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Abstract: Hand gestures are an essential part of human-to-human communication and interaction
and, therefore, of technical applications. The aim is increasingly to achieve interaction between
humans and computers that is as natural as possible, for example, by means of natural language or
hand gestures. In the context of human-machine interaction research, these methods are consequently
being explored more and more. However, the realization of natural communication between humans
and computers is a major challenge. In the field of hand gesture recognition, research approaches are
being pursued that use additional hardware, such as special gloves, to classify gestures with high
accuracy. Recently, deep learning techniques using artificial neural networks have been increasingly
proposed for the problem of gesture recognition without using such tools. In this context, we
explore the approach of convolutional neural network (CNN) in detail for the task of hand gesture
recognition. CNN is a deep neural network that can be used in the fields of visual object processing
and classification. The goal of this work is to recognize ten types of static hand gestures in front
of complex backgrounds and different hand sizes based on raw images without the use of extra
hardware. We achieved good results with a CNN network architecture consisting of seven layers.
Through data augmentation and skin segmentation, a significant increase in the model’s accuracy
was achieved. On public benchmarks, two challenging datasets have been classified almost perfectly,
with testing accuracies of 96.5% and 96.57%.

Keywords: static gesture recognition; CNN; color model transform; skin color segmentation;
preprocessing; data augmentation; adam optimizer; cross-entropy loss

1. Introduction

In order to communicate with computers in more effective and natural ways, re-
searchers have experimented with various methods for more than half of the last century.
Over time, human interaction was made mainly via a keyboard and mouse. Most of the
time, we interact with computers using our fingers and eyes, but other body parts, includ-
ing our legs, arms, and mouth, are underutilized or never used at all. This is inconvenient
since it is like composing emails with just one finger. Standard image processing methods
do not produce excellent results, so machine learning is required for gesture detection to
reach its full potential. Gestures are meaningful, expressive body motions that involve
physical movements of the body, hands, arms, head, face, and fingers. Gesture recognition
is the process that seeks to identify gestures and translate them into commands that can
facilitate effective communication between humans and computers. Hand gestures are
either dynamic or static. Implicit hand gestures and postural behavior are considered for
the recognition of emotional states [1,2]. However, this paper is meant to focus more on the
recognition of static, explicit hand gestures.

At present, there are some problems in visual gesture recognition, such as accuracy,
real-time, and poor robustness. Although there are many methods of gesture recognition,
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vision-based gesture recognition still faces many serious problems in practice. It is mainly
reflected in a low recognition rate, poor robustness, insensitivity in real-time, and poor
practicability. Gesture recognition should bring great results no matter the background; it
should work whether you are in the car, at home, or walking down the street. Using CNN
helps overcome the problem of identifying gestures in complex backgrounds with very
high accuracy.

Advancements in CNN and the recently emerged deep learning techniques avoid the
need for deriving complex handcrafted feature descriptors from images, so they outweigh
the classical approach to hand gesture recognition [3–6]. By learning the high-level ab-
stractions in images, CNN automates the feature extraction process and uses hierarchical
architecture to capture the most discriminative feature values [7,8].

In ref. [9], Gao et al. proposed a parallel CNN model that used RGB and depth images
as input. Parallel CNN consists of two CNNs, namely depth-CNN and RGB-CNN, where
one takes a depth image as input while the other takes an RGB image as input. A prediction
probability was weighted on the last layer of each CNN output and concatenated to have
the input to a softmax classifier layer. The dataset used contains a total of 24 hand gestures,
representing the 24 letters (except J and Z, because J and Z are dynamic hand gestures).
Each gesture contains 5000 sample images, which are 2500 RGB images and 2500 depth
images, completed by 5 people in different backgrounds with different illumination. So
there are a total of 120,000 pictures, which are 60,000 RGB images and 60,000 depth images.
The model accuracy has reached 93.3% for American Sign Language (ASL). The advantage
of this approach is its ability to capture both appearance and depth information.

In ref. [10], Oliveira et al. proposed CNN with four convolutional layers, with a
max-pooling layer affixed to each convolutional layer, followed by a fully connected
layer and a softmax classifier. The proposed CNN was able to attain 99% for Irish Sign
Language (ISL). The dataset was collected by filming human subjects performing ISL hand
shapes and movements and then extracting frames from the videos. This produced a
total of 52,688 images for the 23 common hand- shapes from ISL. The very high accuracy
can be explained by the simple image black backgrounds, which make it so easy and
unchallenging to identify images and gestures. However, this method may struggle when
applied to real-world scenarios with complex backgrounds and lighting variations, which
is a disadvantage. In the proposed method, we will solve that by working on datasets with
complex backgounds. Arenas et al. [11] derived a CNN architecture from a directed acyclic
graph (DAG) structure (DAG-CNN). A self-constructed dataset was used to experiment
with the model on. The dataset consists of 10 gestures for controlling the robotic arm, and
model accuracy was 84.5%. However, the model’s performance may vary when applied to
different gesture recognition tasks.

