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Abstract: A new algorithm is presented to compute nonrigid, possibly partial comparisons of shapes
defined by unstructured triangulations of their surfaces. The algorithm takes as input a pair of
surfaces with each surface given by a distinct and unrelated triangulation. Its goal is to define a
possibly partial correspondence between the vertices of the two triangulations, with a cost associated
with this correspondence that can serve as a measure of the similarity of the two shapes. To find
this correspondence, the vertices in each triangulation are characterized by a signature vector of
features. We tested both the LD-SIFT signatures, based on the concept of spin images, and the wave
kernel signatures obtained by solving the Shrödinger equation on the triangulation. A cost matrix C
is constructed such that C(k, l) is the norm of the difference of the signature vectors of vertices k and
l. The correspondence between the triangulations is then computed as the transport plan that solves
the optimal transport or optimal partial transport problem between their sets of vertices. We use a
statistical physics approach to solve these problems. The presentation of the proposed algorithm is
complemented with examples that illustrate its effectiveness and manageable computing cost.

Keywords: optimal transport; shape matching; statistical physics

1. Introduction

Our perception and analysis of the world around us have become mostly digital. Many
scientific disciplines clearly benefit from this digital revolution. Scientists have created
a wide variety of digital sensors that enable them to report on their research subjects at
various time and length scales. This has led them to generate extensive quantitative and
visual information, and the burden has now been placed into extracting knowledge from
this information. In the case of 3D visual data, this amounts to identifying the shapes they
contain. Computational geometry, computer vision, and computer graphics all face the
challenge of developing effective algorithms to define, quantify, and compare those shapes.
The advancements in machine learning and computational geometry have been extremely
beneficial to those algorithms. This paper provides another source of evidence in support
of enhancing such algorithms. We demonstrate that we can generate a potentially partial
mapping between 3D shapes using statistical physics approaches. In our method, the cost
of the correspondence acts as a gauge of the shapes’ similarity. We demonstrate the efficacy
of this strategy on both simulated and actual anatomical data.

Methods that compare shapes fall under the general framework of morphometrics, the
study of form, a concept that includes size and shape. While morphometrics is most often
associated with biology and natural sciences, its techniques apply to any shape matching
problems. Two types of such techniques can usually be identified, those based on global
measures of the forms and those based on computing correspondences, or maps between
the shapes. We review these two approaches briefly below.

Traditionally, morphometrics rely on measurements of lengths, widths, areas, masses,
ratios, and/or angles that are then compared to assess the similarities between shapes [1].
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A significant drawback of such an approach is that the measurements are usually correlated
and therefore include a significant amount of redundancy. Recent improvements within
this approach include computation of geometric moments or Zernike moments over the
shape [2–5], or of spherical harmonics over its surface [6]. All those methods are based on
global properties of the forms under study, thereby preventing partial matching between
such forms.

An alternate approach to shape comparison is to first build a correspondence between
the shapes. Finding correspondences, or maps between shapes, is a common problem in ge-
ometric processing with a wide range of applications (for reviews, see, for example, [7–10]).
Here, we briefly discuss correspondence methods that are pertinent to our study. A promis-
ing method for such shape correspondence is to view the shapes as metric spaces. Two
shapes are then equal if they are isometric. Otherwise, a map is built between the two
shapes that is as isometric as possible, such that the difference between the two shapes is
measured as the distance between the map and the isometry. For discrete shapes equipped
with discrete metrics, the difference with an isometry is measured by computing the distor-
tion in distances between pairs of points on the surface of the shapes, where the distance
can be Euclidean or geometric. This idea has lead to the concepts of Gromov–Hausdorff
and Gromov–Wasserstein distances between shapes (see, for example, [11–17] in the con-
text of shape comparison). Unfortunately, computing such distance amounts to solving a
quadratic assignment problem, which is NP-hard. Despite recent progress (see, for exam-
ple, [18] for computing the Gromov–Wasserstein distance), efforts have focused on alternate
approaches to finding shape correspondence. The first such approach proceeds by mapping
the shapes into a common parameterizing metric domain, so that it is possible to directly
compute a distance between points on different shapes. Methods in this category usually
proceed in three steps. They first define a set of well-chosen landmarks or keypoints on the
surfaces of the shapes, then assign “signatures” to those keypoints (i.e., their coordinates in
the metric parameterizing domain), and finally determine a correspondence between these
points, using the similarities of their signatures. Such a strategy has become standard for
comparing 2D images. Methods such as SIFT [19], SURF [20] or ORB [21] are commonly
used to detect keypoints within 2D images and assign them signatures. Those keypoints
are then matched using techniques such as RANSAC or the iterative closest point (ICP)
algorithm. The problem of keypoint detection and signature assignment is harder for 3D
objects. Many methods for assigning a signature to a keypoint have been proposed [22],
such as those that extrapolate the 2D signatures for images by building multiscale repre-
sentations of the neighborhood of the keypoint [23–26], those that rely on the properties
of the Laplace–Beltrami operator defined on the surface of interest [27–29], and those that
rely on conformal mapping to a standard domain [14,30,31]. Matching the points based on
their signatures is performed using the concept of “bag-of-features” to search for similar
shapes, following the idea of Google search [32], the concept of shape distributions [33],
by directly comparing top correspondences between shapes [29], or by using optimal
transport [14,31,34–36]. The second approach consists of relaxing the requirements that
the correspondence be point-wise by considering soft correspondence [16,37–39]. Finally,
we briefly mention the data-driven approaches that take advantage of modern machine
learning frameworks. We refer readers interested in those techniques to recent papers and
surveys [22,40–45].

Our aim in this paper is to provide an alternate framework for shape comparison
that falls under the shape correspondence category, but that uses methods derived from
statistical physics to measure the similarities between shapes, with a special focus on partial
matching (see Figure 1 for an overview). We consider shapes that are defined by their
surface, usually represented by a triangulated mesh characterized with vertices, edges, and
triangles. We consider all vertices in a mesh as keypoints. We test two types of signatures
for the vertices, one based on a representation of their neighborhood, and one based on the
properties of the Laplace Beltrami operator for the mesh. The former is based on the idea of
scale-invariant spin images adapted to triangular meshes, the LD-SIFT signatures [46]. The
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latter is based on the idea of solving the Shrödinger equation on the surface to characterize
how waves travel on this surface and therefore capture its geometry. The corresponding
signatures are referred to as wave kernel (WK) signatures [29]. The mapping between
the vertices is generated from the transport plan that solves either the optimal balanced
transport (OT) problem or the optimal unbalanced transport (UOT) problem. We consider
the unbalanced versions of the OT problem as it is expected to solve partial matching
problems. We use a statistical physics approach to solve these OT problems [47,48]. The
cost associated with the optimal plan defines a distance between the two shapes. This paper
does not stand on its own. The concepts of spin images and WK signatures for meshes have
been proposed before. The idea of using optimal transport to compute correspondences
between points describing shapes has been described in detail in the pioneering work
of [14], and applied in different settings [31,34,35]. The novelty of this paper is to integrate
those different components into a global physics-based approach for solving the full and
partial shape registration problems. Our report should not be expected to be exhaustive: we
limit ourselves to two shape signatures and two optimal transport techniques, but provide
in-depth analyses of their strengths and weaknesses.

(A) (B) (C)

Figure 1. Comparing shapes is a central problem in computational geometry and computer graphics.
This problem is exacerbated when those shapes cannot be matched partially. We propose an algorithm
that combines multiple techniques from statistical physics from physics-based shape signature
to alignment based on optimal transport to solve this problem. When registering the head of a
cat (orange) (A) to the full corresponding cat using shape signatures and either balanced optimal
transport (B), or unbalanced optimal transport (C), our algorithm enables either full or partial
matching, respectively.

