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Abstract: Heart disease is a significant global health issue, contributing to high morbidity and
mortality rates. Early and accurate heart disease prediction is crucial for effectively preventing
and managing the condition. However, this remains a challenging task to achieve. This study
proposes a machine learning model that leverages various preprocessing steps, hyperparameter
optimization techniques, and ensemble learning algorithms to predict heart disease. To evaluate
the performance of our model, we merged three datasets from Kaggle that have similar features,
creating a comprehensive dataset for analysis. By employing the extra tree classifier, normalizing the
data, utilizing grid search cross-validation (CV) for hyperparameter optimization, and splitting the
dataset with an 80:20 ratio for training and testing, our proposed approach achieved an impressive
accuracy of 98.15%. These findings demonstrated the potential of our model for accurately predicting
the presence or absence of heart disease. Such accurate predictions could significantly aid in early
prevention, detection, and treatment, ultimately reducing the mortality and morbidity associated
with heart disease.

Keywords: heart disease; machine learning; ensemble learning; hyperparameter optimization; extra
tree; XGBoost; CatBoost

1. Introduction

The heart is a vital organ responsible for circulating blood throughout the body,
which is crucial for maintaining overall health and well-being [1]. Impaired heart function
can harm other organs, including the kidneys and brain, emphasizing the importance
of maintaining a healthy cardiovascular system [2]. Heart disease is a prevalent and
severe condition worldwide that contributes to millions of deaths every year, making it
a significant global health concern [3,4]. Notably, certain regions, such as Asia and the
United States, bear a higher burden of heart disease [5]. Moreover, gender and age also
influence the risk of developing heart issues, with males and older individuals being more
susceptible [6].

Extensive medical research has identified various risk factors associated with heart
disease, including physical inactivity, poor lifestyle choices, obesity, and unhealthy diet.
Additionally, certain conditions, such as high blood pressure, smoking, family history,
hypertension, stress, diabetes, and high cholesterol, can further elevate the risk of heart
disease [7–12]. Given the complexity and multifactorial nature of heart disease, effective
prediction and prevention strategies are essential for mitigating its impact.

Data mining and machine learning techniques have emerged as valuable tools for
analyzing large datasets and extracting valuable insights from across numerous domains,
including healthcare [13]. In particular, machine learning algorithms can effectively process
vast amounts of medical data to identify hidden patterns and facilitate accurate disease
diagnosis, detection, and prediction [14–16]. Despite previous research efforts in disease
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prediction, achieving reliable outcomes in heart disease prediction remains a challenge [17].
To address this gap, this study presents a prediction model for heart disease that combines
ensemble learning algorithms, hyperparameter optimization techniques, and preprocessing
steps. The model aims to accurately predict heart disease by evaluating the classification
accuracy of various ensemble learning algorithms, including random forest, extra tree
classifier, XGBoost, and CatBoost. Hyperparameter optimization techniques, such as grid
search CV and randomized search CV, are employed to find the optimal hyperparame-
ters for these algorithms. Additionally, preprocessing steps, such as handling missing
values, removing duplicates and outliers, and normalizing data, are applied to enhance the
model’s performance.

The main contributions of this work are as follows:

1. A predictive model that focuses on hyperparameter tuning through hyperparameter
optimization techniques and preprocessing steps;

2. The improved accuracy of heart disease prediction, reductions in false predictions,
and a comparison of the default and optimal hyperparameters using grid search CV
and randomized search CV to determine the optimal approach;

3. The identification of the most suitable prediction algorithm among four ensemble
learning algorithms for accurately classifying a combined heart disease dataset;

4. The validation of the model’s performance using various metrics, such as accuracy,
precision, recall, F1-score, Cohen’s kappa, precision–recall curve (PRC), and the area
under the ROC curve, with the experimental results demonstrating the superiority of
the proposed model.

2. Literature Review

In recent years, there has been significant progress in using data mining and machine
learning techniques for predicting heart disease, focusing on early diagnosis and prevention.
Several key studies within the field have contributed to this advancement. Here, we discuss
these studies, their methodologies, findings, and limitations.

In 2023, Bhatt et al. [18] conducted a study that applied various machine learning
algorithms, including random forest, decision tree, multilayer perceptron (MLP), and
XGBoost. Their dataset consisted of approximately 59,000 rows and 11 attributes. The MLP
algorithm yielded the highest cross-validation accuracy of 87.28%, demonstrating excellent
precision, recall, F1-score, and area under the ROC curve values.

Similarly, in 2023, Ogundepo and Yahya [19] conducted a predictive analysis of heart
disease risk factors using two independent datasets. They trained classification models
on the Cleveland dataset and validated the results using the Statlog dataset. Through
exploratory analysis, they identified significant associations between specific bio-clinical
variables and heart disease. The support vector machine (SVM) exhibited the best perfor-
mance among the 10 classification models trained on the Cleveland dataset, achieving 85%
accuracy, 82% sensitivity, 88% specificity, 87% precision, and 38% log loss. The findings were
validated using 10-fold CV on the Statlog dataset, demonstrating a consistent performance.

In another study conducted in 2023 by Ming Zeng [20], decision tree, KNN, SVM, and
XGBoost algorithms were employed to predict heart disease based on 11 clinical features.
The SVM algorithm outperformed the other models, achieving 88.8% accuracy, 89.3% recall,
and 90.7% f1-score. The study emphasized the significance of angina and ST depression
induced by exercise as important features associated with heart disease.

Additionally, in 2023, Arslan Khan et al. [21] analyzed a dataset of randomly selected
patients with heart disease using various machine learning algorithms, including deci-
sion tree, SVM, naïve Bayes, logistic regression, and random forest. The random forest
algorithm demonstrated the highest accuracy of 85.01% and outperformed the other al-
gorithms, highlighting the potential of machine learning for analyzing and predicting
cardiovascular disease.