Using fully connected layers of a pre-trained artificial neural network (AlexNet), Sa-
hoo et al. [12] proposed a deep CNN feature-based static hand gesture recognition system.
This system reduces redundant features using principal component analysis after deep
features are extracted using fully connected layers of AlexNet (PCA). An SVM was then
used as a classifier to categorize the poses of hand motions. The dataset was developed
from five subjects with 36 gesture poses (10 ASL digits and 26 ASL alphabets). The dataset
has variations in illumination in five different directions, such as left, right, top, bottom,
and diffuse. The gesture poses are performed with variation in hand rotation, scale, and ar-
ticulation. The American Sign Language dataset was used to test the system’s performance
on 36 gesture postures, and the average accuracy score was 87.83%. Wadhawan et al. [13]
proposed a generic CNN architecture for static sign language recognition. The dataset used
comprises 35,000 images, which include 350 images for each of the static signs. There are
100 distinct sign classes that include 23 alphabets of English, 0–10 digits, and 67 commonly
used words (e.g., bowl, water, stand, hand, fever, etc.). The network had an accuracy of
98.85% on the Indian sign language dataset. However, this approach may face challenges
when applied to complex backgrounds, as the dataset consists of images captured on a
simple white background that can be identified as relatively unchallenging.
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For the purpose of assessing human behavior in the context of classroom learning and
instruction with two teachers, Wang et al. [14] introduced a recognition model of hand
gestures based on CNN. The analysis of the teacher’s nonverbal behaviors that improve
the learning results of learners and attract their attention is achieved by exploiting the
recognized instructors’ hand gestures. A non-linear neural network with four convolu-
tional layers is used in this model to extract the features of hand gesture images. For
achieving robust recognition, three convolution layers of CNN are designed. A dataset of
38,425 infrared hand gesture images extracted from 100 short infrared videos is used to test
and evaluate the model. The model has reached an accuracy of more than 92%. The model
has the advantage of using a dataset that gives good results. Nevertheless, the images are
also simple, with simple infrared backgrounds.

In ref. [15], Zuocai Wang et al. suggested a method for identifying hand gestures
through the use of particle filtering. By implementing this filtering technique on hand
gesture images with identical backgrounds, the researchers achieved an accuracy of 90.6%.
However, it has the disadvantage that performance may degrade when backgrounds are
not stationary. In ref. [16], Suguna and Neethu utilized shape features obtained from hand
gesture images to categorize them into different classes. The extracted features were then
taught and sorted into clusters using the k-means clustering algorithm. This approach
offers simplicity but may struggle with complex hand gestures. In ref. [17], Marium et al.
put forward a method for hand gesture recognition that involved the use of a convexity
algorithm approach. The researchers tested this technique on hand gesture images with
identical backgrounds and obtained an accuracy of 87.5%. However, the approach was
limited by the fact that the algorithm worked best when the background of the hand gesture
image was stationary.

In ref. [18], Ashfaq and Khurshid converted spatial domain-format hand gesture
images into multi-class domain-format images using the Gabor filtering approach. They
employed both Bayesian and Naive Bayes classifiers to categorize the test hand gesture
images into different classes. The researchers found that the naive Bayes classifier produced
higher levels of classification accuracy than the Bayesian classification methodology, owing
to its straightforward architecture pattern. The data is acquired by a 7-megapixel camera.
The dataset used has a total of ten hand gestures. For each hand gesture, there are 18 images,
of which 5 are used for training and 13 for final testing. The model has an accuracy of 90%.
In [19], Rahman and Afrin used an SVM classification approach in 2013 to categorize hand
gesture images into various classes. The training set for the detection phase consisted of
over 800 positive samples and 1500 negative image samples. The researchers achieved a
sensitivity of 89.6%, a specificity of 79.9%, and an accuracy of 85.7%. However, the error
rate was high in this method, and it was not suitable for fast-moving background and
foreground object images.

In ref. [20,21], Authors utilized naive Bayes Classifier and SVM approaches for rec-
ognizing gestures, but these methods were unable to handle large training datasets and
needed a large number of training samples. To overcome these limitations, the current study
introduces a CNN classifier, which does not require a large number of training samples and
has a low complexity level. In ref. [22], Rao et al. developed a hand gesture recognition
system using a hidden Markov model. The authors constructed a Markov model for the
foreground fingers in a hand gesture image. This model was used in both the training and
testing of the binary classification approach, giving it an accuracy of 90.1%.

In ref. [23], the hand postures are classified using the shape, texture, and color features
with an SVM classifier. The proposed system utilizes a Bayesian model of visual attention
to generate a saliency map and to detect and identify the hand region, and they reported
an accuracy of 94.36% on the NUS II dataset that we use in our research. In ref. [24], the
authors proposed a CNN model with two convolutional layers, two max-pooling layers,
and one last fully connected layer. Dropout and activation functions are optional. However,
they reported better results using both of them. The best accuracy reported on the NUS-II
dataset was 89.1% by adding the dropout and activation functions. In our research paper,
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we will compare our results with the ones in refs. [23,24] as they reported results on the
same challenging dataset we use and they also use CNN.

In this research, we propose a CNN to recognize static hand gestures against complex
backgrounds. The objective is to increase the accuracy of correctly identified gestures.
Testing the accuracy of the model is achieved by comparing the true label of the image with
the predicted label. The efficiency of deep learning in extracting and classifying high-level
aspects of data has recently been the focus of existing research.