We are well aware that with the increase of computing power and the number of shape
datasets available, deep learning techniques dominate the domain of shape comparisons
(see, for example, [49–52]). Applications of deep learning, however, are contingent on the
access to large datasets of shapes that are relevant to the shapes under study. It is not our
intent to compete with such approaches. Instead, we focus on a physics-based approach
that provides an alternate framework for solving partial shape matching. Ultimately, our
formalism should prove useful for developing better loss functions for machine learning.

The paper is organized as follows. In the next section, we introduce the different
elements of our framework, namely, signatures of vertices on surfaces and unbalanced
optimal transport. In the results section, we compare the two types of signatures considered,
as well as the two types of OT solutions proposed for registering those signatures, on
nonrigid full and partial 3D matching examples, as well as on anatomical datasets. For the
full shape matching, we provide comparisons with other methods based on the SHREC19
benchmark [53]. The following section includes a discussion on the differences between
the two signatures we have considered, as well as on the differences between the two OT
frameworks. The summary and conclusion section highlights possible future developments.
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2. A Physics Approach to Shape Comparison
2.1. Basic Ideas

Let S1 and S2 be two surfaces of genus zero, represented by the meshesM1 andM2,
respectively. Both meshes are taken to be triangular, withM = (V, E, T) and V = {vi},
E = {eij}, and T = {tijk} denoting the vertices, edges and triangles, respectively. Our
objective is to create a potentially partial correspondence between the vertices of the two
meshes, along with a cost that can be used to gauge how similar the two surfaces are. To find
this correspondence, we characterize the vertices either with their LD-SIFT signatures [46],
or with their wave kernel signatures [29]. A cost matrix C is then constructed such that
C(k, l) is the L1 or L2 norm between the feature vectors of vertices k and l inM1 andM2,
respectively. The correspondence is then computed as the transport plan that solves the
optimal transport (OT) or optimal unbalanced transport (OUT) problem betweenM1 and
M2. We use a statistical physics approach to solve these problems [47,54].

Mathematical details for the different steps mentioned above are provided in the next
subsections.

2.2. LD-SIFT: Geometric Signatures for Meshes

We characterize the vertices of a mesh using a variant of spin images for shapes, namely,
LD-SIFT invariants [46]. For sake of completeness, we briefly outline their constructions;
more details can be found in the original paper. Note that we do not include the keypoints
detection scheme proposed by the authors.

Let v ∈ V be a vertex of the triangulated mesh, and let N(v) be a neighborhood of
v, i.e., the set of vertices in V that are within a distance S(v) of v. S(v) is a “scale” for v,
defined as S(v) = KD(v), where K is a constant independent of v, and D is a local measure
of the density around v, computed as

D(v) =
1

|O(v)| ∑
w∈O(v)

|v− w|, (1)

where O(v) is the set of all vertices w such that (vw) ∈ E (i.e., O(v) is the one-ring of v), and
|v− w| is the Euclidean distance between the two vertices v and w. Let C be the covariance
matrix over all vertices of N(v). From its two leading eigenvectors e1 and e2, we compute
the vector n = e1 × e2, where × stands for cross product. The vector n defines a normal
to the mesh at v, and the plan P(v) that is perpendicular to n with v in it is referred to as
the dominant plane of v. In general, P is the same as the tangent plane to the mesh at v. We
then project all vertices in V onto P(v) to generate a depth map on this plane. The square
section of this map centered on v with size S(v) defines a 2D image. We compute the SIFT
descriptor for this image at its center (i.e., at the position of v); this descriptor corresponds
to the LD-SIFT descriptor of v in the mesh. More details on the actual computation will be
provided in the section Implementation.

2.3. WKS: Spectral Signatures for Meshes

The wave kernel signature (WKS) was described in detail in [29]. Here, we present
its main concept and describe its implementation for surfaces represented as triangulated
meshes.

The WKS is based on solving the time-dependent Shrödinger wave equation in the
absence of an external potential for a nonrelativistic particle on the surface of the shape of
interest. The evolution of such a particle is described by its wave function ψ(x, t), which is
the solution of

∂ψ

∂t
(x, t) = i∆ψ(x, t), (2)

where ∆ is the Laplace–Beltrami (LB) operator. Note that this equation is complex due to
the presence of i. We will write E0 ≤ E1 ≤ . . . ≤ Ek . . . the eigenvalues of the LB operator,



Algorithms 2023, 16, 346 5 of 25

and φk the eigenvector associated to the eigenvalue Ek. For a given energy probability
distribution f 2

E with expectation value E, the wave function of the particle is given by

ψE(x, t) = ∑
k

eiEktφk(x) fE(Ek). (3)

The probability to measure the particle at position x and time t on the surface is then
|ψE(x, t)|2. As the time parameter has no straightforward relevance to the geometry of the
shape, the WKS is defined as the average probability over time to measure the particle at
position s:

WKS(E, x) = ∑
k

φ2
k(x) f 2

E(Ek). (4)

Assuming that deformation of shapes are independently distributed, Aubry et al. as-
sumed a log-normal distribution for f 2

E, leading to the following definition for the WKS [29].

Definition 1. The wave kernel signature at a point x of the surface considered is a real-valued
function in the logarithmic energy scale e = log(E) defined as

WKS(x, e) = Ce ∑
k

φ2
k(x)e−

e−log(Ek)
2σ2 , (5)

where Ce =

(
∑k e−

e−log(Ek)
2σ2

)−1

is a normalization constant and σ is a parameter corresponding to

the width of the normal distribution.

It is possible to compute the WKS p(x) = (WKS(x, e1), . . . , WKS(x, en)) for each point
of the shape, where emin, . . . , emax are some fixed energy values.

2.4. The Optimal Balanced Transport Problem

A full description of this formalism is provided in [47,54]. We outline the method here
as it is key to the framework proposed in this paper.

The sets of vertices of the two meshes are relabeled as S1 of size N1 and S2 of size N2.
Each point k in S1 (resp S2) is allocated a “mass” m1(k) (respectively, m2(k)). We ensure
that ∑k m1(k) = ∑l m2(l), namely, that we have balance. For convenience, we set those two
sums to be 1. We encode the cost of transport between S1 and S2 as a positive matrix C(k, l)
with k ∈ {1 . . . , N1} and l ∈ {1 . . . , N2}. C(k, l) is set to the L1 or L2-norm of the difference
of the signatures of the points k and l onM1 andM2, respectively (see Implementations
for the choice of the norm). The OT problem can then be stated as finding a transportation
matrix G between S1 and S2 that minimizes the transport cost U defined as

U(G) = ∑
k,l

G(k, l)C(k, l), (6)

where the summations extend over all k ∈ {1 . . . , N1} and l ∈ {1 . . . , N2}. The minimum
of U is to be found for the values of G(k, l) that satisfy the following constraints:

∀(k, l), G(k, l) ≥ 0,

∀k, ∑
l

G(k, l) = m1(k),

∀l, ∑
k

G(k, l) = m2(l).