Other studies have also contributed to predicting heart disease using machine learning
techniques. For example, Zhang et al. (2023) found that logistic regression achieved the
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best results for heart disease prediction, with an accuracy of 96.7%, using a 70:30 split ratio
and the robust scaling method [22]. Additionally, Almustafa K.M. (2020) found that KNN
achieved the best results for heart disease prediction, with an accuracy of 99.7073% [23].
Shah et al. (2020) utilized decision tree, naïve Bayes, KNN, and random forest models on
the Cleveland dataset and found that KNN provided the most reliable prediction, with an
accuracy of 86.885% [24]. Similarly, Apurv Garg et al. (2021) compared the performance
of KNN and random forest models using the Kaggle heart disease dataset, with KNN
achieving the higher accuracy of 86.885% [25]. Vardhan Shorewala (2021) conducted feature
analysis and employed the LASSO algorithm for feature selection to predict cardiac disease.
Traditional classifiers were utilized, including decision trees and neural networks, with the
dense neural network achieving the highest testing accuracy of 73.9% and an F1-score of
72.0% [26].

These studies have made significant progress in predicting heart disease using machine
learning models. However, they have also encountered limitations, such as small sample
sizes and methodological variations, which have affected the accuracy and reliability
of their predictions. One important aspect that has been overlooked in these studies is
the utilization of ensemble learning techniques with hyperparameter optimization for
heart disease prediction. Most researchers have relied on default hyperparameter settings,
neglecting the potential for further improvement. To address these limitations, our study
adopted a comprehensive approach by employing ensemble learning techniques and
exploring hyperparameter optimization through grid search and randomized search cross-
validation. Additionally, we combined three Kaggle datasets with similar features to create
a comprehensive dataset for analysis. By adopting this comprehensive approach, our study
aimed to develop a robust and accurate heart disease prediction model.

3. Methodology

Figure 1 shows a flow chart diagram that outlines the sequential steps involved
in predicting the probability of heart disease. The diagram visually depicts the data
preprocessing procedures, such as cleaning, removing duplicate entries, detecting outliers,
and scaling data. It also emphasizes the utilization of ensemble learning algorithms and the
process of hyperparameter tuning to train and optimize the model. The flow chart serves
as a visual representation of the study’s methodology, aiding in the comprehension of the
research process.

Figure 1. The proposed model developed to predict the heart disease.
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3.1. Data Collection

In this study, we combined three datasets from Kaggle to enhance our analysis. Dataset 1
consisted of 297 patient records [27], dataset 2 consisted of 1025 patient records [28], and
dataset 3 consisted of 303 patient records [29]. Each dataset contained the same set of
features, and we conducted a rigorous statistical analysis to ensure their compatibility
for merging. By combining these datasets, we created a consolidated dataset comprising
1625 samples, enabling us to conduct a more comprehensive analysis. This merging process
ensured the compatibility and reliability of the data, allowing us to effectively explore
the relationships between predictive variables and the occurrence of heart disease. For
further insights, Table 1 provides a descriptive summary of the attributes involved in our
comprehensive analysis.

Table 1. The feature information of our combined dataset.

Feature Representation Description

Patient Age age Age of the patient in years

Patient Sex sex Gender of the patient (1 = male; 0 = female)

Exercise-Induced Angina exang Presence of exercise-induced angina (1 = yes; 0 = no)

Number of Major Vessels ca Number of major blood vessels colored by fluoroscopy (0–3)

Chest Pain Type cp Type of chest pain experienced by the patient (1 = typical; 2 = atypical;
3 = non-specific; 4 = asymptomatic)

Resting Blood Pressure trtbps Resting blood pressure in mm Hg

Serum Cholesterol chol Serum cholesterol level in mg/dL

Fasting Blood Sugar fbs Fasting blood sugar level ≥120 mg/dL (1 = true; 0 = false)

Resting Electrocardiogram Results restecg Results of resting electrocardiogram (ECG) (0 = normal; 1 = ST-T wave
abnormality; 2 = left ventricular hypertrophy)

Maximum Heart Rate Achieved thalach Maximum heart rate achieved during exercise (continuous)

Slope of Peak Exercise ST Segment slope Slope of the peak exercise ST segment (0 = up; 1 = flat; 2 = down)

ST Depression Induced by Exercise oldpeak ST depression induced by exercise relative to rest (continuous)

Thalassemia thal Type of thalassemia (1 = reversible defect; 2 = fixed defect; 3 = normal)

Diagnosis of Cardiac Disease output Presence of diagnosed cardiac disease (0 = no; 1 = yes)

3.2. Preprocessing

In the data preprocessing stage of this study, rigorous checks and transformations
were performed to ensure the quality and suitability of the combined dataset. Firstly, a
comprehensive search for missing values was conducted, revealing that the dataset was
complete with no instances of missing data. This indicated the reliability and integrity of the
dataset. Secondly, as the dataset was derived from a combination of three separate datasets,
a thorough examination of duplicate values was carried out to ensure data consistency. This
analysis confirmed the absence of any duplicates, reinforcing the accuracy of the dataset.
Additionally, an outlier analysis was conducted to identify any extreme values that could
potentially skew the analysis. Remarkably, no outliers were detected, underscoring the
robustness of the dataset. To promote uniformity and facilitate meaningful comparisons
among features, the data were scaled to a standardized range of 0 to 1. This scaling process
enhanced the interpretability and analysis of the data. These thorough data preprocessing
steps established a solid foundation for the reliable and high-quality analyses in this study.

3.3. Data Splitting

The process of data splitting played a vital role in this study. To ensure the develop-
ment of a robust and accurate heart disease prediction model, the heart disease dataset was
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divided into an 80% training set and a 20% testing set. This division allowed the model to
be trained on a significant portion of the data, enabling it to learn patterns and relationships
effectively. The independent testing set served as a means to evaluate the model’s perfor-
mance on unseen data, providing an unbiased assessment of its predictive capabilities.