In summary, the contributions of this paper are adding the power of newly proposed
preprocessing techniques in this research for the images using skin segmentation and data
augmentation with the power of using CNN for classifying images. To the best of our
knowledge, there has been no previous publication that has performed skin segmentation
on the NUS II dataset using the same methodology we used. In addition, there is no paper
that reported any results of combining both the CNN model and skin segmentation on a
complex dataset such as the NUS II dataset, as we performed.

We compare our accuracy on the NUS II dataset to the one in refs. [23,24], as they both
use different state-of-the-art methods on the same dataset. The accuracy of our proposed
method has improved from the one in ref. [24], going from 89.1% to 96.5%, as the number
of misclassified images has decreased from representing 10.9% of the test dataset to only
3.5%. We also compare our accuracy on the Marcel dataset to the one in refs. [24,25], as
they also both use different state-of-the-art methods on the same dataset. The accuracy of
our proposed method has improved from the one in ref. [24], going from 85.59% to 96.57%,
as the number of misclassified images has decreased from representing 14.41% of the test
dataset to only 3.43%.

In Section 2, the concepts of skin segmentation, data augmentation, cross-entropy
loss function, and the structure of the newly proposed CNN are introduced. We also
discuss the training details and analysis of different methods and tools used in different
training experiments. In Section 3, we discuss the results of the proposed experiments.
Finally, In Sections 4 and 5, we discuss how the results can be interpreted from the previous
state-of-the-art methods in refs. [23–25], how well they have improved, and our conclusion.

2. Materials and Methods
2.1. Introduction

In spite of the advances in image processing techniques and gesture recognition, an
essential challenge is still unsolved: how can we recognize gestures in complex backgrounds
without using hardware with a high level of accuracy? It turns out that using CNN helps
us a lot to achieve that with very high accuracy by using the right dimensions for the CNN
layers and choosing the best optimization techniques.

Identifying the right label for the test image is the optimization aim of our CNN model.
We can achieve this by minimizing the loss function for the training and validation datasets
to achieve as much accuracy as possible. To train the model, skin segmentation is used to
reduce the data in the image and remove unwanted pixels that do not have skin HSV values.
The challenge with this technique is that some pixels in the background already have skin
colors, but it helps reduceing the data in the image and reduces the loss significantly.

Softmax is used to measure the predicted probabilities of each class by assigning them
values between 0 and 1. As a consequence of using softmax, the cross-entropy loss function
is used to measure the loss for the training dataset. Cross-entropy loss, or log loss, measures
the performance of a classification model whose output is a probability value between 0
and 1. Cross-entropy loss increases as the predicted probability diverges from the actual
label. Data augmentation is used to increase the dimensions of our training dataset, but
validation and test datasets are not affected, and it has shown a significant increase in
accuracy and decrease in the loss function as it helps in reducing overfitting and giving the
model more data to train on.
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2.2. Structure of the CNN

The motivation for proposing the chosen CNN architecture is the aim to leverage the
hierarchical features of hand gestures, exploit translation invariance, reduce dimensionality,
and efficiently extract discriminative features. The cascaded layers of convolutional and
max-pooling operations in the architecture allow the network to progressively learn and
extract increasingly complex features from the input images as a hierarchical feature
extraction. The initial convolutional layer with 15 output maps captures low-level visual
patterns, while subsequent layers with increasing output maps can learn more abstract and
high-level features relevant to hand gesture recognition. This hierarchical feature extraction
enables the network to effectively model the intricate details and variations present in hand
gestures. The max-pooling layers in the architecture help reduce the spatial dimensions of
the feature maps, resulting in a more compact representation of the learned features. By
downsampling the feature maps, the max-pooling layers retain the most salient information
while discarding less relevant or redundant details. This dimensionality reduction helps
to mitigate the impact of background noise, variations in hand pose, and other sources of
variability in hand gesture images, making the model more robust and efficient. We resize
the input size of images to 32 × 32 to reduce overfitting. If we use a bigger size, the model
will overfit, as we will show in the results of Section 3.6 by using image sizes of 64 × 64
and showing the increase in the overfitting.

As shown in Figure 1, the CNN model consists of two convolutional layers, followed
by a ReLU activation function for each one, and two pooling layers apart from the input
and output layers. As shown in Figure 1, the input image of 32 × 32 pixels is convolved
with 15 filter maps of size 6 × 6 to produce 15 output maps of 29 × 29 in the first layer.
These output maps are operated upon with a ReLU activation function. Downsampling of
the output convolutional maps is completed with max-pooling of 2 × 2 regions to yield
15 output maps of 14 × 14 in layer 2. The 10 output maps of layer 2 are convolved with
each of the 30 kernels of size 3 × 3 to obtain 30 maps of size 14 × 14. These maps are further
downsampled by a factor of 2 by max-pooling to produce 30 output maps of size 7 × 7
of layer 4. The output maps from layer 4 are concatenated to form a single vector during
training and fed to the next layer, which is the fully connected layer. A dropout probability
of 0.5 is used to reduce overfitting.

Figure 1. Layers of the proposed CNN model that shows each layer with its dimensions, the input
size, and the number of output classes. The first layer is a convolutional layer with 15 output maps
with dimensions of 29 × 29, The second one is a max-pooling layer which has dimensions of 14 × 14,
The third layer is a convolutional layer with 30 output maps with dimensions of 14 × 14, The fourth
layer is a max-pooling layer with dimensions of 7 × 7, The fifth layer is a fully connected layer which
is a single vector of all the output maps in the previous layer.