(7)

The solution to the OT problem provides an optimal transport plan Gopt and the
corresponding minimum transport cost Umin = U(Gopt).
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We adopt a reasoning common in statistical physics. A system in thermal equilibrium
at a fixed temperature will sample a large number of states. The likelihood that this system
will exist in any certain condition is represented by the associated Gibbs distribution.
The state with the least energy is the one that is most likely. Therefore, the problem of
minimizing an energy function can be recast as the problem of locating the most likely
state of the system it characterizes. This system corresponds to the polytope G(S1, S2) of all
transportation plans that are in compliance with the constraints defined in Equation (7). To
find the most probable state, we consider the partition function Zβ(S1, S2) computed over
all states in this polytope, given by

Zβ(S1, S2) = e−βFβ(S1,S2) =
∫

G∈G(S1,S2)
e−βU(G)dµ12. (8)

Note that β = 1/kBT, with kB the Boltzmann constant and T the temperature. dµ12 is
an integration variable that can be assimilated to the Lebesgue measure for the space of
transportation plans. Fβ(S1, S2) is the free energy of the system. Unfortunately, it is not
possible to explicitly calculate this free energy. Instead, we suggest a method that estimates
the extremum of this free energy using the concept of saddle point approximation.

Considering the constraints defined in Equation (7) and the fact that 0 ≤ G(k, l) ≤ 1,
Zβ(S1, S2) can be expressed as

Z =
∫ 1

0
∏
kl

dG(k, l)e
−β ∑

kl
C(k,l)G(k,l)

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)
. (9)

We can represent the delta functions using the Fourier transform, adding new auxiliary
variables λ(k) and µ(l). Ignoring some multiplicative constants, the partition function can
then be expressed as

Z =
∫ +i∞

−i∞
∏

k
dλ(k)

∫ +i∞

−i∞
∏

l
dµ(l)

∫ 1

0
∏
k,l

dG(k, l)

e
−β ∑

k,l
G(k,l)(C(k,l)+λ(k)+µ(l)+β

(
∑
k

λ(k)m1(k)+∑
l

µ(l)m2(l)
)

. (10)

Note that the λ(k) and µ(l) are imaginary complex numbers. Performing the integra-
tion over the variables G(k, l), we obtain

Z =
∫ +i∞

−i∞
∏

k
dλ(k)

∫ +i∞

−i∞
∏

l
dµ(l)e−βFe f f (β,λ,µ), (11)

where Fe f f is a functional, or effective free energy, defined by

Fe f f (β, λ, µ) = −
(

∑
k

λ(k)m1(k) + ∑
l

µ(l)m2(l)

)

− 1
β ∑

kl
ln

[
1− e−β(C(k,l)+λ(k)+µ(l))

β(C(k, l) + λ(k) + µ(l))

]
. (12)

The saddle point approximation (SPA) is performed in the complex plane of {λk} and
{µl} and identifies the most probable state, i.e., the most probable transport plan G from
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the extrema of the effective free energy. Such an extremum is expressed with respect to the
variables λ and µ:

∂Fe f f (β, λ, µ)

∂λk
= 0 and

∂Fe f f (β, λ, µ)

∂µl
= 0. (13)

After some rearrangements, those two equations can be written as

∀k, ∑
l

GMF(k, l) = m1(k),

∀l, ∑
k

GMF(k, l) = m2(l),
(14)

where,
GMF(k, l) = φ

[
β
(

C(k, l) + λMF(k) + µMF(l)
)]

, (15)

and

φ(x) =
e−x

e−x − 1
+

1
x

. (16)

The superscript MF refers to “mean field”, i.e., the solution at the SPA.
In [54], we showed that the Hessian of the effective energy Fe f f (β, λ, µ) is negative

semidefinite with (N1 + N2 − 1) strictly negative eigenvalues and one zero eigenvalue.
Furthermore, the eigenvector corresponding to the zero eigenvalue is (1,. . . ,1, −1, . . .−1)
(with N1 coordinates equal to 1, and N2 equal to −1). Setting one of the parameters λMF

k or
µMF

k to zero, the free energy function on this restricted parameter space is strictly concave.
The characteristics of the free energy functional draw attention to a number of benefits

of the suggested framework, which recasts the optimal transport problem as a process that
is temperature-sensitive. The optimal transport problem is first transformed into a strongly
concave problem with a single solution for each temperature. Equation (12) can be used
to identify the maximum of the free energy functional thanks to its concavity. Second, the
modified problem specifies an optimal transport plan for each temperature that converges
to the actual optimal transport plan when T → 0. Finally, the convergence is monotone as
a function of temperature.

We associate the transport plan at the maximum of the free energy functional with
an optimum mean field energy UMF

β (S1, S2) and free energy FMF
β (S1, S2). These energies

satisfy some important properties. Namely, they are monotonic decreasing functions of
the parameter β that converge to the balanced transport distance between S1 and S2. In
addition, they are metric [54]. The quantity UMF

β (S1, S2) is then assimilated to a distance
between the two sets of points.

2.5. The Optimal Unbalanced Transport Problem

A full description of this formalism is provided elsewhere [48]. It is outlined here for
sake of clarity.

We are still concerned with two sets of points S1 of size N1 and S2 of size N2. Each
point k in S1 (resp S2) is assigned a mass m1(k) (resp m2(k)), but this time the masses are
variable, to allow for partial transport. Simply removing the constraint of fixed masses
leads to a trivial solution: any solver would concentrate the mass on one point k for S1 and
l for S2, chosen such as C(k, l) is as a minimum among all values in the cost matrix C, and
set the transport to be 1 between those two points, and to 0 for all other pairs of points. This
is guaranteed to achieve a minimum for the energy U, but this minimum is uninteresting.
Following the idea of a penalization on the mass constraints (see [55] for a discussion on
this approach), we define the discrete optimal unbalanced transport problem as finding
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a transport matrix G as well as the masses m1 and m2 of those points that minimize the
functional U defined by

U(S) = ∑
k,l

G(k, l)C(k, l) + D(m1, ρ1) + D(m2, ρ2), (17)

where S = (G, m1, m2) is a “state” describing possibly partial mass transport between S1
and S2, ρ1 and ρ2 are reference probability measures, and D is a distance between the
variable masses m and those reference distributions ρ. There are many possible choices for
the distance D. For example, Georgiou et al. [56] set D to be the total variance between the
distributions, i.e.,

D(m, ρ) = ∑
k
|m(k)− ρ(k)|.

Another option is is to use φ divergences [55,57,58], such as φ(t) = t log(t)− t + 1, in
which case D is the Kullback-Leibler (KL) divergence:

D(m, ρ) = ∑
k

m(k)
(

log
(

m(k)
ρ(k)

)
−m(k) + ρ(k)

)
.

We instead used a Pearson χ2 divergence, for reasons that will become clear below:

D(m, ρ) = ∑
k

m(k)2

ρ(k)2 .

The energy in Equation (17) can then be rewritten as

U = ∑
k,l

C(k, l)G(k, l) + ∑
k

α1(k)m2
1(k) + ∑

l
α2(l)m2

2(l)

where we set α1(k) = 1/ρ2
1(k) and α2(k) = 1/ρ2

2(l).
The minimum of U is to be found for the values of G(k, l), m1(k) and m2(l) that satisfy

the following constraints:

∀(k, l), G(k, l) ≥ 0,

∀k, ∑
l

G(k, l) = m1(k),

∀l, ∑
k

G(k, l) = m2(l),

∑
k,l

G(k, l) = 1.

(18)

For the balanced OT problem, we reformulate the problem of minimizing the energy
function given by Equation (17) as the problem of finding the most probable state of the
system it defines. We define the set of all those states as S . The partition function computed
over this set is given by

Zβ(S) = e−βFβ(S) =
∫

S∈S
e−βU(S)dµ12. (19)
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In this equation, Fβ(S) is the free energy of the system. Taking into account the
constraints defined in Equation (18), this partition function can be written as

Zβ(S1, S2) =
∫ 1

0
∏
kl

dG(k, l)
∫ +∞

−∞
∏

k
dm1(k)

∫ +∞

−∞
∏

l
dm2(l)e

−β(∑
kl

C(k,l)G(k,l)+∑k α1(k)m2
1(k)+∑l α2(l)m2

2(l))

∏
k

δ

(
∑

l
G(k, l)−m1(k)

)
∏

l
δ

(
∑
k

G(k, l)−m2(l)

)
(20)

δ

(
∑
kl

G(k, l)− 1

)
.

