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Abstract: Nowadays, due to their excellent prediction capabilities, the use of artificial neural net-
works (ANNs) in software has significantly increased. One of the most important aspects of ANNs
is robustness. Most existing studies on robustness focus on adversarial attacks and complete re-
dundancy schemes in ANNs. Such redundancy methods for robustness are not easily applicable in
modern embedded systems. This work presents a study, based on simulations, about the robustness
of ANNs used for prediction purposes based on weight alterations. We devise a method to increase
the robustness of ANNs directly from ANN characteristics. By using this method, only the most
important neurons/connections are replicated, keeping the additional hardware overheads to a
minimum. For implementation and evaluation purposes, the networks-on-chip (NoC) case, which
is the next generation of system-on-chip, was used as a case study. The proposed study/method
was validated using simulations and can be used for larger and different types of networks and
hardware due to its scalable nature. The simulation results obtained using different PARSEC (Prince-
ton Application Repository for Shared-Memory Computers) benchmark suite traffic show that a
high level of robustness can be achieved with minimum hardware requirements in comparison to
other works.
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1. Introduction

Neural networks yield excellent prediction results if appropriately trained for use in
different application domains [1,2]. They have the power to extract valuable information
from complex data and predict trends that cannot be easily detected by other mechanisms.
While neural networks have certain prediction capabilities, their accuracy decreases in the
presence of small perturbations. This makes it difficult to apply them in critical areas [3].

One of the main research goals of the analysis of robustness is to propose different
solutions/architectures with increased robustness [4]. This is one of the fundamental
problems that require extensive future research since ANN faults significantly affect the
accuracy and reliability of these types of networks.

One of the most well-known solutions for robustness improvement and fault tolerance
is to apply triple/dual modular redundancy (n-MR schemes) [5], replicating the entire ANN
architecture, but these methods are very restrictive due to additional hardware overheads.
This redundancy includes full replications of ANN architecture and is not applicable to
modern on-chip systems due to area limitations [6].

Additionally, the robustness of neural networks to adversarial attacks is critical due
to security issues that make these neural networks vulnerable [7,8], thus causing poor
performance and accuracy. Until recently, researchers concentrated on comparing results
based on having/not having adversarial machine learning attacks and providing different
solutions. Defenses based on adversarial training have been proposed, but these defenses
are often defeated by stronger attacks [8].
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Motivated by the above, we focused on the property of robustness of neural networks
used for prediction purposes based on weight alterations. Therefore, we examined how
the prediction accuracy of ANNs is impacted by weight faults. The networks-on-chip
case, which was presented in the framework of one of our previous studies [1], was used
as a case study to evaluate the robustness of the ANNs based on simulations. The goal
of this work is to discuss the robustness of neural networks to changes in weights that
might affect the prediction results. This work discusses and analyzes weight alterations
in ANNs based on simulations/implementations and provides a protection/robustness
method for ANNs. This method will help to maintain high robustness in ANNs with
minimum additional hardware overheads. In this work, the architecture of the ANNs
was changed by duplicating only the most important neurons/connections in order to
achieve good prediction accuracy for ANNs weight faults. We analyzed the importance of
neurons/connections in ANNs based on actual simulations/implementations and how the
prediction accuracy of the ANNs is affected in cases of weight faults.

The rest of this paper is organized as follows. Section 2 describes the background
and related research. In Section 3, we introduce the methodology and a robust approach
for detecting weight faults in ANNs with the support of simulation results and analysis.
Section 4 offers a brief conclusion to the paper.

2. Background and Related Research

ANNs and robustness are very popular and active research topics in the literature. Due
to adversarial attacks, many approaches have been developed regarding the fault tolerance
and robustness of ANNs. The authors of [2] proposed a method based on neural networks
in order to detect malicious hosts based on the SYN packets that are exchanged. With the
aid of appropriate training, this method achieved 98% accuracy based on specific test data.
Moreover, the authors of [3] found that powerful attacks can defeat defensive distillation,
demonstrating that by systematically evaluating several possible attacks, better adversarial
examples can be found than those in existing approaches. This study also concludes
that constructing defenses that are robust to adversarial examples remains challenging.
The study of [4] presents a survey on the robustness of deep networks to changes that
may affect the samples in practice, such as adversarial perturbations, random noise, and
transformations. The authors also discuss different solutions that attempt to increase the
robustness of deep networks. Additionally, the authors of [7] study the effectiveness of
different types of attacks and propose methods for training a deep-learning-based IDS
with the use of different types of neural networks in order to increase the robustness of the
networks based on a thread model.