3.4. Modeling

The utilization of ensemble learning algorithms was a crucial aspect of this research.
Ensemble learning is a branch of machine learning that harnesses the power of combining
multiple models to improve prediction accuracy and robustness [30]. In this study, several
ensemble learning techniques were employed, including random forest, extra tree classifier,
XGBoost, and CatBoost.

Ensemble learning entails training multiple individual models on the same dataset and
aggregating their predictions to generate a final prediction. Figure 2 provides an overview
of this ensemble learning procedure, where the predictions of the individual classifiers
are combined to produce a collective prediction. This aggregation enables the evaluation
of ensemble models using performance metrics, such as accuracy, precision, recall, and
F1-score.

Figure 2. The ensemble learning procedure.

In the following section, each ensemble learning technique that we used in this research
is explained in detail, along with their respective pseudocodes and various hyperparame-
ters. These algorithms were carefully chosen to leverage their unique strengths and enhance
the accuracy and reliability of our heart disease prediction model.

3.4.1. Random Forest (RF)

The random forest algorithm proposed by L. Breiman [31] is an ensemble learning
method that combines multiple individual decision trees to create a powerful predictive
model. Each decision tree in the random forest is constructed by recursively partitioning
data based on the most informative features. At each node of the trees, the algorithm
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evaluates the Gini impurity and entropy of each attribute and selects the attribute that
provides the most significant reduction in uncertainty.

The Gini impurity and entropy were calculated using the following formulae:

Gini Index = 1− ∑
n=1

P2
n

Entropy = − ∑
n=1

Pn log2(Pn)

where Pn represents the probability of class n.
Algorithm 1 provides the comprehensive pseudocode for the random forest classifier

employed in this research. It outlines the essential steps and hyperparameter choices that
were used for constructing the random forest model in this research. These hyperparameters
included bootstrap, criterion, max depth, min samples split, n estimators, min samples leaf,
class weight, and random state.

Algorithm 1 The random forest pseudocode

Require:
Training dataset: D
n_estimators: [100, 200, 300]
max_ f eatures: [’sqrt’, ’log2’, None]
random_state: [42, 123]
min_samples_split: [2, 5, 10]
min_samples_lea f : [1, 2, 5]
max_depth: [5, 10, 15]
class_weight: [None, "balanced"]
bootstrap: [True, False]
criterion: ["gini", "entropy"]

Ensure:
Ensemble prediction: E(X)
procedure RANDOMFOREST(D, n_estimators, max_ f eatures, random_state, max_depth,
min_samples_split, min_samples_lea f , class_weight, bootstrap, criterion)

for t = 1 to n_estimators do
Dt is a bootstrap sample from D
Build a decision tree on Dt using max_ f eatures

end for
State E(X)←Majority vote of predictions from all trees on input X

return E(X)
end procedure

The bootstrap hyperparameter allowed sampling with replacement, facilitating the
creation of distinct subsets of the training data for each tree in the forest. By evaluating
the split quality based on the criterion hyperparameter, which determined the impurity
measure, the model could effectively make decisions at each tree node. The max depth
hyperparameter restricted the depth of each decision tree to prevent overfitting and enhance
generalization. Additionally, the min samples split hyperparameter specified the minimum
number of samples required to split a node, contributing to the optimal tree structure.
Controlling the number of decision trees in the forest was achieved through the n estimators
hyperparameter. Meanwhile, ensuring the reproducibility of results was facilitated by the
random state hyperparameter [32,33].

3.4.2. Extra Tree Classifier (ETC)

The extra tree classifier (ETC), also known as extremely randomized trees, is an ensem-
ble learning method that combines multiple decision trees to create a robust and accurate
predictive model. It introduces an extra level of randomization during the tree-building
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process by randomly selecting splitting thresholds for each feature, thereby increasing
diversity and reducing overfitting. This makes it well-suited for handling noisy data,
outliers, and high-dimensional features [34].

The extra tree classifier pseudocode provided in Algorithm 2 outlines the step-by-step
procedure and hyperparameter choices that were used to construct an effective model in
this research. These hyperparameters included the number of decision trees, the number
of features to consider at each split, the random state for reproducibility, the number
of estimators, the minimum number of samples required to split an internal node, the
minimum number of samples required to be at a leaf node, the maximum number of
features to consider at each split, the maximum depth of each tree, the split criterion, the
class weights, and the use of bootstrap sampling.

By adjusting these hyperparameters, the behavior and performance of the extra tree
classifier could be fine-tuned to meet the requirements of the dataset. For example, the
number of decision trees influenced the complexity and diversity of the model. The number
of features to consider at each split controlled the subset of features used for splitting
nodes, while the random state ensured the reproducibility of the results. The number of
estimators determined the number of trees in the ensemble. The minimum number of
samples required to split an internal node and the minimum number of samples required
to be at a leaf node defined the stopping criteria for tree growth. The maximum number of
features to consider at each split limited the feature space explored during tree construction.
The maximum depth of each tree restricted the depth of the decision trees, preventing
overfitting. The split criterion determined the measure of impurity used to evaluate the
split quality. Class weights could be assigned to balance the contributions of different
classes during training. Finally, the bootstrap hyperparameter enabled sampling with
replacement, allowing each tree in the ensemble to have a different subset of training data.

