0∧ LgV(x, q) = 0
)
=⇒ L f V(x, q) < 0. (55)

If after quantifier elimination it is evident that the conditions (54) or (55) are satisfied,
then the entries of the parameter vector q can be chosen as free variables and the admissible
parameter values can be determined step by step. This is performed by successively
removing the corresponding existential quantifiers at the individual elements of the vector q
and performing quantifier elimination. As a result, in each case conditions arise to the now
free variables. If a parameter configuration is chosen that satisfies these conditions, a CLF is
created. Building on the CLF thus determined, a stabilizing feedback can then be designed
using the law (53).

In principle, the concept of the control Lyapunov function can also be applied with
SOS methods. For this purpose SOS-conditions for the construction of a CLF can be
formulated [62,63] based on the positive position theorem ([64] Theorem 4.2.2). However,
this approach only allows for the verification of a concrete candidate V. If a CLF is to be
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constructed in this way, and thus the coefficients of V are to be treated as decision variables,
bilinear constraints arise which significantly complicate the computation [62,63,65].

4.2. ISS Control Lyapunov Function

The concept of the control Lyapunov function can also be applied to the ISS with
respect to a disturbance. For this purpose, consider a system which, in addition to the
control input u, is also influenced by a disturbance w. In the case with affinity to the input,
the system can be described as follows

ẋ = f (x) + g1(x)w + g2(x)u (56)

by the vector fields f , g1, g2 : Rn → Rn. Definition 1 can be generalized as follows [7,66,67]:

Definition 2 (ISS Control Lyapunov Function). A continuously differentiable, positive definite
and radially unbounded function V : Rn → [0, ∞) is called ISS control Lyapunov function (in
short: ISS-CLF) if a function γ of class K∞ exists such that for all x 6= 0 and all w ∈ R

|x| ≥ γ(|w|) =⇒ inf
u
(L f V(x) + Lg1 V(x)w + Lg2 V(x)u) < 0 (57)

holds.

Analogous to the condition (52) and (57) can be represented via

Lg2 V(x) = 0 =⇒ L f V(x) + |Lg1 V(x)|γ−1(|x|) < 0 (58)

as an equivalent formulation ([66] Section II).
Once a corresponding ISS-CLF has been found, it is possible to use feedback (53) with

a = L f V(x) + |Lg1 V(x)|γ−1(|x|) and b = Lg2 V(x), an ISS closed-loop can be generated
with respect to the disturbance w.

To determine adequate feedback employing quantifier elimination, one uses a positive
definite approach function V(x, q) and a suitable approach for the comparison function
γ(|w|, c) with a parameter vector q or c. The suitability of the approach functions used can
then be determined by applying quantifier elimination to the prenex formula

∃q, c ∀x ∀w ∃u : |x| ≥ γ(|w|, c)

=⇒ L f V(x, q) + Lg1 V(x, q)w + Lg2 V(x, q) u < 0,

respectively,

∃q, c ∀x :
(
x 6= 0∧ Lg2 V(x, q) = 0

)
=⇒ L f V(x, q) + |Lg1 V(x, q)|γ−1(|x|, c) < 0

can be determined. There may be other constraints to consider to the parameters, for
example, to ensure positive definiteness of V or monotonicity of γ. For example, q > 0
must hold for V(x) = qx2, x ∈ R to be positive definite.

5. Examples
5.1. Furuta Pendulum

In this example, the Furuta pendulum [30,54] is considered. The basic structure of
this pendulum is shown in Figure 2. In this example we focus on the stability analysis of
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this system, for this we assumed that the arm of length lA rotates with a constant angular
velocity ωA. Under these assumptions, we obtain the state-space model

ẋ1 = x2

ẋ2 = ω2
A sin(x1) cos(x2)−

g
lP

sin(x1),

where the angle x1 = ϕP and the angular velocity x2 = ϕ̇P = ωP of the pendulum are the

state variables. For ωA ≤
√

g
lP

, the points (x1, x2) = (kπ, 0), k ∈ Z are the equilibria of
the system.

m

φP

ωA

lA

lP

Figure 2. Furuta pendulum.