2.3. Skin Segmentation

The first technique we use to try to make the model learn better and increase its
accuracy is skin segmentation, which will be used in the second experiment. Segmentation
aims at partitioning areas in the image based on color, shape, and textures. It is useful in
many computer vision applications. such as medical image analysis, object detection, and
content-based image retrieval CBIR [26].
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The skin segmentation technique is completed using the OpenCV python binary
extension loader module. The segmentation is achieved by first converting the image from
RGB to HSV color space to be able to extract the hue values for skin colors. In the OpenCV
library in python, the measuring unit of hue values in the HSV (Hue, Saturation, Value)
color space is typically 8-bit unsigned integers, ranging from 0 to 179. This means that
hue values are quantized into discrete values, where each integer represents a specific hue
bin or hue category. The 0 to 179 range is used to represent the full 360 degrees of hue
values typically used in other systems, where each bin or category corresponds to a hue
angle increment of approximately 2 degrees (360 degrees divided by 180 bins). This integer
representation allows for efficient storage and processing of hue values in digital images
and computer vision applications.

Hue values for skin colors are found to range from 0 to 38, which means they are
ranging from 0 to 76 degrees in the normal HSV color space. The saturation and value
(also known as brightness) are given a complete range from 0 to 255. This is completed
to overcome the complex background, which has a wide range of brightness values that
can be very dark or very bright. We only truncate the values for hue, which give us the
true skin pixels, whatever the value of the saturation of light or brightness. Note also that
images have a complex background, which includes skin-colored surfaces. Therefore, any
skin-colored surface in the background is included in the image. Nevertheless, overall, it is
better than the normal image, as there are a lot of unwanted pixels in the background that
are removed, which makes us use only pixels that we can learn the most from during the
training and validation phases.

2.4. Data Augmentation

Data augmentation is a very powerful technique for constructing better datasets. Many
augmentations have been proposed, which can generally be classified as oversampling
techniques. Deep learning models rely on big data generated from data augmentation
to avoid overfitting. Artificially inflating datasets using methods of data augmentation
achieves the benefit of big data in the limited data domain [27].

Data augmentation is used on the training data of two datasets used (NUS II and Mar-
cel datasets) to increase the size of each by 10 times. The data augmentation is performed
by randomly rotating each image by an angle that ranges from 20 degrees to the left to
20 degrees to the right.

2.5. Dropout

Dropout is a regularization technique that helps address the issue of overfitting in
neural networks. During training, standard backpropagation learning can result in brittle
co-adaptations that only work well on the training data and do not generalize to new,
unseen data. By randomly dropping out or deactivating a fraction of hidden units during
each training iteration, dropout disrupts these co-adaptations, making the presence of
any particular hidden unit less reliable. This technique has been found to be effective in
improving the performance of neural networks in various application domains, such as
object classification, digit recognition, speech recognition, document classification, and
computational biology data analysis [28]. In our proposed CNN, The dropout is added at
the end of our model before the last fully connected layer to reduce the overfitting that is
reaching the final layer and make the model generalize to new, unseen data.

2.6. Loss Function

The loss function that has been used is the logarithmic loss, log loss, or logistic loss.
Each predicted class probability is compared with the actual class desired output of 0 or 1,
and a score/loss is calculated that penalizes the probability based on how far it is from the
actual expected value. The penalty is logarithmic in nature, yielding a large score for large
differences close to 1 and a small score for small differences tending to 0.
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Cross-entropy loss is used when adjusting model weights during training. The aim is
to minimize the loss, i.e., the smaller the loss, the better the model. A perfect model has a
cross-entropy loss of 0. Cross Entropy is defined as follows:

L = −
n

∑
1

pi ∗ log(qi) (1)

Here, n is the number of classes, pi the true probability of the ith class in the target, and qi
the softmax probability for the ith class.

Here, if we look at Equation (1), we can see that loss is calculated for each training
example by calculating the negative natural logarithm for the output of the softmax function
(qi) multiplied by the true probability of the target, which is 0 or 1 (pi). After calculating
the loss for every training example, we sum all of them to get the training loss of the whole
training dataset.

2.7. Training Details

All the experiments were completed on the Google colab CPU. Before training, the
images are resized to 32 × 32. A batch size of 64 is used for the training set, and a batch size
of 32 is used for both the validation set and the test set. Each image is resized into 32 × 32
and then enters the first convolution layer for the training phase. A learning rate of 0.001 is
used with Adam optimizer as our optimization function.

NUS II Dataset and Marcel datasets are the two dataset used for the training. NUS II
dataset is a 10-class hand posture dataset, as shown in Figure 2. The postures are shot in and
around the National University of Singapore (NUS), against complex natural backgrounds,
with various hand shapes and sizes, which makes it a challenging dataset, as shown in
Figure 3. The postures are performed by 40 subjects of different ethnicities from different
complex backgrounds. The subjects include both males and females in the age range of
22 to 56 years. The subjects are asked to show the 10 hand postures five times each. They
are asked to loosen the hand muscles after each shot in order to incorporate the natural
variations in the postures. The dataset consists of 2000 images; each image has a size of
160 × 120. Marcel dataset [25] is a 6-class hand posture dataset, as shown in Figure 4. For
Marcel dataset there are 4872 training images and 659 testing images with complex and
uniform backgrounds. To ensure random shuffling for the Marcel dataset, we combine
both training and test datasets in the original one to be a total of 5531 images. For both
datasets, they are divided into two phases. In the first phase, each one is shuffled randomly
and then separated into train and test sets, maintaining the ratio of each class in both of
them as the same ratio of splitting by using stratify in the train_test_Split function used
to split them. In the second phase, the training set from the first phase is split again into
training and validation sets by maintaining the same ratio of classes in both of them as we
have already achieved in the first phase by using stratify.