Algorithm 2 The extra trees classifier pseudocode

Require:
training dataset: D
n_estimators: [100, 200, 300]
max_ f eatures: [’sqrt’, ’log2’, None]
random_state: [42, 123]
min_samples_split: [2, 5, 10]
min_samples_lea f : [1, 2, 5]
max_depth: [5, 10, 15]
class_weight: [None, "balanced"]
bootstrap: [True, False]
criterion: ["gini", "entropy"]

Ensure:
Ensemble prediction: E(X)

1: procedure EXTRATREESCLASSIFIER(D, n_estimators, max_ f eatures, random_state,
min_samples_split, min_samples_lea f , max_ f eatures, max_depth, criterion,
class_weight, bootstrap, Random_state)

2: for t = 1 to n_estimators do
3: Dt ← Bootstrap sample from D
4: Build a decision tree on Dt using max_ f eatures and random split thresholds
5: end for
6: E(X)←Majority vote of predictions from all trees on input X
7: return E(X)
8: end procedure

3.4.3. XGBoost

XGBoost (extreme gradient boost), developed by Tianqi Chen et al. in 2014 [35], is
a highly effective ensemble learning method that builds on the principles of gradient-
boosting decision trees. It introduces regularization techniques to smooth the loss function



Algorithms 2023, 16, 308 8 of 17

and prevent overfitting, resulting in improved control over model complexity. XGBoost
utilizes an efficient approximation algorithm to optimize splits, enhancing the efficiency
and scalability of the gradient boosting process. Additionally, it exhibits robustness in
handling missing or sparse values by allocating specific branches to address these scenarios.

The pseudocode in Algorithm 3 presents the comprehensive step-by-step procedure
and hyperparameter choices used for constructing the XGBoost model in this research.
Essential hyperparameters, such as learning rate, maximum tree depth, column subsam-
pling by the tree, the number of estimators, and subsampling, were utilized to construct
the model. The algorithm began by iterating a specified number of times to compute
the gradients and Hessians for each sample in the training dataset. These gradients and
Hessians played crucial roles in guiding the construction of the decision trees. In each itera-
tion, a decision tree was built with a specified maximum depth, and the training dataset
predictions were updated using the tree and the set learning rate. This iterative process
allowed the XGBoost classifier to progressively enhance its predictions by incorporating
knowledge from each decision tree. Once the ensemble of decision trees was constructed,
the algorithm employed a prediction procedure to generate predictions for newly input
data. The ensemble prediction started with an initial value of zero and then for each
decision tree, a prediction was made based on the input data. The ensemble prediction was
then updated by aggregating the predictions from each tree [36,37].

Algorithm 3 The extreme gradient boost (XGBoost) pseudocode

Require:
training dataset: D
learning_rate: [0.1, 0.01, 0.001]
colsample_bytree: [0.8, 1.0]
max_depth: [3, 5, 7]
n_estimators: [100, 200, 300]
random_state: [42, 123]
Subsample: [0.8, 1.0]

Ensure:
Ensemble prediction: E(X)

1: procedure XGBOOSTCLASSIFIER(D, learning_rate, colsample_bytree, max_depth,
n_estimators, subsample, Random_state)

2: for i = 1 to N do
3: Compute gradients and Hessians for each sample in D
4: Build a decision tree with maximum depth t
5: Update training set predictions using the tree and learning rate
6: end for
7: Ensemble prediction E(X)←Make prediction using the ensemble of decision trees

on input X
8: return E(X)
9: end procedure

10: procedure XGBOOSTPREDICTION(X)
11: Ensemble prediction E(X)← 0
12: for each decision tree do
13: Make prediction using the tree on input X
14: Update E(X) by adding the prediction
15: end for
16: return E(X)
17: end procedure

3.4.4. CatBoost

CatBoost, also known as category boost, is an ensemble learning algorithm developed
in 2017. It was designed for gradient-boosting decision trees and offers enhancements
to handle categorical variables effectively. One key feature of CatBoost is its automatic
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handling of categorical features, which eliminates the need for manual encoding. It utilizes
a combination of one-hot and target encoding techniques for categorical variables with
high cardinality.

The pseudocode in Algorithm 4 represents the steps used for constructing the CatBoost
model in this research. The essential hyperparameters utilized in this process included the
number of boosting iterations, which determined the number of trees in the ensemble and
influenced the complexity and learning capacity of the model. The learning rate controlled
the step size for updating the weights of each tree during the boosting process. The
maximum tree depth governed the complexity and depth of the individual decision trees,
affecting their ability to capture intricate patterns in the data. Lastly, the L2 regularization
strength regulated the penalties applied to the leaf weights, aiding in preventing overfitting
and enhancing the generalization capabilities of the model [38–41].

Algorithm 4 The category boost (CatBoost) pseudocode

Require:
Training dataset: D
iterations: [100, 200, 300]
learning_rate: [0.01, 0.1, 0.5]
depth: [4, 6, 8]
l2_lea f _reg: [1, 3, 5]
random_state: [42, 123]

Ensure: Ensemble prediction: E(X)
1: procedure CATBOOSTCLASSIFIER(D, iterations, learning_rate, depth, l2_lea f _reg,

random_state)
2: Initialize an empty ensemble E(X)← 0
3: for i = 1 to N do
4: Train a decision tree Ti on D with the given parameters
5: for each sample x in D do
6: Compute the prediction of Ti on x: pi(x)
7: Update the ensemble prediction: E(X)← E(X) + η · pi(x)
8: end for
9: end for

10: return E(X)
11: end procedure
12: procedure CATBOOSTPREDICTION(X)
13: Ensemble prediction E(X)← 0
14: for each decision tree Ti do
15: Make prediction using Ti on input X
16: Update E(X) by adding the prediction
17: end for
18: return E(X)
19: end procedure

3.5. Hyperparameter Optimization

Hyperparameter tuning is a crucial step in machine learning to optimize the perfor-
mance of models. In this study, we employed the following two commonly used techniques
for hyperparameter optimization: grid search CV and randomized search CV [42–44].