In the following, the equilibrium (0, 0) is to be tested for stability. For this, the system
must be polynomialized both for the sum-of-squares decomposition and for quantifier elim-
ination. For this purpose, the new variables z1 = x1, z2 = x2, z3 = sin(x1), z4 = cos(x1)
are introduced, which points to the polynomial state space model

ż1 = z2

ż2 = ω2
Az3z4 −

g
lP

z3

ż3 = z2z4

ż4 = −z2z3

with the algebraic constraint

G1(z) = z2
3 + z2

4 − 1 = 0. (59)

To prove the stability of the system with Theorem 2, candidate functions for Ṽ, µ1, µ2
and φ have to be chosen. For µ1 and µ2 a polynomial consisting of all monomials up to
order 2 is applied. As a first step, Ṽ(z) = q1z2

1 + q2z2
2 + q3z2

3 + q4z2
4 + q5, consisting of the

squared variables and an absolute term q5, is chosen as the approach for the function Ṽ.
To satisfy the condition (28), q4 + q5 = 0 must hold, which is considered as an equality
constraint in the SOS program. To ensure positive definiteness of Ṽ, the function φ(z) =
c1z2

1 + c2z2
2 + c3(1 − z4) with c1, c2, c3 ≥ 0.2 is also chosen. If one applies Theorem 2

using SOSTOOLS with these initial functions, the problem cannot be solved. On the other
hand, if one introduces an additional term q6z4 into the approach Ṽ(z) = q1z2

1 + q2z2
2 +

q3z2
3 + q4z2

4 + q5 + q6z4, one obtains a solvable SOS program. In this case, the equation
q4 + q5 + q6 = 0 must also be taken into account. Since in the original x-coordinates, the
relation V(x = 0) = q4 cos2(0) + q5 + q6 cos(0) results and thus for (28) the condition
q4 + q5 + q6 = 0 must hold. This leads with the parameters ωA = 1 s−1, g = 9.81 m s−2
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and lP = 0.1 m to the solution Ṽ(z) ≈ 0.78z2
2 + 33.18z2

3 + 33.96z2
4 − 152.30z4 + 118.34 and

thus to the Lyapunov function

V(x) ≈ 0.78x2
2 + 33.18 sin2(x1) + 33.96 cos2(x1) + 118.34− 152.30 cos(x1) (60)

in original coordinates. The numerical values were rounded to two decimal places. It is
noticeable that this function no longer contains the term x2

1 since the associated coefficient
is almost zero. For the time derivative, we obtain

V̇(x) = L f V(x) = 0 (with appropriate rounding), (61)

which is consistent with the physical notion. Thus, the system is stable but not asymptoti-
cally stable.

With an additional friction term −dz2, the asymptotic stability can be obtained by
continuous energy extraction. This results in the state space model

ż1 = z2

ż2 = ω2
Az3z4 −

g
lP

z3 − dz2

ż3 = z2z4

ż4 = −z2z3.

Using the same procedure as in the frictionless case and d = 0.1 s−1, the Lyapunov func-
tion

V(x) ≈ 42.65 sin2(x1) + 43.45 cos2(x1)− 156.60 cos(x1) + 0.80x2
2 + 113.10 (62)

is calculated, which is related to the time derivative V̇(x) = L f V(x) ≈ −0.16x2
2. Using the

invariance principle of LaSalle [4,68,69] one can conclude asymptotic stability.
As an alternative to determining a Lyapunov function with SOS programming, QE

can also be used. In this specific case, this can be performed using the prenex formula

∃q1, . . . , q6 ∀z1, . . . , z4 :
(
(z1 6= 0∨ z2 6= 0)

∧ (z1 6= 0 =⇒ z4 6= 1) ∧ G1 = 0 =⇒ Ṽ > 0∧ ˙̃V ≤ 0)
)

∧ (q4 + q5 + q6 = 0). (63)

The application of the QE process confirms the validity of the decision problem
formulated in this manner, as anticipated by the SOS analysis. Consequently, the Lyapunov
approach Ṽ is deemed suitable. During the SOS considerations, it was observed that
the term q1z2

1 does not appear in the resulting Lyapunov function. Therefore, this term
is not further considered, and we focus on the investigation of the approach Ṽ(z) =
q1z2

2 + q2z2
3 + q3z2

4 + q4z4 + q5. In order to establish a concrete Lyapunov function, the
successive existential quantifiers can be eliminated for each qi. Since q3 + q4 + q5 = 0 must
hold, q3 = 2, q4 = −3 and q5 = 1 can be chosen as examples. With these assumptions, the
result for the prenex formula