Figure 2. Sample images from NUS hand posture dataset-II, showing posture classes A to J respec-
tively. In the first row is the images of classes (A to E) and in the second row images of classes
(F to J).
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Figure 3. Sample images (class 1) from NUS hand posture dataset-II, showing the variations in hand
posture sizes and appearances.

Figure 4. Sample images from Marcel dataset showing images of classes (A, B, C, Five, V, Point)
respectively.

2.8. Training Experiments Details

These are the details of the experiments that have been conducted and will be refer-
enced in the following sections. In all the experiments, the model has been trained for
200 epochs using Adam optimizer. Tables 1 and 2 show the number of images in each of
the training validation and testing datasets for each of the NUS II and Marcel datasets.
The images column shows the total number of images; the total number of batches is
represented in the batches column. In the batch images column is the number of images in
all batches except for the last batch. The last batch images column shows the images in the
last batch. For example, in Table 1, the first row shows that in the training dataset of NUS II
without augmentation, the number of images is 1602 divided into 26 batches, where the
first 25 batches contain 64 images and the last batch contains 2 images. The same follows
for the two Tables 1 and 2.

Table 1. This table shows the number of images and batches for each dataset of NUS II dataset.

Datasets Splits of Training, Validation and Test Datasets of NUS II Dataset

Datasets Images Batches Batch Images Last Batch Images

Training dataset without
augmentation 1602 26 64 2

Training dataset with augmentation 16,020 251 64 20

Validation dataset 198 7 32 6

Test dataset 200 7 32 8

Table 2. This table shows the number of images and batches for each dataset of Marcel dataset.

Datasets Splits of Training, Validation and Test Datasets of Marcel Dataset

Datasets Images Batches Batch Images Last Batch Images

Training dataset with augmentation 44,290 692 64 2

Validation dataset 548 17 32 4

Test dataset 554 17 32 10
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2.9. Validation Details

Validation is achieved by evaluating our model on the validation dataset using the
eval function in the model library in Python. The prediction of the validation is achieved
on every image by iterating over them and computing the gradient by giving both the
prediction and the original labels to a criterion function, which computes the gradient
from the cross-entropy loss function that we used. After getting the validation loss, we do
backpropagation to learn how to update the weights and get a better validation loss for
the next iteration. A softmax function is then applied to the predicted variables to make
the predicted variables for each class sum up to 1. The validation accuracy is completed
by enumerating over the validation data loader and then comparing the original labels of
the image with the labels predicted from our model. After every iteration, we check if the
original label equals the predicted label. If they are equal, we increment our variable and
then see at the end how much our testing accuracy is by dividing the number of correct
predictions by the number of images in the validation dataset as follows:

Validation accuracy = number o f correct prediction
number o f images in the validation dataset

After every epoch, if the validation loss is less than the least validation loss so far, we
save a new model state dictionary. We then update our variable to be the least validation
loss for the next epoch to do the same thing again. As a result, we can know which are the
best weights to use for the testing phase as we finish.

2.10. Testing Details

The testing dataset has been derived from the NUS II and Marcel datasets by shuffling
the datasets and taking 10% of it. A softmax function is applied to the predicted variables
to make the predicted variables for each class sum up to 1. The testing is completed by
enumerating over the test data loader and then comparing the original labels of the image
with the labels predicted from our model, and then after every iteration we check if the
original label equals the predicted label; if yes, we increment our variable, and then we see
at the end how much our testing accuracy is by dividing the number of correct predictions
by the whole number of images in the test dataset as follows:

Test accuracy = number o f correct prediction
number o f images in the test dataset

3. Results

This section will go over the validation loss, training loss, and confusion matrix of
each experiment and show how the techniques used will affect the accuracy of the model
to get the highest accuracy possible. The results of our proposed method on the NUS II
dataset will be reported in Sections 3.1–3.4. In each section, we will report the results of
adding dropout, skin segmentation. and data augmentation one by one, respectively, to see
how much better our model accuracy improves by adding each. For Section 4, we will show
the final proposed method on the Marcel dataset to show that our proposed method works
on different challenging datasets and gives better accuracy than state-of-the-art methods.
In Section 3.6, we will report results on using different image sizes as an input to show that
the input size in our proposed model gives better results.

3.1. Results of Using Only the Structure of CNN without Skin Segmentation or Data
Augmentation or Dropout

The accuracy of our first experiment is 82.5%. The reason for this low accuracy is that
the model overfits when we do not use dropout. As we can see in Figure 5, overfitting can
be seen in the big difference between training loss and validation loss. The reason behind
that overfitting is that our model is performing so well on the training data but not well
on the new data. This overfitting occurs when the model uses too many features and not
enough data. To solve the two problems, we will use the dropout rate to reduce the features
of the model, and we will solve the problem of increasing the size of the dataset later when
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we use the data augmentation. In addition, the accuracy here is not so high. We did this
experiment on purpose before using any additional techniques or dropouts to show how
necessary it is to add them later.