Grid search CV systematically explores predefined grids of hyperparameter values.
These grids are defined by specifying different values or ranges for each hyperparameter
of interest. Grid search CV then evaluates model performance for each combination of
hyperparameters using CV. This exhaustive search approach ensures that all possible
combinations within the grid are considered, allowing for a comprehensive exploration
of the hyperparameter space. However, it can be computationally expensive, especially
when dealing with a large number of hyperparameters or a wide range of possible values
for each hyperparameter.
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Randomized search CV, on the other hand, takes a more flexible and efficient approach.
Instead of exhaustively evaluating all possible combinations, it randomly samples a speci-
fied number of hyperparameter combinations from a given distribution. This distribution
can be defined based on prior knowledge or assumptions about the hyperparameter space.
By using random sampling, randomized search CV can explore a broader range of hyper-
parameter combinations, potentially discovering better performance configurations that
may not have been considered in the grid. This technique is particularly useful when the
hyperparameter space is large and computationally expensive to search exhaustively.

Both grid search and randomized search CV utilize k-fold CV to evaluate model per-
formance for each set of hyperparameters. This helps to obtain reliable estimates of model
performance by dividing data into k equal folds and using each part as a validation dataset
while the remaining parts are used for training. This approach helps to prevent overfitting
and provides a more robust evaluation of the generalization ability of models [45].

3.6. Performance Evaluation

The performance metrics used in this research played crucial roles in evaluating the
effectiveness and accuracy of the classifiers. Several metrics were employed, including
accuracy, recall, precision, F1-score, Cohen’s kappa (κ), and AUC-ROC. These metrics
provided valuable insights into different aspects of the classifiers’ performance. The evalu-
ation was based on the confusion matrix shown in Table 2, which depicts the classification
results in terms of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). TP represents the instances that were correctly predicted as the positive
class, while TN represents instances that were correctly predicted as the negative class. FP
are instances that were incorrectly predicted as the positive class and FN are instances that
were incorrectly predicted as the negative class.

Table 2. The confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Accuracy =
TN + TP

TN + FP + TP + FN
× 100% (1)

Precision =
TP

TP + FP
× 100% (2)

Recall =
TP

TP + FN
× 100% (3)

κ = 2× (TP · TN − FP · FN)

(TP + FP) · (FP + TN) + (TP + FN) · (FN + TN)
(4)

F1-score =
2(Precision× Recall)

Precision + Recall
(5)

AUC-ROC: The area under the ROC curve (AUC-ROC) is a metric that quantifies
the performance of a classification model across all possible classification thresholds. It
represents the trade-off between the true positive rate and the false positive rate as the
classification threshold varies from 0 to 1. An AUC-ROC value of 1 indicates a flawless
model, whereas an AUC-ROC value of 0.5 indicates a subpar model [46].

PRC: A precision–recall curve (PRC) is a graphical representation that depicts the
relationships between precision and recall for different classification thresholds in a binary
classification problem. It illustrates how changes in the classification threshold impact the
trade-off between precision and recall [47].
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4. Results

Our experimental study on a combined heart dataset utilized various classification
algorithms, preprocessing steps, and hyperparameter optimization techniques. The results
demonstrated good accuracy in predicting heart disease, with some algorithms performing
exceptionally well. The preprocessing steps, such as handling missing values, removing
duplicates and outliers, and data normalization, contributed to the improved performance.
The ensemble learning algorithms used in the study, including extra tree classifier, random
forest, XGBoost, and CatBoost, were compared to identify the most suitable approach for
accurate classification. The dataset was split using an 80:20 ratio for training and testing,
and the analysis was conducted using Python programming.

4.1. Performance Evaluation Using Default Hyperparameter Settings

Table 3 presents the overall accuracy, precision, recall, F1-score, and Cohen’s kappa
values for all four algorithms using the default hyperparameter settings. The extra tree
classifier showed the highest accuracy of 97.23%. It also produced the highest precision of
95.68%, recall of 98.72%, F1-score of 97.18%, and Cohen’s kappa of 94.46%. To further vali-
date our results, we applied an ROC curve and PR curve, as demonstrated in Figure 3. The
extra tree classifier performed better than the random forest, XGBoost and CatBoost models.

Table 3. The performance metrics for the algorithms using the default hyperparameter settings.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cohen’s Kappa (%)

Random Forest 96.00 95.00 96.80 95.90 91.99

Extra Tree Classifier 97.23 95.68 98.72 97.18 94.46

XGBoost 96.31 95.03 97.45 96.22 92.61

CatBoost 96.31 94.48 98.09 96.25 93.61

(a) The area under the ROC curve. (b) The precision–recall curve.

Figure 3. The area under the ROC curve and the PR curve of the algorithms using the default
hyperparameter settings.

4.2. Performance Evaluation Using Randomized Search CV

Table 4 presents the optimal combinations of hyperparameters obtained using ran-
domized search CV. These were selected based on their superior performance using tenfold
randomized search CV, with 50 iterations. Table 5 presents the impact of these hyperpa-
rameters on model performance. Among all of the algorithms, the extra tree classifier
showcased exceptional results, achieving accuracy of 97.54%, precision of 96.27%, recall of
98.72%, F1-score of 97.48%, and Cohen’s kappa of 95.07%. To further validate our results,
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we applied an ROC curve and PR curve, as demonstrated in Figure 4. The extra tree
classifier performed better than the random forest, XGBoost and CatBoost models.

Table 4. The optimal hyperparameters for the algorithms as the result of hyperparameter optimization
using randomized search CV.