Furthermore, n-MR schemes and redundancy have been proposed as methods for
increasing the robustness of ANNs. The authors of [5] propose a novel dual modular
redundance framework for DNNs. D2NN checks the fault sensitivity of each neuron in
the target DNN based on performance degradation and shows if the neuron is faulty.
Next, D2NN duplicates the more sensitive neurons to construct the completed DMR (dual
modular redundancy).

Furthermore, theoretical studies and works based on robust metrics have taken into
account fault tolerance and robustness. The authors of [9] present a theoretical survey on
different defenses against adversarial inputs of machine learning. The following defenses
are discussed: techniques based on model training, input validation techniques, and archi-
tectural modification techniques. In this study, only the theoretical aspects are presented to
show the importance of robustness against adversarial examples and the need for strong,
practical countermeasures in the future. The authors of [10] propose a theoretical fault
tolerance solution for ANNs based on an evaluation of the different elements of an ANN,
which are more appropriate for single faults. Based on this evaluation, they propose the
duplication of different parts of an ANN architecture. Furthermore, the authors of [11]
present a new version of the communication robustness (CR) metric, simplified communi-
cation robustness (SCR), which helps with the calculation of the CR robustness metric for
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different network topologies. Additionally, this study provides evaluations and discussion
about different robustness metrics.

Studies that provide certifications for the robustness of neural networks are presented
next. The authors of [8] present a defense method for neural networks with one hidden
layer. This is based on certifications that, for a given network and test input, there is no
attack that can force the error to exceed a certain threshold: the computation of an upper
bound in the worst-case loss scenario. Additionally, they optimized this method with
different network parameters, providing an adaptive regularizer that helps robustness.
Additionally, the authors of [12] studied the sensitivity of neural networks to weight
perturbations. They proposed an efficient approach to compute a certified robustness
bound of weight perturbations within neural networks that do not have erroneous outputs.
The authors provided a certified weight perturbation region such that DNNs maintained
their accuracy if weight perturbations were within that region.

Lastly, different novel robust techniques for neural networks have been presented.
The authors of [13] introduced E2CNNs, a new design methodology to improve robustness
against memory errors in embedded systems. This work proposes a heuristic method to
automate the design of a voter-based ensemble architecture. This design methodology
increases the error robustness of CNNs by using ensemble architectures. The authors
of [14] studied the sensitivity of weight perturbation in neural networks and its impact on
model performance. They further designed a new theory-driven loss function for training
generalization and robust neural networks against weight perturbations: bounded weight
perturbations. Moreover, the authors of [15] extended the definition of robustness to any
type of input for which some alterations can be defined. They proposed the ROBY tool,
which accepts different types of data, and some alterations can be performed on these data
providing the ability to classify the input data correctly. The authors of [16] present a new
scheme for robust DNNs called coded DNN. This alters the internal structure of DNNs by
adding redundant neurons and edges to increase reliability—a new middle layer is added.
The authors of [17] proposed an approach that is complementary to other forms of defense
and replaces the weights of individual neurons with robust analogs derived from the use
of Fourier analytic tools. Additionally, the authors of [18] propose a new method called
robustness-aware filter pruning (RFP) and utilize this filter pruning method to increase
the robustness against adversarial attacks. In the proposed method, the filters that are
involved in non-robust features are pruned. Lastly, the authors of [19] designed a novel
neuron that uses L∞ distance as its basic operation, known as an L∞-dist neuron. They
show that the L∞-dist neuron has a natural 1-Lipschitz function with respect to the L∞
norm, and the neural networks constructed with this neuron (L∞-dist Nets) have the same
property [19]. This directly provides a theoretical guarantee of the certified robustness
based on the margin of the prediction outputs.

In the following sections, we present a new robustness method to maintain high levels
of robustness in ANNs with minimum hardware overheads.