Figure 5. The figure shows the training and validation loss of the CNN model without using dropout
on NUS II dataset. On the x-axis is the epoch and on the y-axis is the output of the loss function.

To see how the model performs in each class, we can look at the confusion matrix
and see how many images the model performed well on and how many images the model
misclassified; we can also observe a lot of misclassified photos due to overfitting. As we can
see in Table 3, the model performs very badly when classifying the class (H) and class (I);
every class consists of 20 photos. The model performs the best on class (J) as it misclassifies
only one photo to predict it as (I) instead of (J), but all other 19 photos of the (J) class have
been classified correctly.

Table 3. This table shows confusion matrix of not using dropout or skin segmentation or data
augmentation on NUS II dataset with an accuracy of 82.5%.

Confusion Matrix on NUS II Dataset with an Accuracy of 82.5%

A B C D E F G H I J

A 17 0 0 2 0 0 0 1 0 0

B 1 18 0 0 1 0 0 0 0 0

C 0 0 16 2 0 0 0 1 1 0

D 2 0 0 17 0 0 1 0 0 0

E 0 0 0 0 18 0 1 0 1 0

F 0 0 0 0 1 18 0 1 0 0

G 0 0 1 1 0 0 18 0 0 0

H 2 1 1 3 1 1 0 10 1 0

I 0 0 0 1 1 3 0 0 14 1

J 0 0 0 0 0 0 0 0 1 19

3.2. Results of Adding Dropout to the CNN Model

The accuracy after adding dropout to the CNN model is 90.5%. As we can see in
Figure 6, by using a dropout rate of 0.5, the difference between the training loss and the
validation loss has decreased significantly, which means that overfitting has decreased as the
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model now generalizes better on the new data used for validation or testing. Furthermore,
we can see that the overall accuracy of the model increased from 82.5% to 90.5%. As we can
see in Table 4, the model improves so much with most of the classes, especially with class
(H), which seems to be overfitting more than other classes as it has increased from 10 to
14, which means it has classified 4 images more correctly. The classes (B, E, G) have been
classified correctly for all of the images after doing the dropout, as they have an accuracy
of 100%. Hence, we can see that using dropout has improved the model so much.

Figure 6. The figure shows the training and validation loss of the CNN model after adding dropout
on NUS II dataset. On the x-axis is the epoch and on the y-axis is the output of the loss function.

Table 4. This table shows the confusion matrix of using dropout and not using skin segmentation or
data augmentation on NUS II dataset.

Confusion Matrix with an Accuracy of 90.5% on NUS II Dataset

A B C D E F G H I J

A 17 0 1 0 0 0 1 1 0 0

B 0 20 0 0 0 0 0 0 0 0

C 0 1 19 0 0 0 0 0 0 0

D 0 1 0 19 0 0 0 0 0 0

E 0 0 0 0 20 0 0 0 0 0

F 0 0 2 0 1 17 0 0 0 0

G 0 0 0 0 0 0 20 0 0 0

H 1 1 1 1 0 0 0 14 2 0

I 0 0 0 0 1 3 0 0 16 0

J 0 0 0 0 0 0 0 0 1 19

3.3. Results of Using Skin Segmentation

As a result of using skin segmentation, a lot of unwanted pixels have been removed
from each image, making it easier for the CNN model to correctly classify images, as we
will see later in the confusion matrix of this experiment in Table 5. In Figure 7, we can see
an image example from our dataset before and after segmentation. We can see in the figure
that the pixels that have the skin color are all present in the segmented image along, with
some other pixels that have hue values close to the skin color, but we can see clearly that a
lot of pixels in the upper part of the image have been removed.
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Table 5. This table shows the confusion matrix of using skin segmentation and not using data
augmentation on NUS II dataset.

Confusion Matrix with an Accuracy of 93.5% on NUS II Dataset

A B C D E F G H I J

A 19 0 1 0 0 0 0 0 0 0

B 0 18 1 0 0 0 0 1 0 0

C 0 0 19 0 1 0 0 0 0 0

D 1 0 0 19 0 0 0 0 0 0

E 0 0 0 0 18 1 0 0 1 0

F 0 0 0 0 0 20 0 0 0 0

G 0 0 0 0 1 0 19 0 0 0

H 0 2 0 0 1 0 0 16 1 0

I 0 0 0 0 1 0 0 0 19 0

J 0 0 0 0 0 0 0 0 0 20

Figure 7. The figure shows an original image and the segmented image.

As we can see in Table 5, using skin segmentation has improved the accuracy of our
model and decreased the loss of training and validation loss. The accuracy has improved
from 90.5% without using skin segmentation to 93.5% by using skin segmentation. The
misclassified images have decreased by 31.6%, from 19 misclassified images to 13 images.
The reason behind that is that much unwanted data has been removed from every image,
leaving only the pixels that have the skin color values. Due to the complex and challenging
background, We can see that some pixels in the background have skin color too, which
means that they are included in our image with hands. With a simpler dataset that has
a clear background, the improvement in accuracy is much greater, as the image simply
consists of only hands. However, we can also say that with these complex backgrounds, an
improvement of 31.6% is pretty high and shows that skin segmentation has a very high
effect. Now let us take a look at the confusion matrix and see which images have been
classified correctly.