Model Optimal Hyperparameters

Random Forest random_state = 42; n_estimators = 200; min_samples_split = 5; min_samples_lea f = 1; max_ f eatures = ’sqrt’;
max_depth = 10; criterion = ’entropy’; class_weight = ’balanced’; bootstrap = ’False’

Extra Tree Classifier random_state = 123; n_estimators = 300; min_samples_split = 5; min_samples_lea f = 1;
max_ f eatures = ’sqrt’; max_depth = 15; criterion = ’gini’; class_weight = ’balanced’; bootstrap = ’False’

XGBoost subsample = 1.0; n_estimators = 100; max_depth = 7; learning_rate = 0.1; random_state = 123;
colsample_bytree = 1.0

CatBoost random_state = 123; learning_rate = 0.1; l2_lea f _reg = 1; iterations = 200; depth = 6

Table 5. The performance metrics for the algorithms using the optimal hyperparameters according to
the randomized search CV.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cohen’s Kappa (%)

Random Forest 96.31 94.48 98.09 96.25 92.61

Extra Tree Classifier 97.54 96.27 98.72 97.48 95.07

XGBoost 96.31 94.48 98.09 96.25 92.61

CatBoost 96.31 94.48 98.09 96.25 92.61

(a) The area under the ROC curve. (b) The precision–recall curve.

Figure 4. The area under the ROC curve and PR curve of the algorithms using the optimal hyperpa-
rameters according to the randomized search CV.

4.3. Performance Evaluation Using Grid Search CV

Table 6 presents the optimal combination of hyperparameters obtained using grid
search CV. These hyperparameters were selected based on their superior performance using
10-fold CV. Table 7 presents the impact of these hyperparameters on model performance.
The extra tree classifier outperformed all other algorithms, attaining an accuracy of 98.15%,
precision of 97.48%, recall of 98.72%, F1-score of 98.10%, and Cohen’s kappa of 96.30%. To
further validate our results, we applied an ROC curve and PR curve, as demonstrated in
Figure 5. The extra tree classifier performed better than the random forest, XGBoost and
CatBoost models.



Algorithms 2023, 16, 308 13 of 17

Table 6. The optimal hyperparameters for the algorithms as the result of hyperparameter optimization
using grid search CV.

Algorithm Optimal Hyperparameters

Random Forest bootstrap = ’False’; class_weight = ’None’; max_depth = 15; criterion = ’gini’; max_ f eatures = ’sqrt’;
min_samples_lea f = 1; min_samples_split = 2; n_estimators = 200; random_state = 42

Extra Tree Classifier random_state = 123; n_estimators = 200; min_samples_split = 5; min_samples_lea f = 1;
max_ f eatures = ’sqrt’; max_depth = 15; criterion = ’gini’; class_weight = ’balanced’; bootstrap = ’False’

XGBoost colsample_bytree = 1.0; learning_rate = 0.1; max_depth = 7; n_estimators = 100; random_state = 123;
subsample = 1.0

CatBoost depth = 4; iterations = 500; l2_lea f _reg = 5; learning_rate = 0.1; random_state = 123

Table 7. The performance metrics for the algorithms using the optimal hyperparameters according to
the grid search CV.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Cohen’s Kappa (%)

Random Forest 96.61 95.08 98.09 96.55 93.23

Extra Tree Classifier 98.15 97.48 98.72 98.10 96.30

XGBoost 96.301 94.48 98.09 96.25 92.61

CatBoost 96.61 95.06 98.09 96.55 93.23

(a) The area under the ROC curve. (b) The precision–recall curve.

Figure 5. The area under the ROC curve and PR curve of the algorithms using the optimal hyperpa-
rameters according to the grid search CV.

4.4. Performance Comparison

To compare the ensemble models using the different types of hyperparameter opti-
mization, a violin plot was employed to visualize their performance. Violin plots offer
valuable insights into the widths, lengths, and central points of the violins. Wider violins
indicate a higher density of values, implying better performance, while longer violins
suggest a larger spread of performance values. The central points represent the median
performance, providing an estimate of the average. Outliers represent extreme values [48].
Figure 6 displays our comparison of the models’ performance. It was observed that the ex-
tra tree model consistently outperformed all other models when the hyperparameters were
optimized using grid search CV. This highlighted the remarkable effectiveness of the extra
tree model, especially when fine-tuned using grid search CV hyperparameter optimization.
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Figure 6. A comparison of the models’ performance.

5. Discussion

In this study, we analyzed the performance of four different ensemble learning al-
gorithms (extra tree classifier, random forest, XGBoost, and CatBoost) by considering
hyperparameter tuning using default settings and hyperparameter optimization tech-
niques. The evaluation was conducted using an 80:20 split ratio for training and testing
data, and we also applied various preprocessing steps, including handling missing values,
removing outliers and duplicates, and normalizing data to a scale of 0 to 1. Through the use
of different hyperparameter optimization methods, such as grid search CV and randomized
search CV, we identified the best hyperparameters for each algorithm. The results showed
that the extra tree classifier algorithm performed better than the others.

Based on the obtained results, we observed that grid search CV outperformed the other
hyperparameter optimization techniques. The evaluation of the default hyperparameter
settings and the optimal hyperparameters obtained using grid search CV and randomized
search CV for the extra tree classifier revealed that the optimal hyperparameters obtained
using grid search CV yielded superior results compared to those obtained using the default
settings and randomized search CV.

Based on our analysis, we concluded that the extra tree classifier achieved an accuracy
of 97.23% using the default hyperparameter settings. However, when we applied hyper-
parameter optimization using the randomized search technique, the accuracy improved
to 97.54%. Furthermore, when we utilized the grid search CV technique, the accuracy
further increased to 98.15%. These results indicated that employing grid search CV for
hyperparameter optimization significantly improved the performance of the extra tree
classifier in predicting heart disease.

6. Conclusions

In this study, we evaluated four ensemble learning algorithms (extra tree classifier,
random forest, XGBoost, and CatBoost) along with various hyperparameter optimization
techniques to predict heart disease. We combined three datasets from Kaggle, which
had similar features, to create a comprehensive dataset for analysis. The results of our
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experiments demonstrated that the hyperparameter optimization techniques significantly
influenced the performance of the algorithms. Specifically, our proposed model achieved
the higher accuracy of 98.15% when utilizing the extra tree algorithm, an 80:20 split ratio,
and the optimal hyperparameters obtained using grid search CV. This model has the
potential to assist researchers and practitioners in heart disease-related tasks.

