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Abstract: In this paper we demonstrate some specialized modules for investigating the dynamics
of differential models, an integral part of a planned much more general Web-based application
for scientific computing. As “corrections” in the Lienard differential system is presented a class of
orthogonal polynomials (also known as “shell polynomials”). We will note that some specifics of the
amplitudes of these polynomials open up the possibility of modeling signals from the field of antenna-
feeder techniques. Algorithms and modules have been consistently used for: automatic generation of
a theorem on the number and type of limit cycles (in the light of Melnikov’s considerations); study of
the Hamiltonian of the system and “level curves”; for the study of catastrophic surfaces (in the light
of Zeeman’s considerations), etc. Similar studies have been carried out for associated polynomials.
Numerical examples, illustrating our results using CAS MATHEMATICA are given.

Keywords: Lienard differential system; polynomials Pn(x) as “corrections” in the Lienard system;
level curves; emitting chart
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1. Introduction

122 years ago, Hilbert [1] proposed 23 mathematical problems, of which the second
part of the 16th one is to find the maximal number of limit cycles and their relative locations
for polynomial vector fields. To date, several thousand articles and studies have been
devoted to this problem. The study of dynamical systems includes bifurcation theory
with branch catastrophe theory [2]. See also model in the light of Zeeman’s approach [3].
Arnold [4] discussed the catastrophes of the ADE classification, because of their relation
with the Lie groups. For more details of the existing important results on the generalized
polynomial Lienard differential systems and the limit-cycle bifurcations of some general-
ized polynomial Lienard systems, see [5–30] (where the reader can to discover a substantial
additional bibliography). Some of our previous research [31–33] on this issue encouraged
us to begin developing specialized modules as part of a much more general Web-based
application for scientific computing. In Section 2, we demonstrate some algorithms and
modules for: automatically generating a theorem for the number and type of limit cycles
(in the light of Melnikov’s considerations); study of the Hamiltonian of the system and
“level curves”; for the study of catastrophic surfaces (in the light of Zeeman’s considera-
tions); generation and simulation of antenna factor, etc. Concluding remarks are placed in
Section 3.
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Consider the orthogonal polynomials

(n + 1)Pn+1(x) = (n + a)xPn(x)− Pn−1(x)

P0(x) = 1; P1(x) = ax.

Polynomials are a special class of “shell polynomials” [34]. For more details see [35–37].
In this article we consider the Lienard system [6]

dx
dt

= y

dy
dt

= Poly(x) + εF(x)y
(1)

where 0 ≤ ε < 1; F(x) are specially chosen polynomials, and Poly(x) are the polynomials
Pn(x)—see Figure 1. The level curves are studied. Some applications of the polynomials
are also given.

Figure 1. The polynomials Pn(x) for fixed a = 1; n = 1, 3, 5, 7, 9.

2. Main Results

Let a = 1. Then



P3(x) = x3 − 5
6 x

P5(x) = x5 − 77
60 x3 + 7

24 x

P7(x) = x7 − 223
140 x5 + 59

90 x3 − 1
16 x

P9(x) = x9 − 4609
2520 x7 + 10,219

10,080 x5 − 2519
12,960 3x3 + 11

1152 x

P11(x) = x11 − 55,991
27,720 x9 + 22,711

16,800 x7 − 67,171
181,440 x5 + 2041

51,840 x3 − 13
11,520 x.

Let Poly(x) (in (1)) coincides with polynomials Pn(x). Without going into details, we will
note some more interesting level curves.

The level curves
The case (1): n = 9.
The Hamiltonian of system (1) (ε = 0) is

H(x, y) =
y2

2
− 1

10
x10 +

4609
20, 160

x8 − 10, 219
60, 480

x6 +
2519

51, 840
x4 − 11

2304
x2.

The level curves Lhi
= {H(x, y) = hi} are depicted at Figure 2.
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Figure 2. Level curves (the case 1).