∃q1, q2 ∀z1, . . . , z4 :
(
(z1 6= 0∨ z2 6= 0) ∧ (z1 6= 0 =⇒ z4 6= 1) ∧ G1 = 0 (64)

=⇒ Ṽ > 0∧ ˙̃V ≤ 0)
)
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is also “true” so that the assumptions made are valid. If, in addition, the existential
quantifiers at q1 and q2 are removed, these become free variables, and the quantifier-
free formula

(327q1 − 5 = 0∨ q1 + q2 − 2 = 0) ∧ (327q1 − 5 6= 0∨ 327q2 − 649 = 0)

∧ (q1 + q2 − 2 6= 0∨ 327q2 − 649 = 0) ∧ (−327q1 ≤ −5∨ 327q2 < 649∨ q1 + q2 ≤ 2)

∧ (−q1 < 0∧−2q2 ≤ −1)

is obtained for the frictionless system which, with q1 = 5
327 and q2 = 649

327 , leads to the
Lyapunov function

Ṽ(z) =
5

327
z2

2 +
649
327

z2
3 + 2z2

4 − 3z4 + 1

V(x) =
5

327
x2

2 +
649
327

sin2(x1) + 2 cos2(x1)− 3 cos(x1) + 1,

with time derivative V̇(x) = 0. If instead q3 = 2, q4 = −5 and q5 = 3 are applied, (64)
results in the equivalent quantifier-free formula

(981q1 − 25 = 0∨ q1 + q2 − 2 = 0) ∧ (981q1 − 25 6= 0∨ 981q2 − 1937 = 0)∧
(q1 + q2 − 2 6= 0∨ 981q2 − 1937 = 0)∧
(−981q1 ≤ −25∨ 981q2 < 1937∨ q1 + q2 ≤ 2) ∧−q1 < 0∧−2q2 ≤ −1)

from which, with q1 = 25
981 and q2 = 1937

981 , we obtain the Lyapunov function

Ṽ(z) =
25
981

z2
2 +

1937
981

z2
3 + 2z2

4 − 5z4 + 3

V(x) =
25
981

x2
2 +

1937
981

sin2(x1) + 2 cos2(x1)− 5 cos(x1) + 3.

This function also has the time derivative V̇(x) = 0 according to the physical notion.
With the two Lyapunov functions thus computed, the time derivative V̇(x) = − 1

327 x2
2

and V̇(x) = − 5
981 x2

2, respectively, are obtained for the system with friction.
This example illustrates the systematic differences in the application of the two meth-

ods presented. In the SOS method, the functions µi, σi, and φ result in additional degrees of
freedom, which have to be selected via candidate functions. From the assumptions made
for the individual functions, an optimization problem is formulated, which is solved by
a corresponding numerical algorithm. This is accompanied by a limited accuracy of the
solution. This requires a subsequent critical interpretation of the results. With QE, on the
other hand, the constraints can be considered directly and the additional functions µi, σi,
and φ are omitted. Additionally, the generated results are mathematically exact. However,
the algorithms used to solve QE problems are extremely computationally expensive, so
they can only be reasonably applied to a limited number of problems.

5.2. Van de Vusse-Reaction

The van de Vusse reaction A → B → C, 2A → D with reactants A, B, C, D in an
isothermal stirred tank reactor can be described by the differential equations [70,71]

ċA = −k1cA − k3c2
A + F

V

(
cA f − cA

)
ċB = k1cA − k2cB − F

V cB.

Here, cA and cB denote the concentrations of reactants A and B in the reactor, cA f denotes
the concentration of reactant A supplied, F denotes the feed rate, V denotes the reactor
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volume, and k1, k2, k3 denote the reaction rates. The model normalized around the operating
point studied in ([71] Section 5.2)

ẋ1 = −50x1 − 10x2
1 + (10− x1) u

ẋ2 = 50x1 − 100x2 − x2 u
(65)

is in the form (50). The state variables x1 and x2 describe deviations from target concentra-
tions. The system is affected by the input u (inflow rate).

As a candidate CLF, we chose

V(x, q) = x2
1 + qx2

2 (66)

with q > 0. Together with the system (65) one obtains the Lie derivatives

L f V(x, q) = 20
(
5qx1x2 − 5x2

1 − x3
1 − 10qx2

2
)
,

LgV(x, q) = 2
(
10x1 − x2

1 − qx2
2
)
.