However, there were limitations to consider in our study. We focused on a specific
set of ensemble learning techniques, and exploring other approaches could potentially
yield further improvements in heart disease prediction. Additionally, the dataset used was
limited in terms of size and diversity, and expanding it could enhance the generalizability
of the model. Future research should also consider integrating clinical variables and genetic
data to improve the accuracy and precision of heart disease prediction models. Moreover,
external validation and evaluations in real-world healthcare settings are crucial to assess
the practical implementation and impacts of ensemble learning techniques in diagnosing
heart disease. Addressing these limitations and incorporating these suggestions in future
studies could contribute to the advancement of predictive models and their applications in
clinical practice.

Author Contributions: D.A., conceptualization, data curation, methodology, software, validation,
visualization, writing-original draft; M.B., conceptualization, supervision, writing—review and
editing; M.S.A., conceptualization, methodology, validation, project administration, visualization,
writing—original draft; A.M., funding acquisition, supervision, writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the support of Prince Sultan University for paying
the Article Processing Charges (APC) of this publication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The manuscript included all required data and implementing information.

Acknowledgments: We would like to extend our gratitude to the Prince Sultan University, Riyadh,
Saudi Arabia, for facilitating the publication of this paper through the Theoretical and Applied
Sciences Lab.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bonow, R.O.; Mann, D.L.; Zipes, D.P.; Libby, P. Braunwald’s Heart Disease E-Book: A Textbook of Cardiovascular Medicine; Elsevier

Health Sciences: Amsterdam, The Netherlands, 2011.
2. Monika, G.; Singh, S.N. Predictions in heart disease using techniques of data mining. In Proceedings of the 2015 International

Conference on Futuristic Trends on Computational Analysis and Knowledge Management (ABLAZE), Noida, India, 25–27
February 2015; pp. 520–525.

3. Gaidai, O.; Yan, P.; Xing, Y. Future world cancer death rate prediction. Sci. Rep. 2023, 13, 303. [CrossRef] [PubMed]
4. Fida, B.; Nazir, M.; Naveed, N.; Akram, S. Heart disease classification ensemble optimization using genetic algorithm. In

Proceedings of the 2011 IEEE 14th International Multitopic Conference, Karachi, Pakistan, 22–24 December 2011; pp. 19–24.
5. Anderson, R.N.; Smith, B.L. Deaths: Leading causes for 2002. Natl. Vital Stat. Rep. 2005, 53, 1–89. [PubMed]
6. Bui, A.L.; Horwich, T.B.; Fonarow, G.C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 2011, 8, 30–41. [CrossRef]

[PubMed]
7. Nahar, J.; Imam, T.; Tickle, K.S.; Chen, Y.P. Computational intelligence for heart disease diagnosis: A medical knowledge driven

approach. Expert Syst. Appl. 2013, 40, 96–104. [CrossRef]
8. Dalen, J.E.; Alpert, J.S.; Goldberg, R.J.; Weinstein, R.S. The epidemic of the 20th century: Coronary heart disease. Am. J. Med. 2014,

127, 807–812. [CrossRef] [PubMed]
9. Kenchaiah, S.; Narula, J.; Vasan, R.S. Risk factors for heart failure. Med. Clin. 2004, 88, 1145–1172. [CrossRef]
10. Dahlöf, B. Cardiovascular disease risk factors: Epidemiology and risk assessment. Am. J. Cardiol. 2010, 105, 3A–9A. [CrossRef]
11. Tarkanyi, G.; Tenyi, A.; Hollos, R.; Kalmar, P.J.; Szapary, L. Optimization of Large Vessel Occlusion Detection in Acute Ischemic

Stroke Using Machine Learning Methods. Life 2022, 12, 230. [CrossRef]
12. Sayadi, M.; Varadarajan, V.; Sadoughi, F.; Chopannejad, S.; Langarizadeh, M. A Machine Learning Model for Detection of

Coronary Artery Disease Using Noninvasive Clinical Parameters. Life 2022, 12, 1933. [CrossRef]

http://doi.org/10.1038/s41598-023-27547-x
http://www.ncbi.nlm.nih.gov/pubmed/36609490
http://www.ncbi.nlm.nih.gov/pubmed/15786629
http://dx.doi.org/10.1038/nrcardio.2010.165
http://www.ncbi.nlm.nih.gov/pubmed/21060326
http://dx.doi.org/10.1016/j.eswa.2012.07.032
http://dx.doi.org/10.1016/j.amjmed.2014.04.015
http://www.ncbi.nlm.nih.gov/pubmed/24811552
http://dx.doi.org/10.1016/j.mcna.2004.04.016
http://dx.doi.org/10.1016/j.amjcard.2009.10.007
http://dx.doi.org/10.3390/life12020230
http://dx.doi.org/10.3390/life12111933


Algorithms 2023, 16, 308 16 of 17

13. Jothi, N.; Husain, W. Data mining in healthcare—A review. Procedia Comput. Sci. 2015, 72, 306–313. [CrossRef]
14. Waigi, D.; Choudhary, D.S.; Fulzele, D.P.; Mishra, D. Predicting the risk of heart disease using advanced machine learning

approach. Eur. J. Mol. Clin. Med. 2020, 7, 1638–1645.
15. Ramesh, T.R.; Lilhore, U.K.; Poongodi, M.; Simaiya, S.; Kaur, A.; Hamdi, M. Predictive analysis of heart diseases with machine

learning approaches. Malays. J. Comput. Sci. 2022, 132–148. [CrossRef]
16. Haseena, S.; Priya, S.K.; Saroja, S.; Madavan, R.; Muhibbullah, M.; Subramaniam, U. Moth-Flame Optimization for Early

Prediction of Heart Diseases. Comput. Math. Methods Med. 2022, 1, 9178302.
17. Ramalingam, V.V.; Dandapath, A.; Raja, M.K. Heart disease prediction using machine learning techniques: A survey. Int. J. Eng.