The integrals are over all variables G(k, l), m1(k), and m2(l). We use the Fourier
representation of the delta functions, thereby introducing new auxiliary variables λk, with
k ∈ {1 . . . , N1}, µl , with l ∈ {1 . . . , N2}, and x. The partition function can then be written
as (up to a multiplicative constant)

Zβ(S1, S2) =
∫ +i∞

−i∞
∏

k
dλ(k)

∫ +i∞

−i∞
∏

l
dµ(l)

∫ +i∞

−i∞
dx[

eβx
∫ 1

0
∏
kl

dG(k, l)e
−β ∑

k,l
G(k,l)(C(k,l)+λ(k)+µ(l)+x)

∫ +∞

−∞
∏

k
dm1(k)e−β(α1(k)m2

1(k)−λ(k)m1(k)) (21)

∫ +∞

−∞
∏

l
dm2(l)e−β(α2(l)m2

2(l)−µ(l)m2(l))

]
.

Note again that we integrated the complex i from the Fourier representation into λ, µ,
and x. Performing the integrations over the variables G(k, l), m1(k), and m2(l) (note that
the latter are analytical, due to our choice of the Pearson χ2 divergence for D), we obtain

Zβ(S1, S2) =
∫ +i∞

−i∞
∏

k
dλ(k)

∫ +i∞

−i∞
∏

l
dµ(l)

∫ +i∞

−i∞
dx

e−βFβ(λ,µ,x), (22)

where we defined Fβ as

Fβ(λ, µ, x) = −x− 1
4 ∑

k

λ(k)2

α1(k)
− 1

4 ∑
l

µ(l)2

α2(l)

− 1
β ∑

kl
ln

[
1− e−β(C(k,l)+λ(k)+µ(l)+x)

β(C(k, l) + λ(k) + µ(l) + x)

]
. (23)

We derive a saddle point approximation (SPA) of the most probable state in S by
looking for extrema of this effective free energy with respect to the variables λ, µ, and x:

∂Fβ

∂λ(k)
= 0,

∂Fβ

∂µ(l)
= 0, and

∂Fβ

∂x
= 0. (24)

After some rearrangements, those equations can be written as
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∀k, ∑
l

H(k, l) =
λ(k)

2α1(k)
, (25a)

∀l, ∑
k

H(k, l) =
µ(l)

2α2(l)
, (25b)

∑
k,l

H(k, l) = 1, (25c)

where,
H(k, l) = φ[β(C(k, l) + λ(k) + µ(l) + x)], (26)

and φ(x) is the same function that was used for the balanced OT problem (Equation (16)).
The Hessian of Fβ is negative definite and therefore the free energy function is strictly
concave: it has a unique optimum. Setting G(k, l) = HMF(k, l) where HMF is the value
at this optimum, G forms an optimal transport plan between S1 and S2. We can asso-
ciate this transport plan with an optimum mean field energy UMF

β (S1, S2) and free energy

FMF
β (S1, S2). These energies satisfy some important properties. Namely, there are mono-

tonic decreasing functions of the parameter β that converge to the unbalanced transport
distance between S1 and S2. In contrast, however, with the corresponding values for the
balanced OT problem [47,54], they are not metric as they do not satisfy the triangular
inequality. This is a common issue with partial matching. Note also that UMF and FMF

are not even divergences, as they are not of value zero when comparing a set of points
with itself. This can easily be corrected by following an idea proposed by Peyré and
collaborators [55,59] and defining

SUβ(S1, S2) = UMF
β (S1, S2)−

0.5(UMF
β (S1, S1) + UMF

β (S2, S2)), (27)

with the same correction for the free energy.
Similar to the balanced OT problem, the proposed framework for solving the unbal-

anced OT problem has some important advantages. The OT problem is first transformed
into a strongly concave problem with a single solution for each temperature. This problem
has a linear complexity in the number of variables. Simple algorithms can be used to
discover the extremum of the free energy functional due to its concavity. Second, the
convergence of the mean field energy to the actual OT distance is monotonic.

3. Implementation

To reach a robust implementation of the method outlined above that is fast enough to
be practical requires addressing a number of concerns. The sections that follow describe
how we attended to those concerns.

3.1. Computing the LD-SIFT Signature

LetM be a triangular mesh, withM = (V, E, T), and V = {v}, E = {e}, and T = {t}
denoting its vertices, edges, and triangles, respectively. Our implementation directly
follows the method described in [46], with the following practical details. The scale S(v)
of a vertex v inM is given by Equation (1), i.e., it is the mean edge length over all edges
attached to v, multiplied by a constant K which we set to 3. N(v) is the set of all vertices of
V that are within the distance S(v) of v. Let N = |N(v)| and let w be one of those vertices,
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and let rw be its position in the ambient space R3. To compute a normal of the surface at v,
we first compute a covariance matrix over N(v):

C = 1
N ∑

w∈N(v)
rwrT

w −
1

N2

 ∑
w∈N(v)

rw

 ∑
w∈N(v)

rw

T

. (28)

The normal n at v is then computed as the cross product of the two dominant eigen-
vectors of C. The whole meshM is then rendered onto the plane P(v) that is normal to n
and passing through v, using a method adapted from Patch Software Render by Dirk-Jan
Kroon [60]. The corresponding image size is set to 21× 21 pixels, with each of its dimen-
sions covering 2× S(v) on P(v), centered at v. SIFT descriptors are then computed for
the point at the center of the image (which corresponds to v) using the method imple-
mented in VLFeat [61]. Two sets of descriptors are computed, for the image and for image
rotated by 180◦, and averaged out. This leads to a vector of 128 descriptors that forms the
LD-descriptor of v.

Given LD-SIFT signatures for all vertices in a mesh, the distance between two such
vertices is computed as the L2-norm of the differences between their signatures. Note that
under this framework, vertices are represented in the same feature spaces; therefore,
the same procedure applies for computing the distance between two vertices of two
different meshes.

3.2. Computing the Wave Kernel Signatures

The wave kernel signatures are computed from the eigenpairs of the Laplace–Beltrami
(LB) operator for the triangular mesh on the surface of a shape. Many schemes have been
proposed to approximate the LB operator on a discrete surface represented by a triangular
mesh [62]. We use the so-called cotangent scheme. In this scheme, we start with defining
an operator LB on the mesh. This operator is given as a matrix L of size N × N, where N is
the number of vertices in the mesh. L is set to M−1W, where M is a diagonal matrix whose
element M(i, i) corresponds to the area associated with vertex i and W is the symmetric
matrix of cotangent weights, as defined in [63], to account for possible boundaries within
the mesh. The general eigenproblem Wφ = λMφ has real eigenvalues as solutions. We
solve this problem by considering the standard eigenvalue problem Av = λv, where
A = M−1/2WM−1/2 [64]. The eigenvalues of the latter are the same as the eigenvalues of
the generalized problem, and its eigenvectors v are associated with the eigenvectors φ of
the former according to φ = M−1/2v.

In all the numerical experiments presented in the next section, the parameters were
fixed. We computed N = 500 eigenvalues of the LB operator and we evaluated at
M = 200 values of e. We used emin = log(E1) + 2σ, where E1 is the smallest eigenvalue
different from 0 and emax = log(EN)− 2σ, where EN is the N-th eigenvalue. The increment
δ in energy was set to emax−emin

M , and the variance σ (see Equation (5)) was set to 7δ.
To compare the WKS at the point x on a shape S1 and a point y on a shape S2, we

follow the method proposed by Aubry et al. [29] and define a distance using the L1 norm
of the normalized signature difference:

dWKS(x, y) =
M

∑
k=1

∣∣∣∣WKS(x, ek)−WKS(y, ek)

WKS(x, ek) + WKS(y, ek)

∣∣∣∣. (29)

Note that this implies that the same energy spectrum is used when computing the
WKS for both shapes.