3. Methodology
3.1. Development of the ANNs and Network Traffic

In order to verify the robustness of the developed ANNs, we studied how prediction
accuracy is affected by weight alterations in ANNs. For the implementation of the ANNs,
we used MATLAB and the nntool. PARSEC benchmark suite was used for the traffic
requirements [20]. To collect the ANN training data for predictions, we used NoC as
a case study. NoC is an emerging technology that provides high-bandwidth and low-
power on-chip communication between many cores. For the purposes of this work and
for scalability purposes, we partitioned the NoC topology into smaller parts, and four
different ANNs were created, one for each individual partition of NoC topology based on
the explanations provided in our previous research [1]. The monitoring of the entire NoC
topology/partitions is carried out in parallel using each developed ANN. Each of the four
developed ANNs is responsible for monitoring one NoC partition, and the ANN receives
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data from the specific NoC partition that is used for the training process. The ANNs can
be considered independent processing units in NoC topology. Different-sized ANNs were
studied, and these have the same structure/architecture depending on the size of the NoC;
they differ only in the weights. Figure 1 presents the structure of the neural network.
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In this work, integrated hardware-based ANNs with 19 neurons in the hidden layer
were developed and, based on the ANN training and data received from the NoC simulator,
intelligently predicted which router might present a fault, as explained in [1]. We used
ANNs with one hidden layer, which is sufficient since more hidden layers can introduce
a risk of converging to a local minimum and might not improve the model [1]. For the
training stage of the developed feed-forward ANNs, we used a back-propagation training
algorithm, and the training was carried out offline.

For this work, the size of the ANNs is small, and based on the scalable nature of the
calculations, the results are indicative of larger NoCs/ANNs. By using a simple activation
function and having a small number of neurons for each ANN, we managed to keep the
implementation of the ANNs simple. Each feed-forward ANN uses a hyperbolic tangent
as an activation function, which provides simplicity and accuracy. A hyperbolic tangent
produces outputs at a scale of [−1, 1]; it is a continuous, symmetric, and asymptotic function
that is responsible for processing the output of each neuron in order to feed it to the next
adjacent layer.

Inter-router link utilization values from the network-on-chip simulator (inputs to the
ANN) are multiplied with the corresponding weights, and the sum of all the weighted
inputs of the neuron is calculated. When the computations of each neuron are complete,
the result is propagated via the activation function to the output neuron.

In the next sections, we describe the verification of how the prediction accuracy of ANNs
was affected by weight alterations using simulations. Based on the results, we propose a
method to maintain robustness in accepted margins with minimum additional overheads.

Additionally, network performance and a thorough analysis of the different imple-
mentations highly depend on network traffic. In order to achieve more accurate results for
our simulations, we used data from the PARSEC benchmark suite, which provides realistic
traffic profiles, traces of real applications based on parallel programs, and state-of-the-art
algorithms that help with the study of the implemented topologies [20–22].

3.2. Simulations to Verify How the Prediction Accuracy of the ANNs Is Generally Affected

Firstly, different random simulations were developed to verify whether weight al-
terations affect the percentage of correct predictions of the ANNs in general. One NoC
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topology/partition was randomly chosen, a dedicated ANN is responsible for this partition,
and random ANN weight alterations were injected and simulated. Different simulation
cases were developed using one, two, three, and four different weight alterations in the
case of 8 × 8 NoC topologies with 4 × 5 NoC partitions/ANN sizes. For each weight,
one random bit was chosen to be altered. All the different NoC partitions and ANNs
were verified in this work. As a starting point, we only used 8 × 8 NoC topologies with
4 × 5 partitions/ANN sizes and changed one bit for each weight in order to verify if the
percentage of correct predictions is generally affected. In the following sections, we present
more simulations of alterations for more than one bit of different ANN sizes.

Figures 2 and 3 present the results for one, two, three, and four weight alterations
in the developed ANNs. Figure 2 presents the results from the simulations in the case of
checking all the weights of the ANN: one bit alteration. Figure 3 shows the results in the
case of checking the input weights only: one bit alteration. The results show that there is a
clear decrease in percentages of the correct predictions of the different simulated cases.
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Based on the above graphs/results, we conclude that weight alterations impact the
prediction accuracy of the ANNs. Since the accuracy whereby only the input weight
alterations are checked decreased below 90% on average, and the accuracy whereby all
the weight alterations are checked is above 90% on average, we can conclude that if the
alteration is presented in the input weights, the impact on accuracy is larger than if the
alteration is presented in the remaining weights. This allows us to assume that the input-
hidden connections of the ANN are more influential in the prediction process than the
hidden-output connections of the ANN.