Technol. 2018, 7, 684–687. [CrossRef]
18. Bhatt, C.M.; Patel, P.; Ghetia, T.; Mazzeo, P.L. Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms

2023, 16, 88. [CrossRef]
19. Ogundepo, E.A.; Yahya, W.B. Performance analysis of supervised classification models on heart disease prediction. Innov. Syst.

Softw. Eng. 2023 , 19, 129–144. [CrossRef]
20. Zeng, M. The Prediction of Heart Failure based on Four Machine Learning Algorithms. Highlights Sci. Eng. Technol. 2023, 39,

1377–1382. [CrossRef]
21. Khan, A.; Qureshi, M.; Daniyal, M.; Tawiah, K. A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease

Prediction. Health Soc. Care Community 2023, 2023, 1406060. [CrossRef]
22. Bizimana, P.C.; Zhang, Z.; Asim, M.; El-Latif, A.; Ahmed, A. An Effective Machine Learning-Based Model for an Early Heart

Disease Prediction. BioMed Res. Int. 2023, 52, 181–184. [CrossRef]
23. Almustafa, K.M. Prediction of heart disease and classifiers’ sensitivity analysis. BMC Bioinform. 2020, 21, 278. [CrossRef]
24. Shah, D.; Patel, S.; Bharti, S.K. Heart disease prediction using machine learning techniques. SN Comput. Sci. 2020, 1, 345.

[CrossRef]
25. Garg, A.; Sharma, B.; Khan, R. Heart disease prediction using machine learning techniques. IOP Conf. Ser. Mater. Sci. Eng. 2021,

1022, 012046. [CrossRef]
26. Shorewala, V. Early detection of coronary heart disease using ensemble techniques. Informatics Med. Unlocked 2021, 26, 100655.

[CrossRef]
27. Heart Disease Cleveland UCI. Available online: https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci (ac-

cessed on 30 April 2023).
28. Heart Disease Dataset. Available online: https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset (accessed on

30 April 2023).
29. Heart Disease. Available online: https://www.kaggle.com/datasets/data855/heart-disease (accessed on 30 April 2023).
30. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [CrossRef]
31. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Biau, G.; Scornet, E.A random forest guided tour. Test 2020, 25, 197–227. [CrossRef]
33. Ayyadevara, V.K. Random forest. In Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python

and R; Apress: Berkeley, CA, USA, 2018; pp. 105–116.
34. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
35. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
36. Brownlee, J. XGBoost with Python: Gradient Boosted Trees with XGBoost and Scikit-Learn; Machine Learning Mastery: San Francisco,

CA, USA, 2016.
37. Wade, C.; Glynn, K. Hands-On Gradient Boosting with XGBoost and Scikit-Learn: Perform Accessible Machine Learning and Extreme

Gradient Boosting with Python; Packt Publishing Ltd.: Birmingham, UK, 2020.
38. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv.

Neural Inf. Process. Syst. 2018, 31, 1–11.
39. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 1–45. [CrossRef]
40. Joseph, M. The Gradient Boosters V: CatBoost. Deep & Shallow. Available online: https://deep-and-shallow.com/2020/02/29

/the-gradient-boosters-v-catboost/ (accessed on 5 May 2023).
41. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
42. Agrawal, T.; Agrawal, T. Hyperparameter optimization using scikit-learn. In Hyperparameter Optimization in Machine Learning:

Make Your Machine Learning and Deep Learning models More Efficient; Apress: Berkeley, CA, USA, 2021; pp. 31–51.
43. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019,

arXiv:1912.06059.
44. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
45. Berrar, D. Cross-Validation. In Reference Module in Life Sciences; Elsevier: Oxford, UK, 2019; pp. 542–545. [CrossRef]
46. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2015.12.145
http://dx.doi.org/10.22452/mjcs.sp2022no1.10
http://dx.doi.org/10.14419/ijet.v7i2.8.10557
http://dx.doi.org/10.3390/a16020088
http://dx.doi.org/10.1007/s11334-022-00524-9
http://dx.doi.org/10.54097/hset.v39i.6771
http://dx.doi.org/10.1155/2023/1406060
http://dx.doi.org/10.1155/2023/3531420
http://dx.doi.org/10.1186/s12859-020-03626-y
http://dx.doi.org/10.1007/s42979-020-00365-y
http://dx.doi.org/10.1088/1757-899X/1022/1/012046
http://dx.doi.org/10.1016/j.imu.2021.100655
https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://www.kaggle.com/datasets/data855/heart-disease
http://dx.doi.org/10.1007/s11704-019-8208-z
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11749-016-0481-7
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1186/s40537-020-00369-8
https://deep-and-shallow.com/2020/02/29/the-gradient-boosters-v-catboost/
https://deep-and-shallow.com/2020/02/29/the-gradient-boosters-v-catboost/
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1016/j.patrec.2005.10.010


Algorithms 2023, 16, 308 17 of 17

47. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef]

48. Hintze, J.L.; Nelson, R.D. Violin plots: A box plot-density trace synergism. Am. Stat. 1998, 52, 181–184.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0118432

	Introduction
	Literature Review
	Methodology
	Data Collection
	Preprocessing
	Data Splitting 
	Modeling
	Random Forest (RF)
	Extra Tree Classifier (ETC)
	XGBoost
	CatBoost

	Hyperparameter Optimization
	Performance Evaluation

	Results
	Performance Evaluation Using Default Hyperparameter Settings
	Performance Evaluation Using Randomized Search CV
	Performance Evaluation Using Grid Search CV
	Performance Comparison

	Discussion
	Conclusions
	References