To evaluate (55), we obtain the quantifier-free expression

q > 0∧
[(
(x1 6= 0∨ x2 6= 0) ∧ LgV(x, q) = 0

)
=⇒ L f V(x, q) < 0

]
. (67)

Here, the positive definiteness of (66) is achieved via the condition q > 0. The
remaining terms correspond to the expression (55). To check whether the approach (66)
is suitable as CLF for the system (65), all variables (x1, x2, q) must be quantified. Once all
variables are quantified, the QE process leads only to the statements “true” or “false” and a
decision problem results. In the case considered here, this problem can be solved by the
prenex formula

∃q ∀x1 ∀x2 : condition (67), (68)

which can be transformed by QE to the statement “true”. Thus, the proof for the suitability
of the approach (66) as CLF is given.

To determine a CLF, an admissible value for q must be computed. This is performed
by removing the existential quantifier ∃q from Formula (68) before the QE process. The
removal of the existential quantifier leads to the prenex formula:

∀x1 ∀x2 : condition (67). (69)

The Formula (69) can be transformed by a QE process into an equivalent quantifier-free
expression in the now free variable q:

q > 0∧ q3 + 27q2 − 297q− 5400 < 0. (70)

The cubic polynomial appearing in this expression has the real roots q1 ≈ −30.959,
q2 ≈ −11.375, and q3 ≈ 15.334. Thus, for 0 < q < q3, the condition (70) is satisfied. Hence,
in this admissible parameter interval (66) is a control Lyapunov function. The equilibrium
x = 0 of the system (65) can therefore be stabilized, for example, with feedback (53).
Figure 3 shows the phase plane of the controlled system, where the parameter q = 10 was
used for the control Lyapunov function.
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Figure 3. Phase plane of the controlled system (65).

6. Discussion

This paper addresses the systematic and constructive Lyapunov approaches to sta-
bility analysis and control design for both polynomial and non-polynomial dynamical
systems. The fundamental methodologies, namely sum-of-squares decomposition and
quantifier elimination, are briefly introduced and their application to the corresponding
control engineering problems is demonstrated. The paper explains how the limitation to
polynomial systems can be overcome through a polynomializing transformation, leading
to distinct approaches for the two methods. In the case of sum-of-squares decomposition,
the constraints arising from the transformation are considered by employing a multiplier
approach within the optimization problem. This introduces additional degrees of freedom.
So that although SOS programs can in principle be solved in polynomial time, the degrees
of freedom result in extremely large optimization problems. Thus, the application of the
methodology is mostly limited to systems of dimensions 6 to 8.

On the other hand, quantifier elimination directly incorporates the arising constraints
through Boolean linkage. However, the algorithmic implementations of quantifier elimina-
tion are computationally intensive, so the computational effort sometimes grows double
exponentially with the number of variables. It has been shown that by the development of
new algorithms and software tools in the last years, a wide spectrum of problems can be
treated anyway. In particular, very good results could be obtained by combining different
tools. Nevertheless, the inherent number of variables and the system dimensions present
insurmountable hurdles. According to our assessment, the application of quantifier elimi-
nation is limited to systems of dimensions 2 to 6. On the other hand, quantifier elimination
allows the treatment of more general system, e.g., with non-smooth nonlinearities such as
the absolute value or the sign function.

The practical application of the presented approaches is exemplified through the
Furuta pendulum and the van de Vusse reaction. Furthermore, it has been previously
demonstrated that SOS methods can also be employed to investigate incremental stability
properties [19,54]. The acquired knowledge will be expanded to encompass other stability
properties in future research, such as output-state stability [72], input-output-state stabil-
ity [73], and integral input-state stability [74]. Additionally, the focus extends to design
approaches, including forthcoming work on backstepping and sliding-mode methods. The
above limitations concerning the dimensions of the systems can potentially be relaxed by
combining our approaches with successive design techniques such as backstepping [11].

7. Conclusions

Lyapunov’s second method, which was published more than 100 years ago, re-
presented a pioneering approach to the analysis of nonlinear systems. Starting with the
stability analysis of an equilibrium point, this approach was expanded in a variety of ways
to control engineering problems and questions.

The main disadvantage of the Lyapunov-like theorems is that they are not constructive.
The practical use of Lyapunov methods usually requires a considerable understanding of
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the system under consideration. Numerous approaches have been developed in recent
decades to alleviate this difficulty. In this article, two more approaches to allow the practical
use of Lyapunov methods have been discussed.
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