3.3. Solving the Balanced and Unbalanced Optimal Transport Problems

Implementations of the physics-based approaches to solving the balanced and unbal-
anced OT problems are similar, and follow Algorithm 1. We note first that the procedures
described in Sections 2.4 and 2.5 provide a scheme for computing the transportation plan
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between two sets of points at a given finite temperature T (or equivalently at a given β
value, where β = 1/T). This temperature can be seen as a regularization parameter, and
the actual optimal transportation plan is obtained when β → +∞. It is possible to run
the procedure directly at a low temperature. We found, however, that it is best to use an
annealing procedure, starting with small β and gradually increasing this parameter [47,54].
The solution at a given β serves as input for the following β value. This annealing procedure
is efficient as we know that the mean field energy values are monotonic functions of β.

Algorithm 1 A temperature-dependent framework for solving the balanced or unbalanced
optimal transport problem.

Input: The two sets of points S1 and S2, the cost matrix C between S1 and S2. Initial
value β0 for β. For the balanced OT problem, the masses m1 and m2 associated with S1
and S2, respectively
Initialize: Initialize arrays λ and µ to 0, and initialize x = 0 (unbalanced OT). Set
β0 = β0/STEP, where STEP is set to

√
10.

for k = 1, . . . until convergence do
(1) Initialize βk = STEP ∗ βk−1.
(2) Solve the system of non linear Equations ( Equation (14) for balanced, Equation (25)

for unbalanced OT) for λ, µ and x at saddle point
(3) Compute optimal transport plan GMF

β , and UMF(βk). For unbalanced OT, compute

masses mMF
1 , mMF

2 .
(4) Check for convergence: if |UMF(βk)−UMF(βk−1)|/UMF(βk−1) < TOL, stop

end for
Output: The converged transport plan GMF

β (k, l), the corresponding transport cost

UMF(β). For unbalanced OT, the optimized masses m1
MF, m2

MF.

At each β value, the nonlinear systems of equations defined by Equations (14) and (25)
for the balanced and unbalanced OT problem, respectively, are solved using an iterative
Newton–Raphson method [47,54]. Once the system is solved, the optimal transportation
plan GMF

β and the corresponding transport energy UMF(β) are computed. If the latter has
converged, i.e., does not differ from the value at the previous β value more than a tolerance
TOL, the program is terminated as the method is thought to have converged.

The primary computational cost of this algorithm is associated with solving the
nonlinear systems of equations, which needs to be repeated at each value of β. We use
an iterative Newton–Ralphson method that solves a linearized system of equations at
each iteration. We tested both a direct solver based on LU decomposition and an iterative
conjugate gradient (CG) method to solve this system. This will be discussed in the results
section, under the computing time considerations.

4. Experimental Results

In this section, we present experimental results highlighting the relative advantages of
using either the LD-SIFT or WKS vertex signatures combined with balanced or partial OT
to find the correspondences between vertices, for full and partial 3D shape comparisons.
We perform experiments focused on shape similarity and correspondence.

4.1. Full Shape Similarity
4.1.1. Synthetic Data: TOSCA

We tested our different procedures first on the synthetic TOSCA dataset [65,66], avail-
able at http://tosca.cs.technion.ac.il/book/resources_data.html, accessed on 1 March 2019.
We used eight classes of objects from this dataset (see Figure 2: cat, centaur, horse, dog,
seahorse, two male figures (Michael and David), and one female figure (Victoria)). Each
class consists of the same shapes under different poses and/ or different triangulations.
The differences between the poses echo nonrigid transformations within objects (see [65,66]

http://tosca.cs.technion.ac.il/book/resources_data.html
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for details). In addition, the poses within a class are represented with different topologies
(i.e., different triangulations), and may even have different genera. The corresponding
dataset, TOSCA8, includes six instances in each class, i.e., a total of 48 classes. Each pose is
represented with a triangulated surface mesh with approximately 3400 vertices and 6600
faces, with the exception of the seahorse meshes that include approximately 2100 vertices
and 4200 faces.

Figure 2. A few representative shapes in our TOSCA8 dataset that includes 8 classes (from left to
right and top to bottom): cat, centaur, David, dog, horse, Michael, Victoria, and seahorse.

In the first set of experiments, we compared four different approaches for shape
similarity, with two different signatures for representing the vertices of the shape, LD-SIFT
and WKS, combined with two different methods to compute the correspondences between
those vertices, namely, balanced (with fixed masses) optimal transport, which we will
refer to as simply OT, and unbalanced (with variable masses) optimal transport, which
we will name Partial OT. In each experiment, a pair of shapes is represented with their
sets of vertices, S1 and S2, and the cost matrix C between those vertices, such that C(k, l)
between a vertex k on shape 1 and a vertex l on shape 2 is equal to the distance between
their signature vectors (see previous section for the choice of distance for the two types
of signatures considered). For balanced OT, the masses of the vertices are set as uniform,
while for unbalanced OT, we allow for mass creation and deletion. We computed a set of
matrices D(β) for β ranging between 1000 and 1011, such that D(β)(k, l) is the optimized
transport energy UMF

β (Sk, Sl) (balanced OT), or the regularized optimized transport energy

SUMF
β (Sk, Sl) (unbalanced OT), i.e., the temperature-based distance between the sets of

vertices Sk and Sl of the shapes k and l. Note that for the balanced OT, UMF
β (Sk, Sl) is a true

distance, while for the unbalanced OT, SUMF
β (Sk, Sl) satisfies the first two properties of a

metric (identity and symmetry), but not the triangle inequality. We also computed D(∞),
the matrix of distances at convergence in β. See Figure 3 for graphical representations of
D(∞) for the four sets of experiments.

As observed in Figure 3, the four distance matrices are visually different. To provide
a more quantitative assessment of these differences, we performed a set of classification
experiments. We started with randomly selecting one shape from each of the eight classes
to build a training set. We then performed 1-nearest neighbor classification experiment
over the remaining shapes, where “nearest” is defined based on the distance value in one
of the distance matrices. The difference between the predicted class of a shape with the
actual class of that shape allows us to estimate the probability of correct classification P(∞),
given a distance matrix D(∞). Results for the four sets of experiments are given in Table 1.



Algorithms 2023, 16, 346 14 of 25

LD-SIFT / balanced OT LD-SIFT / partial OT

WKS / balanced OT WKS / partial OT

Figure 3. Distance matrices for shape similarity within the TOSCA8 dataset using the optimal
transport framework with LD-SIFT (top) and WKS signatures (bottom) to represent the vertices on
the shapes, and with balanced, i.e., fixed masses (left), and unbalanced, i.e., variable masses (right),
optimal transport optimization to find the correspondence between vertices of two different shapes.
Blue colors represent small distances (high similarity), while yellow colors represent large distances
(low similarity).

Table 1. Success rates of shape classification experiments over the TOSCA8 dataset.

3D-SIFT WKS

OT (balanced) 83.3 a 100.0
OT (Partial) 97.3 98.6

a Percentage of correctly classified shapes, computed over 10,000 experiments (see text for details).