The case (2): n = 7.
The Hamiltonian of system (1) (ε = 0) is

H(x, y) =
y2

2
− 1

8
x8 +

223
840

x6 − 59
360

x4 +
1
32

x2.

The level curves Lhi
= {H(x, y) = hi} are depicted at Figure 3.

Figure 3. Level curves (the case 2).

The model in the light of Melnikov’s considerations
The Melnikov polynomial [5] for the system

dx
dt

= y− ε
(
a1x + a2x2 + · · ·+ a2n+1x2n+1)

dy
dt

= −x
(2)
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is defined as

M(r2, n) =
a1

2
+

3
8

a3r2 + · · ·+
(

2n + 2
n + 1

)
a2n+1

22n+2 r2n. (3)

It is known [7,8] that the system for sufficiently small ε 6= 0 has at most n limit cycles
asymptotic to circles of radii rj, j = 1, 2, . . . , n as ε → 0 if and only if the nth degree
polynomial M(r2, n) has n positive roots r2 = r2

j , j = 1, 2, . . . , n.
The case n = 7.
Consider the model

dx
dt

= y− ε(x7 − 223
140 x5 + 59

90 x3 − µx)

dy
dt

= −x
(4)

where µ > 0, ε > 0.
The following is valid.

Proposition 1. The Lienard–type system for n = 7, and for all sufficiently small ε 6= 0.

(a) for µ = 1
16 = 0.0625 has three hyperbolic limit cycles 0.444513, 0.727036 and 1.04606.

(b) for µ = 0.0735880318901 has a simple limit cycle 1.06318 and limit cycle 0.587389 with
multiplicity two.

Proof. For the Melnikov polynomial in r2 (see Figure 4) we have:

M(r2, 3) = −µ

2
+

359
720

r2 − 223
448

r4 +
35

128
r6. (5)

Evidently, for example µ = 0.0735880318901 we have a simple limit cycle and cycle with
multiplicity two.

Figure 4. (a) The Melnikov polynomial M(r2, 3) for n = 7 and µ = 1
16 = 0.0625 (three limit cycles);

(b) The Melnikov polynomial M(r2, 3) for n = 7 and µ = 0.0735880318901 (simple limit cycle 1.06318
and limit cycle 0.587389 with multiplicity two).
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The case n = 11.
Consider the model


dx
dt

= y− ε(x11 − 55,991
27,720 x9 + 22,711

16,800 x7 − 67,171
181,440 x5 + 2041

51,840 x3 − µx)

dy
dt

= −x

where µ > 0, ε > 0.
The following is valid.

Proposition 2. The Lienard–type system for n = 11, and for all sufficiently small ε 6= 0.

(a) for µ = 13
11,520 = 0.00112847222221 has five hyperbolic limit cycles 0.25518, 0.442797,

588203, 0.729379 and 1.03167.
(b) for µ = 0.0012953041893 has simple limit cycles 0.639205, 0.706901, 1.03221 and limit

cycle 0.338942 with multiplicity two.

Proof. For the Melnikov polynomial in r2 (see Figure 5) we have:

M(r2, 5) = −µ

2
+

6123
414, 720

r2 − 335, 855
2, 903, 040

r4 +
794, 885

2, 150, 400
r6 − 3, 527, 433

7, 096, 320
r8 +

231
1024

r10.

Evidently, for example µ = 0.0012953041893 we have three simple limit cycles and limit
cycle with multiplicity two.

Figure 5. (a) The Melnikov polynomial M(r2, 5) for n = 11 and µ = 13
11,520 (five limit cycles); (b) The

Melnikov polynomial M(r2, 5) for n = 11 and µ = 0.0012953041893 (simple limit cycles 0.639205,
0.706901, 1.03221 and limit cycle 0.338942 with multiplicity two).