As shown in Table 5, many classes have improved, and more images are classified
correctly than in the first experiment. The image of class (F) has increased from 17 to 20,
which means all images of class (F) are predicted correctly after doing skin segmentation.
Furthermore, class (J) now has an accuracy of 100% as all its images are predicted correctly.
Classes with the lowest accuracy from the first experiment (I, H) have increased their
accuracy significantly, as we can see in class (H), which has increased from 14 to 16, which
means that two more images are classified correctly. Looking at class (I), we can observe that
it has increased from 16 to reach 19, which means that 3 more images are classified correctly.
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3.4. Results of Using Skin Segmentation and Data Augmentation on the NUS II Dataset

As a result of using data augmentation, each segmented image in the training dataset
is augmented to 10 different images using rotation by an angle that ranges from 20 degrees
to the left to 20 degrees to the right. Here in Figure 8, we can see an example of two original
images and the 10 augmented images for each image.

Figure 8. The figure shows an example of data augmentation implemented with two original images
and their corresponding augmented images (10 augmented images for each original image).

As we can see in Table 6, using data augmentation has improved the accuracy of our
model and decreased the loss of training and validation. The accuracy has been enhanced
from 93.5% without using skin segmentation to 96.5% by using data augmentation, which
means that our model has improved by nearly 41.6%. Increasing the accuracy by 3% means
that six more images have been classified correctly by using data augmentation. The reason
behind that is the increase in the size of our training dataset to 10 × 10 of its original size
and decreasing the overfitting.

Table 6. This table shows the confusion matrix of using skin segmentation and data augmentation
with input size of 32 × 32 on NUS II dataset.

Confusion Matrix with an Accuracy of 96.5% on NUS II Dataset

A B C D E F G H I J

A 19 0 1 0 0 0 0 0 0 0

B 0 20 0 0 0 0 0 0 0 0

C 0 0 20 0 0 0 0 0 0 0

D 0 0 0 20 0 0 0 0 0 0

E 0 0 0 0 19 1 0 0 0 0

F 0 0 0 0 0 19 0 0 0 1

G 0 0 0 0 0 0 20 0 0 0

H 1 0 0 1 1 0 0 17 0 0

I 0 0 0 0 1 0 0 0 19 0

J 0 0 0 0 0 0 0 0 0 20
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As shown in Table 7, we can see that the model has improved significantly; as shown,
some classes (B, C, D, G, J) have improved in such a way that all their images are classified
correctly using both data augmentation and skin segmentation. Other classes have only
one image misclassified, and all the other 19 images are classified correctly, as we can
see in classes (A, E, F, I). We can see here that the class with the least accuracy in all the
experiments, which is class (H), has one more image classified correctly for a total of
17 correctly classified images instead of 16 images in the previous experiment.

Table 7. This table shows the confusion matrix of using skin segmentation and data augmentation
with input size of 64 × 64.

Confusion Matrix with an Accuracy of 92%

A B C D E F G H I J

A 19 0 0 1 0 0 0 0 0 0

B 0 20 0 0 0 0 0 0 0 0

C 0 0 18 1 1 0 0 0 0 0

D 2 0 0 17 1 0 0 0 0 0

E 0 0 0 0 19 1 0 0 0 0

F 0 0 0 0 0 18 0 0 1 1

G 0 0 0 0 0 0 20 0 0 0

H 1 0 2 2 1 0 0 15 0 0

I 0 0 0 0 0 1 0 0 18 1

J 0 0 0 0 0 0 0 0 0 20

In Figure 9, we can see examples of three misclassified images. In the first image, it
is misclassified as class (A). If we look at Figure 2, we can see some similarities between
classes (H and A) in the shape of the hand. For example, in both of them, three fingers are
folded, but the last two fingers make a difference. In the second misclassified image, the
background has the same skin color, which makes it diffuse with the hand shape, making it
more difficult for the CNN to classify correctly. In the third image, we can also see that the
true and predicted classes (F and J) have a lot of similarities, as in both of them the hand is
rotated by 90 degrees in the left direction, as can be seen in Figure 2.

Figure 9. Sample of misclassified images from classes (H and F) and their predicted classes.

3.5. Results of Using Same Previous Architecure with Skin Segmentation and Data Augmentation
on Marcel Dataset

We have tested our proposed method on a different dataset, which is the Marcel
dataset, to see how well it performs compared with state of the art methods. Using our
proposed method, we obtained an accuracy of 96.57% with 18 misclassified images out
of 554 images. As shown in Table 8, the accuracy obtained is higher than the state-of-the-
art result of 76.10% reported on the Marcel dataset in Table 2 and the result of 85.59%
reported on the Marcel dataset in [24]. We can see the confusion matrix in Table 9 and
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how many images are misclassified in each class. In Figure 10, we can see the training and
validation losses.

Table 8. This table shows the comparison of the Recognition accuracy of the Proposed Method on
Marcel Posture Dataset.

Comparison of the Proposed Model Accuracy with the State of the Art on Marcel Dataset

Author Method Accuracy

S. Marcel [25] Constrained Generative Model 76.1%

Mohanty et al. [24] Deep Learning with CNN 85.59%

proposed Deep Learning with CNN 96.57%

Table 9. This table shows the confusion matrix of out proposed method on Marcel dataset.