3.3. More In-Depth Simulations and Explanations for the Robustness of ANNs Based on
Weight Alterations

Next, we checked how the alteration of weights impacts the overall prediction process
for each of the different implemented ANNs in more detail. In order to achieve this,
different sizes of ANN architectures were developed, and random weight alterations
were injected into all of the individual developed ANNs. All the individual ANNs for
each partition of the different NoC topologies and all the weights were checked. The
randomly chosen bit/bits alterations (one and more bit alterations) of the randomly chosen
weight/weights were checked in this work. Figure 4 presents the weight alteration process,
and explanations are provided below.
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An exhaustive testing process of all the random possibilities of the weight faults is
developed for each individual ANN. Thousands of different simulations are developed
based on randomly chosen weights and bits for all ANNs. To generate erroneous weights,
we tested all the possible random-weight bit/bits alterations for one or more weight
errors. For each of these simulation cases, we used PARSEC workloads. All the results
were recorded, and based on the prediction results, we managed to conclude on the
most important neurons/connections of the ANNs. For the purposes of our method, a
neuron/connection is defined as important if the weight/bit alterations cause the ANN to
yield erroneous prediction results. Next, we present some of the different simulation cases
(Table 1) with results.

Different sizes of the NoCs/ANNs were developed and simulated. We started working
with one randomly chosen network-on-chip partition: a dedicated ANN is responsible for
each individual partition. All network partitions and different workloads from the PARSEC
benchmark suite were verified and presented. Different simulation cases were developed
and checked. Table 1 presents some of the developed simulation cases with appropriate
descriptions. Figure 5 shows the results concerning the percentage of correct predictions
for each of the above-mentioned cases in comparison with the case of no weight faults
for different ANN sizes. From the above results, we can conclude that weight changes
in the ANNs impact the whole prediction process, and we used thousands of additional
simulations to determine the most important ANN neurons for each case (partition and
PARSEC workload). In the following section, we present and analyze a method/technique
for maintaining the robustness of ANNs in high levels based on replicating the most
important neurons/connections.
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Table 1. Explanations for different simulation cases.

Simulation Case Description

Case A: One randomly chosen weight error
and one randomly chosen bit alteration.

Firstly, we randomly choose one weight. The
weight is changed to binary. After this, we
randomly chose one bit to be altered. The bit is
changed. We change the altered weight back to
decimals and continue with the predictions.

Case B: Two randomly chosen weight errors
and one randomly chosen bit alteration.

Firstly, we randomly choose two weights. The
weights are changed to binary. After this, we
randomly chose one bit to be altered for each
weight. The bits are changed. We change the
altered weights back to decimals and continue
with the predictions.

Case C: Two randomly chosen weights and
two randomly chosen bits alterations.

Firstly, we randomly choose two weights. The
weights are changed to binary. After this, we
randomly chose two different bits to be altered
for each weight. Both bits are changed. We
change the altered weights back to decimals
and continue with the predictions.

Case D: Three randomly chosen weights and
one randomly chosen bit alteration.

Firstly, we randomly choose three weights. The
weights are changed to binary. After this, we
randomly chose one bit to be altered for each
weight. The bits are changed. We change the
altered weights back to decimals and continue
with the predictions.
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The amount of redundancy that is needed to achieve good levels of robustness is
usually high in overheads. If less redundancy is added, this means that fewer faults will
be tolerated. A balance between this redundancy and robustness in additional overheads
is needed. Based on our research, we attempted to maintain the robustness of ANNs in
accepted margins and have as few overheads as possible by only duplicating the most
important neurons/connections. Our method is presented in the next section.

3.4. Replication of the Most Important Neurons/Connections

Next, we present a method in order to achieve robustness for ANNs based on the
replication of the most important neurons/connections, addressing the issue of robustness
based on redundancy.

Different methods have previously been used for robustness, but these are often
restrictive. Most cases are based on replicating complete ANN architecture or replicating
a certain number of complete layers in the ANNs. Based on past studies, ANNs are not
always fault-tolerant and indicate the need for more robust methods [3].

Based on the results presented in the previous section for each individual ANN, as well
as the PARSEC benchmark suite workloads, we managed to identify the most important
neurons/connections in the presence of weight (bit) errors. Our method focuses on the
replication of these parts in order to achieve robustness for the developed ANNs.