There are a few observations we can make based on Figure 3 and Table 1. First, the
WKS signatures outperform the LD-SIFT signatures for full shape comparison. Under
both OT frameworks (balanced or partial), shape comparisons based on WKS capture the
similarities of the shapes within their own classes (the blocks along the diagonals on the
distance matrices in the bottom row of Figure 3), as well as similarities between those classes.
From the WKS/balanced OT distance matrix, we observed that the four-legged shapes
(cats, centaur, horse, dogs) and the human-like shapes (David, Michael, and Victoria) show
similarities between themselves, but are still distinguishable from each other. The seahorses
stand on their own. We assign the difference between LD-SIFT and WKS to the fact that,
by design, the WKS signatures capture the geometry of the mesh representing a shape by
analyzing the Laplace–Beltrami operator on that mesh, while the LD-SIFT signatures are
more focused on point distributions. Second, the discriminative power of the LD-SIFT
signatures is significantly improved when those signatures are used in association with
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partial OT for computing correspondence. This is indicative of the importance of partial
matching when those signatures are used, and will be discussed in more detail below.

4.1.2. Anatomical Data

Our second test considers three anatomical datasets, representing three different
parts of the skeletons of primates. The first dataset includes 61 shapes corresponding to
the proximal first metatarsals (MT1) of prosimian primates, the second dataset includes
45 shapes of the radii of apes and humans, and the third dataset includes 116 molars of
prosimian primates and nonprimate close relatives (see Figure 4 for examples in each
dataset) [14].

non primate

primate

human

ape

monkey

lemur

MT1 Radius Molar

Figure 4. A few representative shapes in the metatarsal (MT1), radius, and molar anatomical datasets.

For each dataset, we performed an all-against-all comparison experiment. We used
either the LD-SIFT or the WKS signatures in conjunction with unbalanced OT to find the
correspondences between vertices. To evaluate the performance of our approaches, we
compared the outcomes to those determined by Boyer et al. [14]. We ran two classification
analyses on each dataset with a “leave one out” procedure: each surface (treated as un-
known) is assigned to the taxonomic group of its nearest neighbor among the remainder of
the surface in the dataset (treated as known). Tables 2–4 list success rates (in percentage)
for our approaches compared to those of Boyer el al. for the three datasets.

Table 2. Success rates (percentage) of leave-one-out classification experiments for the First Metatarsal
dataset.

Dataset First Metatarsal (MT1)

Classification N a cP b cWn b LD-SIFT c WKS c

Genera 13 76 51 34 72
Families 9 84 69 38 88
Superfamilies 2 100 98 100 100

a Number of groups at the taxonomic level considered. b Results from [14]. c Our results, using either LD-SIFT or
WKS as signatures, and unbalanced OT for computing the correspondence.

Table 3. Success rates (percentage) of leave-one-out classification experiments for the Radius anatom-
ical dataset.

Dataset Radius

Classification N a cP b cWn b LD-SIFT c WKS c

Genera 4 76 51 34 72
a Number of groups at the taxonomic level considered. Note that only genera information is available for this
dataset. b Results from [14]. c Our results, using either LD-SIFT or WKS as signatures, and unbalanced OT for
computing the correspondence.
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Table 4. Success rates (percentage) of leave-one-out classification experiments for the Molar anatomi-
cal dataset.

Dataset Molars

Classification N a cP b cWnb LD-SIFT c WKS c

Genera 24 91 68 24 80
Families 17 92 75 28 85
Superfamilies 5 95 83 69 94

a Number of groups at the taxonomic level considered. b Results from [14]. c Our results, using either LD-SIFT or
WKS as signatures, and unbalanced OT for computing the correspondence.

By construction, the conformal Wasserstein neighborhood distance, cWn, is the closest
distance to the ones we have introduced in this study, with two significant differences.
First, cWn uses a different dissimilarity measure between vertices of the two surfaces under
consideration, computed as follows. The procedure starts by projecting the surfaces onto
the planar disk using conformal maps. The distance between two vertices, v and v′, on
the two different surfaces is then computed by comparing their conformal factors (namely,
parameters associated with the conformal flattening of the surface) in their neighborhood on
the plane, modulo a Möbius transform (see Ref. [14] for details). All of those distances form
a cost matrix between the two surfaces. Second, cWn is obtained by solving the balanced
OT problem based on this cost matrix, in opposition to the unbalanced OT formalism we
introduced. We found that the distance SU with the WKS signature introduced in this
study outperforms cWn on all three datasets, at all phylogenic classification levels.

Interestingly, we found that the WKS signatures outperform the LD-SIFT signatures for
the full shape comparison on those anatomical datasets. We assign the difference between
LD-SIFT and WKS to the fact that, by design, the WKS signatures capture the actual
geometry of the mesh representing a shape by analyzing its Laplace–Beltrami operator,
while the LD-SIFT signatures are more focused on local point distributions and, as such,
miss the overall geometry. We will see below, however, that this may not always be
a limitation.

4.1.3. Comparisons with Other Shape Matching Tools: SHREC19

We consider shape correspondence, namely, the identifications of corresponding points
between two (or more) 3D shapes. Those correspondences are embedded in the optimal
transport plan.

We used the SHREC19 benchmark [53] to gauge how well our algorithms can retrieve
correspondences. Each 3D shape in this benchmark is given as a triangular mesh of its
surface. These shapes were created using 3D scans of actual objects. Each object was
captured in several poses that each corresponded to a different type of deformation. The
deformations are divided into four categories, or “groups”, for classification purposes.
These four categories are articulated (group 0), isometric (group 1), nonisometric (group
2), and topologic/geometric (group 3) deformations, respectively. Example of shapes
for each test set are provided in Figure 5. We used the low-resolution version of this
benchmark, with each shape represented with a mesh with approximately 10,000 vertices
and 20,000 triangles.

SHREC19 then consists of 76 pairs of shapes regrouped in four test sets (see [53] for
details). For each pair of shapes (X, Y) in the benchmark, the ground truth correspondence
between the vertices of X and the vertices of Y is known.

To evaluate the quality of correspondence recovery with our algorithms, we considered
normalized geodesics between the ground truth and the predicted correspondence. Briefly,
for a pair of shapes (X, Y), if pi is a point on a shape X, yi is its predicted correspondence
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on shape Y, and zi the ground truth position of pi on Y. The normalized geodesic error
ε(pi) is computed as follows:

ε(pi) =
dY(yi, zi)

area(Y)1/2 ,

where dY(yi, zi) is the geodesic distance between yi and zi on the surface of Y. We use the
algorithm from [67] to compute this geodesic distance.

Group 0: 

articulated deformations

Group 1: 

isometric deformations

Group 2: 

non isometric deformations

Group 3: 

geometric deformations

Figure 5. A few shapes for each group of the SHREC19 benchmark.

We compared the LD-SIFT and WKS vertex signatures combined with either balanced
or partial OT in their abilities to define those correspondences. In each experiment, a pair
of shapes i and j is represented with their complete sets of vertices, Si and Sj. For each
vertex x on i, its correspondence y on j is set to the index of the maximum value on the row
corresponding to x in the OT transport plan. Figure 6 shows the corresponding cumulative
geodesic errors for the four algorithms for the four test sets in SHREC19. As observed
with the TOSCA8 dataset as well as with the anatomical dataset, the combination of WKS
signatures with balanced OT leads to the best results for all four SHREC19 test sets.
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Figure 6. Cumulative distribution functions for the geodesic errors for all four methods (see text for
details). Results are shown for all four test sets in SHREC19, which consider articulated deformations
(test set 0), isometric deformations (test set 1), nonisometric deformations (test set 2), and topological
or geometric deformations (test set 3).
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The Workshop on 3D Object Retrieval, which took place in Genova, Italy, in May 2019,
included a competition on comparing 3D shape registration. The SHREC19 dataset was
initially utilized as a benchmark for that competition [53]. We contrast the outcomes of the
five best techniques that competed with the outcomes based on the OT framework. We use
the areas under the curve (AUCs) for the cumulative distribution functions of the geodesic
normalized errors to evaluate the differences between the different methods: the larger the
AUC value, the better the method. Results are presented in Table 5 separately for each test
set in SHREC19, as well as when the test sets are combined.