Confusion Matrix with an Accuracy of 96.57%

A B C F Point V

A 142 0 0 1 0 0

B 1 55 1 1 1 0

C 0 0 68 0 0 0

F 1 5 0 73 0 0

Point 2 1 0 0 147 2

V 0 0 0 0 3 50

Figure 10. The figure shows the training and validation loss of the our proposed method on
Marcel dataset.

3.6. Results of Increasing Input Image Size to Be 64 × 64 with Different CNN Structure While
Using the Same Skin Segmentation and Data Augmentation Proposed in the Experiments before

In this experiment, we will increase the size of the input images to be 64 × 64 instead
of 32 × 32. As we can see in Figure 11, we have changed the structure of the CNN model
for the new input image size. The accuracy reported here is 92%, which is much lower than
the previous experiment that used an input size of 32 × 32. This significant reduction in
accuracy is due to the overfitting of the model when we use larger input sizes. As we can
see in Figure 12, the overfitting for the model with an input size of 64 × 64 is grater than
the one with an input size of 32 × 32 and that leads to more images being misclassified in
the test dataset.
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Figure 11. Layers of the proposed CNN model that shows each layer with its dimensions, the input
size, and the number of output classes. The first layer is a convolutional layer with 15 output maps
with dimensions of 61 × 61, The second one is a max-pooling layer which has dimensions of 30 × 30,
The third layer is a convolutional layer with 30 output maps with dimensions of 30 × 30, The fourth
layer is a max-pooling layer with dimensions of 15 × 15, The fifth layer is a fully connected layer
which is a single vector of all the output maps in the previous layer.

Figure 12. The figure shows the training and validation loss of the CNN model after using skin
segmentation and data augmentation on NUS II dataset. The upper graph is the one with input
image size of 32 × 32 and the lower one is the one with input size of 64 × 64. On the x-axis is the
epoch and on the y-axis is the output of the loss function.

4. Discussion

We will discuss our results and compare them to the methods reported on the same
datasets in refs. [23–25]. As we can see in Table 10, our proposed model shows an im-
provement in accuracy, as it reported higher accuracy than the state-of-the-art methods that
tried to recognize hand gestures in the same NUS II dataset. We will compare more to the



Algorithms 2023, 16, 361 17 of 19

one in ref. [24], as it also uses CNN model. The proposed neural network parameters are
modified from the ones introduced in ref. [24]. As an example, the filter size in the proposed
network of the first layer is bigger than the one introduced in ref. [24]. This is completed
for the purpose of increasing the receptive field as The filter size determines the area of
the input image that each convolutional operation considers. A larger filter size allows the
convolutional layer to capture larger patterns or features in the input image. Adding the
proposed skin segmentation technique in this research has increased the model accuracy
significantly compared with the accuracy in ref. [23,24] and has shown the importance of
preprocessing and how it makes a big difference compared with the results. As shown in
Table 8, the same proposed method also shows an improvement in accuracy as it reported
higher accuracy than the state-of-the-art methods that tried to recognize hand gestures
in the same Marcel dataset, which shows that our proposed method reports improved
accuracies on multiple challenging datasets. We can also see that using an input size of
32 × 32 has shown better results than using an input size of 64 × 64 due to less overfitting.

Table 10. This table shows the comparison of the Recognition accuracy of the Proposed Method on
NUS II Hand Posture Dataset.

Comparison of the Proposed Model Accuracy with the State of the Art on NUS II Dataset

Author Method Accuracy

Pramod et al. [23] C2SMF (color, shape and texture)/multiclass SVM 94.36%

Mohanty et al. [24] Deep Learning with CNN 89.1%

proposed Deep Learning with CNN 96.5%

5. Conclusions

As we can see in Table 11, After conducting six training experiments, the model has
proven to perform the best by using our proposed CNN model parameters with an input
image size of 32 × 32 with adding skin segmentation and data augmentation, which has
decreased the overfitting to reach an accuracy of 96.5% and 96.57% on the two challenging
NUS II and Marcel datasets, respectively.

Table 11. This table shows the summary of our experiments and their accuracies to do the conclusion.

Experiments and Their Accuracies

Dataset Used Experiment Accuracy

NUS II Using only the structure of CNN with input size of 32 × 32 Without skin segmentation or data
augmentation or dropout 82.5%

NUS II Adding dropout with input size of 32 × 32 90.5%

NUS II Adding skin segmentation and dropout with input size of 32 × 32 93.5%

NUS II Adding data augmentation, skin segmentation and dropout with input size of 32 × 32 96.5%

Marcel Adding data augmentation, skin segmentation and dropout with input size of 32 × 32 96.57%

NUS II Adding data augmentation, skin segmentation and dropout with input size of 64 × 64 92%

Reaching an accuracy of more than 96% on both challenging datasets is fair and shows
that our proposed model works well regardless of the dataset provided. Reporting good
accuracy on the challenging datasets shows that the model can also report good and even
better accuracy on simpler datasets, as they are less challenging.

Author Contributions: software, A.E.; formal analysis, F.S.; writing—original draft, A.E.; writing—review
& editing, F.S.; supervision, F.S. All authors have read and agreed to the published version of
the manuscript.
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