In order to check how many redundant neurons/connections were needed for the
different ANN sizes to achieve good robustness levels, different numbers of neurons
were replicated and simulated. Figure 6 presents the results from simulations of different
numbers of neuron replications for different ANN sizes.
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The results show that good robustness results are achieved for the 4 × 5 ANN with
12 neuron replications. For the 4 × 6 ANN, good results are achieved with 14 neuron replica-
tions. For the 5 × 6 ANN, good robustness results are achieved with 17 neuron replications.
Figure 7 presents the structure of the neural network with redundant neurons/connections
(redundant neurons/connections are shown in red).
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Based on the previous results, since the weight alterations are already known, we
determined the most important neurons/connections for specific ANNs under different
PARSEC workloads. Next, we replicated the above important neurons/connections of the
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specific ANN, changing the architecture of the ANN in order to increase its robustness.
Based on the new and altered ANN architecture, we carried out simulations to check the
prediction accuracy of different ANNs. Different simulations are developed with randomly
chosen weights and bits, as explained before. We tested all the possible random weight
bit/bits alterations for one and more weight errors. Using the new prediction simulation
results, we verified the robustness of the ANNs.

In our method, robustness is achieved via the actual ANN process itself by using the
high connectivity of the neurons in the ANNs. Moreover, our method tries to reduce the
redundancy needed (in comparison to previous methods) in order to minimize expenses in
terms of the additional units and links. Our method is easier to implement in practice in
comparison to the other methods that require replications of more neurons/connections
(even entire ANNs), and this makes them impractical in reality.

Figure 9 shows that the robust method analyzed above (with redundant neurons/
connections) helps to increase the robustness of the ANNs used for prediction purposes.
The figure shows the average percentages of correct predictions for each of the above-
mentioned cases with redundancy in comparison to cases with no weight faults. The below
results show that, by replicating the most important neurons/connections, ANNs can retain
a high robustness level (around 98% prediction accuracy); these results are reproducible for
larger networks too.
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The number of input–hidden–output units remains the same in our study, with only
the most important neurons/connections changing. By replicating only these, we kept the
overheads to a minimum in comparison to the previous studies that replicated the complete
ANN or complete layers x times. Furthermore, our study not only considered single-fault
assumptions (as in previous research) but verified all cases of random faults with one and
more weights and bit errors.

Lastly, we provide a brief comparison with relevant related studies, as shown in
Table 2. When compared to both [5,13], our work yields good levels of robustness while
still maintaining lower hardware overheads.
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Table 2. Comparisons with related research.

Work Overheads Robustness Levels

D2NN [5]
(Dual modular redundancy framework)

DMR—Primary and secondary
networks—The primary DNN represents
the original DNN, while the secondary
DNN is constructed using newly
introduced neurons together with parts
of the original DNN.

Faults on the secondary network are
converted from missed to detected faults,
and the fault miss rate is reduced,
maintaining good robust levels.

E2CNNs [13]
(Convolutional neural networks:
ensemble architectures)

The ensemble is built by training a
pruned CNN several times. Then, the
individual predictions are averaged
together to compute the ensemble output.
(Additional overheads are needed for the
control logic).

A 4-E2CNN increases the accuracy from
12% to 15%.

Our work
(NoCs—different cases of PARSEC
benchmark suite)

Only the most important
neurons/connections are replicated,
keeping the overheads to a minimum.

Based on simulated results, high levels of
robustness are achieved: ~98% prediction
accuracy.

4. Conclusions

Our work offers fundamental insights into the robustness of ANNs that are subjected
to weight alterations and used for prediction purposes. For simulation purposes, NoC
was used as the case study. Thousands of different simulations were created for different
NoC/ANN sizes and weight/bit alterations in order to verify how the prediction accuracy
of the ANNs is affected. In this work, we verified all the cases of random faults with
one or more weight and bit errors. Based on this study, we managed to draw significant
conclusions on the robustness of the ANNs based on weight alterations. Additionally, we
proposed a robustness method for ANNs based on redundancy. More specifically, the most
important neurons/connections, which were defined based on simulations, were replicated.
The proposed method can be used for larger networks and different hardware due to its
scalable nature, and robustness is achieved through the actual ANN process itself. Our
results indicate that a significant amount of redundancy is needed in order to achieve good
levels of robustness in ANNs. Based on the analytical results from our simulations, we
conclude that the proposed method can maintain the robustness of ANNs at high levels
(~98% prediction accuracy). Lastly, our method minimizes additional redundant units and
links, keeping the additional hardware overheads and costs to a minimum.
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