Table 5. Computing correspondences between 3D shapes from the SHREC19 benchmark.

Method Test-Set 0 Test-Set 1 Test-Set 2 Test-Set 3 All

RPTS [68] 0.920 a 0.926 0.824 0.929 0.899
NRP [69] 0.878 0.899 0.801 0.858 0.862
WRAP 0.853 0.920 0.772 0.870 0.856
KM [70] 0.760 0.865 0.757 0.799 0.804
GISC [71] 0.565 0.659 0.674 NA b NA b

LD-SIFT, balanced OT 0.3 0.24 0.18 0.28 0.25
LD-SIFT, partial OT 0.08 0.04 0.05 0.06 0.05
WKS, balanced OT 0.6 0.64 0.55 0.32 0.54
WKS, partial OT 0.09 0.05 0.05 0.06 0.06

a Area under the curve (AUC) for the cumulative distribution functions of the normalized geodesic errors in the
correspondences. Results for the first five methods are derived from Ref. [53]. b Not available in Ref. [53].

From Table 5, we see that the correspondences computed with the WKS signatures are
better than those computed with the LD-SIFT signature, and that balanced OT performs bet-
ter than partial OT for full shape correspondence. Furthermore, the four registration-based
methods, RTPS, NRP, WRAP, and KM, perform better than the approach that merely com-
putes correspondences. This is probably because all of the deformations in the SHREC19
dataset are based on a mathematical morphing, which means that a mapping function is
expected to be able to capture them. Finally, our formalism with the WKS signature and
balanced OT performs at least as well as the genetic algorithm implemented in GISC. This
genetic algorithm is the closest to the OT formalism in its concept.

4.2. Partial Shape Similarity

For nonrigid partial shape similarity, we considered four classes, the cats and horses
from TOSCA8, as well as their isolated heads. The heads are taken directly from the meshes
of the corresponding full shapes. Those heads contain approximately 700 vertices and
1400 faces. The corresponding dataset, HEAD, includes six instances for both the cats and
horses, and all corresponding heads, for a total of 24 shapes. We ran an all-against-all
comparison of all the shapes in that dataset, using the four different approaches for shape
similarity described above, namely, based on two types of signatures, LD-SIFT and WKS,
and two frameworks for computing the correspondences of the vertices, balanced OT
and partial OT. We computed the matrix of distances at convergence in β, D(∞), for all
four approaches. We expect the following results: the distance matrix should highlight
high similarity within each class (cats, cat heads, horse, horse heads), as well as high
similarity between the cat and the cat heads, as well as between the horse and the horse
heads, but low similarities between the cats (either full, or head only) and the horses
(again, either full or heads only). The actual distance matrices for the four approaches
are represented graphically in Figure 7. Only the combination LD-SIFT/partial OT gives
us the expected behavior, in striking difference with the results for full shape matching
illustrated in Figure 3. For this combination, we even observe subdiagonals in the blocks
representing the similarities between the cats and their heads, as well as for the horses and
their heads, indicating that the procedure is able to identify the correct head for each cat
and for each horse.
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LD-SIFT / balanced OT LD-SIFT / partial OT

WKS / balanced OT WKS / partial OT

Figure 7. Distance matrices for shape similarity within the HEAD dataset using the optimal transport
framework with LD-SIFT (top) and WKS signatures (bottom) to represent the vertices on the shapes,
and with balanced, i.e., fixed masses (left), and unbalanced, i.e., variable masses (right), optimal
transport optimization to find the correspondence between vertices of two different shapes. The color
code is the same as in Figure 3.

5. Discussion
5.1. Full vs. Partial Shape Similarity

The difference between the results for full shape comparison and partial shape com-
parison requires some clarifications. First, the LD-SIFT signatures outperform the WKS
signatures for partial shape comparison, while we observe the opposite for full shape
comparison. These different behaviors are attributed to the way those signatures are gen-
erated. We illustrate the differences in Figure 8. In this figure, we represent the LD-SIFT
signatures as well as the WKS signatures at corresponding vertices at the tip on one ear
of a cat and at the end of one paw, for two different poses, as well as for the vertices at
the ear for a mesh that only includes the head of the cat. As illustrated on the right of
the figure, the WKS signatures of the corresponding vertices are very similar for the two
poses of the cats. In contrast, the LD-SIFT signatures exhibit more differences. Those
signatures are computed from a rendering of the mesh in a plane that is local to the vertex
of interest. The renderings for the vertex on the ear are similar, while the renderings for
the paw are different. The differences in the images are mitigated by the fact that the
SIFT signatures are computed only at the center of the image. It remains that the LD-SIFT
signatures are computed from a rendering that relies on extrinsic geometry and as such are
sensitive to nonrigid deformation. The WKS signatures differ, as they are computed from
the Laplace–Beltrami operator which captures the intrinsic geometry of a mesh, and are
therefore less sensitive to nonrigid deformations. Such differences between LD-SIFT and
WKS signatures explain the differences observed in Figure 3. Those differences, however,
are reverted when we consider partial meshes. The LD-SIFT signatures at the ear of the
full cat and of the shape that only includes the head of the cat are very similar (left column,
top and bottom row), while the corresponding WKS signatures are very different (right
column). The WKS signature is based on the solution of the Schrödinger equation over the
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whole mesh describing the shape; as such, it remains a global descriptor. This explains the
differences observed in Figure 7.

LD-SIFT WKS

(A)

(B)

(C)

Figure 8. Cats and their WKS and LD-SIFT signatures. We consider two different shapes of the same
cat (top (A) and middle row (B), respectively), as well as the head of the cat from the top row (bottom
row, (C)). For the complete cats, we represent the LD-SIFT signatures (left) and the WKS signatures of
a vertex at the top of their right ear (in red) and of a vertex at the end of their left forward paw (in
blue). For the head we only show the signature of the vertex of the top of the right ear. The LD-SIFT
signature of a vertex is computed by first rendering the mesh representing the shape onto the plane
tangent to the shape at that vertex (an image of this rendering is shown on the left), and then by
computing the SIFT features at the center of the corresponding image (the values of these features are
shown in the box next to the images).

Second, the balanced OT procedure finds a global correspondence, while the unbal-
anced OT procedure allows for partial matching. We illustrate the differences in Figure 1.
This figure reports on an experiment in which the head of a cat is compared to its cor-
responding complete cat, using LD-SIFT signatures and either balanced or unbalanced
optimal transport to compute the correspondence. At convergence, the transport plan
defines matching between vertices of the cat head and of the complete cat. Pairs of vertices
(i, j) from the cat head and the complete cat, respectively, are considered as matches if the
corresponding converged values GMF(i, j) are larger than 0.9×m1(i). All the matching
pairs are then used to generate a rigid body transformation (scaling + rotation + translation)
between the two meshes. The balanced OT framework impose a global registration of the
two sets of points. As a consequence, the final correspondence matrix leads to the head
being translated towards the center of mass of the complete cat, and rotated and scaled up
such that it provides a maximum coverage of the vertices of the full cat. In contrast, under
the unbalanced OT framework, the amount of masses transported from each vertex from
the head and received by each vertex from the cat is adapted to minimize the regularized
OT energy, leading to good performance and nearly perfect match of the head onto the cat.
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5.2. Computing Time

We claimed that the framework we propose in which vertices of two meshes are first
characterized using signature vectors and then placed into correspondence using optimal
possibly partial transport enables a robust solution to the shape comparison problem.
Such a framework, however, would be nonpractical if it proved to be computationally too
expensive, a common criticism for methods that rely on optimal transport. We tracked
the running times for our technique for the many experiments mentioned above to make
sure that this is not the case. As we solve a nonlinear system of equations iteratively
at each inverse temperature, we first note that our implementation of optimal transport
heavily relies on linear algebra. Each iteration requires the solution of a linear system of
equations, the linearized SPA system, which can be solved either directly or iteratively.
Thus, it is anticipated that parallelization will have a significant positive impact on the
entire algorithm. As a result, we created two versions of our comparison process: one
that utilizes GPUs and maybe multiple CPUs. Both largely rely on the processor-specific
optimized BLAS and LAPACK libraries. For the direct solver of the SPA system, we
used the LAPACK routine dsysv on CPU, and the CUSOLVER routines DnDgetrf and
DnDgetrs on GPU, based on CUDA. For the alternate iterative solver, we implemented a
conjugate gradient solver with an incomplete LU (ILU) preconditioner. The distributions of
the computing times for the different implementations of our framework (direct or iterative
solver, and CPU or GPU implementations) are shown in Figure 9, while the means of those
distributions are provided in Table 6. As expected, we observe a significant speedup when
the comparisons are run on multiple processors: factors of 7.8 and 9.2 for the direct and for
the iterative solver on an 8 CPUs/16 threads system, respectively, and factors of 28 and 241
for the same solvers on GPU. The improvement in computing time is much greater for the
iterative solver. This is expected, as direct dense solvers are not yet as optimized on GPUs
than they are on CPUs. We do observe that the iterative solvers are faster than the direct
solver, and we advocate using the former.

CPU1 CPU16 GPU CPU1 CPU16 GPU
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Figure 9. Boxplots of the computing times (wall clock times) of the optimal transport part of our
framework for shape comparison. We compare the direct solver and the indirect solver for the
linearized SPA solver, on either a single CPU (CPU1), on multiple CPUs (CPU16, i.e., Intel Core i7
processor with 8 cores/16 threads running at 4.00 GHz), and 64 GB of memory, or on a GPU system
(GPU, i.e., Linux server, with Xeon Platinum 8168 CPU at 2.7 GHz, and a NVIDIA RT2080 Ti GPU
card with 11 GB of memory). We included all pairwise comparisons of the shapes of TOSCA8 that
are represented with around 3400 vertices (i.e., all shapes except the seahorses), with the exclusion of
self-comparisons that were found to be significantly faster, for a total of 861 comparisons. The mean
values for all distributions are given in Table 6.
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Table 6. Mean computing times for comparing shapes from the TOSCA8 dataset a.

CPU1 CPU16 GPU

Direct solver 1921 (1) b 246 (7.8) 68 (28)
Iterative solver 1496 (1) 163 (9.2) 6.2 (241)

a See caption of Figure 9 for details. b Clock time (in s). The speedup, computed as the ratio of total computing
time over clock time, is given in parentheses.

6. Summary and Conclusions

In this paper, we revisited the important problem of nonrigid 3D shape comparison
for shapes represented by triangular meshes. We followed the standard framework of first
computing signatures (i.e., feature vectors) for the vertices of the meshes to be compared,
and then to find an optimal correspondence between those vertices that minimizes a
cost matrix computed from the signatures. Our framework differs from other similar
frameworks, however, in that we replaced the standard ICP procedure used to find this
correspondence with a more elaborate optimal transport strategy. Such a strategy is usually
deemed to be too computationally expensive. We rely on our own physics-based approach
to solving the optimal transport problem as a means to circumvent this problem. This
physics-based approach uses an approximation, much akin to the entropy-regularized OT
method that has become popular [72]. In contrast with entropy regularization, we have
convergence guarantee for our approach as well as established stability and robustness
properties that enable us to use our OT solvers routinely on large systems, with confidence
in their ability to generate the actual optimal correspondence. We described how we
can approach balanced and unbalanced (i.e., partial) optimal transport problems with
our framework, which then translate into complete shape and partial shape comparison
solutions.

To find a meaningful correspondence between the vertices of two shapes to be com-
pared requires a good estimate of the cost of associating a vertex to another. In our
framework, this cost is based on computing the difference between the 3D signatures of
those vertices. We used two different types of signatures, the LD-SIFT signature, which
is based on the concept of shape context, i.e., an image that renders the mesh onto the
tangent plane to the vertex considered, characterized with its 2D SIFT signature at the
center of the image, and the WKS signature, which is based on solving the Shrödinger
equation on the surface of the shape. We showed that the latter performs better for whole
shape comparison in the presence of nonrigid deformation. This was attributed to the
fact that WKS signatures are mostly intrinsic, while LD-SIFT are extrinsic. In contrast,
however, we found that LD-SIFT signatures perform well for partial shape comparison, as
WKS signatures are more global as they capture properties of the whole mesh. Different
signatures can, and need to be, tested within our framework. This is currently under study.

Our implementations of the OT methods were found to be efficient, with nearly
optimal use of parallelization, both on CPU and on GPU processors. We acknowledge,
however, that there is room and need for improvement. The space complexity of our
implementations is O(N2), as we need to store both the cost matrix and at least one work
array of similar size. Those matrices are of size N× N. Such a requirement limits the use of
our implementations to problems of size up to a few 10, 000, which falls short of the number
of vertices observed in actual meshes generated by modern 3D scanners. Handling such
large systems will require some redesign of our algorithms and/or the design of efficient
methods for selecting a subset of vertices that are representatives of the shapes considered.
This is an active area of research, which we will explore in future studies.
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71. Sahillioğlu, Y. A genetic isometric shape correspondence algorithm with adaptive sampling. ACM Trans. Graph. (ToG) 2018,
37, 1–14. [CrossRef]

72. Cuturi, M. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In Advances in Neural Information Processing
Systems 26; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2013; pp. 2292–2300.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevE.100.013310
http://dx.doi.org/10.1109/TSP.2008.2010009
http://dx.doi.org/10.1016/j.jfa.2018.03.008
http://dx.doi.org/10.1007/s10208-016-9331-y
https://www.mathworks.com/matlabcentral/fileexchange/27084-patch-software-render
https://www.mathworks.com/matlabcentral/fileexchange/27084-patch-software-render
http://www.vlfeat.org/
http://dx.doi.org/10.1016/j.cag.2009.03.005
http://dx.doi.org/10.1111/cgf.12797
http://dx.doi.org/10.1111/j.1467-8659.2008.01122.x
http://dx.doi.org/10.1137/050639296
http://dx.doi.org/10.1109/TVCG.2007.1041
http://dx.doi.org/10.1137/0216045
http://dx.doi.org/10.1109/TVCG.2018.2832136
http://dx.doi.org/10.1016/j.cagd.2019.04.014
http://dx.doi.org/10.1145/3243593

	Introduction
	A Physics Approach to Shape Comparison
	Basic Ideas
	LD-SIFT: Geometric Signatures for Meshes
	WKS: Spectral Signatures for Meshes
	The Optimal Balanced Transport Problem
	The Optimal Unbalanced Transport Problem

	Implementation
	Computing the LD-SIFT Signature
	Computing the Wave Kernel Signatures
	Solving the Balanced and Unbalanced Optimal Transport Problems

	Experimental Results
	Full Shape Similarity
	Synthetic Data: TOSCA
	Anatomical Data
	Comparisons with Other Shape Matching Tools: SHREC19

	Partial Shape Similarity

	Discussion
	Full vs. Partial Shape Similarity
	Computing Time

	Summary and Conclusions
	References