Numerical methods for finding zeros of polynomials can be found in [38–40].
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Some simulations
The simulations on the Lienard–type system:

dx
dt

= y

dy
dt

= −P9(x) + εF(x)y
(6)

where F(x) = x− x3 + x5 − 1
7 x7

(1) with x0 = 1.1, y0 = 0.7, b = 1, c = 0.995;
(2) with x0 = 1.1, y0 = 0.08, b = 1, c = 0.001

are depicted on Figures 6 and 7.

Figure 6. The simulations (system (6)) for x0 = 1.1, y0 = 0.7, b = 1, c = 0.995; ε = 0.0001: (a) the
solution of the system; (b) y-component of the solution; (c) the portrait; (d) emitting chart.
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Figure 7. The simulations (system (6)) for x0 = 1.1, y0 = 0.08, b = 1, c = 0.001; ε = 0.0001: (a) the
solution of the system; (b) y-component of the solution; (c) the portrait; (d) emitting chart.

We will note that some specifics of the amplitudes of these polynomials open up the
possibility of modeling signals from the field of antenna-feeder technology.

It is easy to take into account that the change of the variable t with t = b cos θ + c (θ is
the azimuthal angle and c is the phase difference) in the y(t)-component of the solution of
the system (6) leads to radiation diagrams [41,42].

Consider the following model in the light of Zeeman’s approach:
dx
dt

= c(G(x)− y)

dy
dt

= 1
c x

(7)
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with c > 0 and

G(x) = x9 − 4609
2520

x7 +
10, 219
10, 080

x5 − 2519
12, 960

3x3 + qx.

The catastrophe surfaces (x, y, p) = G(x)− y (q = 5, 10, 15) for the model is depicted on
Figure 8.

Figure 8. The catastrophe surfaces in the light of Zeeman considerations.

Consider the model (7) with c > 0 and

G(x) = x11 − 55, 991
27, 720

x9 +
22, 711
16, 800

x7 − 67, 171
181, 440

x5 +
2041

51, 840
x3 − qx.

The catastrophe surfaces (x, y, p) = G(x)− y (q = 1, 2, 3, 4, 5) for the model is depicted on
Figure 9.

Figure 9. The catastrophe surfaces in the light of Zeeman considerations.

Associated polynomials—P∗n (x).
We will explicitly note that for modeling specific radiation diagrams, the orthogonal

polynomials associated with Pn(x) — P∗n (x) can also be successfully used, generating from
the following recursion [35]:

(n + c + 1)P∗n+1(x) = (n + a + c)xP∗n (x)− P∗n−1(x)

P∗0 (x) = 1; P∗1 (x) = a+c
c+1 x.
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The polynomials P∗n (x) for n = 1,3,5,7,9 and fixed a = 1, c = 3
P∗3 (x) = x3 − 11

30 x
P∗5 (x) = x5 − 533

840 x3 + 25
336 x

P∗7 (x) = x7 − 2131
2520 x5 + 7351

37,800 x3 − 107
10,080 x

P∗9 (x) = x9 − 28,271
27,720 x7 + 184,463

554,400 x5 − 3451
89,100 3x3 + 223

190,080 x

are shown in Figure 10.

Figure 10. The polynomials P∗n (x) for fixed a = 1; c = 3; n = 1, 3, 5, 7, 9.

Some simulations
The simulations on the Lienard–type system:

dx
dt

= y

dy
dt

= −P∗5 (x) + εF(x)y
(8)

where
F(x) = x− x3 + x5 − 1

7
x7

with x0 = 0.8, y0 = 0.6, b = 0.9, c = 0.7809 are depicted on Figure 11.
All experiments and algorithms were carried out using our own module in CAS

Mathematica.

We define the normalized factor as follows

X(θ) =
|y(b cos θ + c)|

N
.
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Figure 11. The simulations (system (8)) for x0 = 0.8, y0 = 0.6, b = 0.9, c = 0.7809; ε = 0.0001: (a) the
solution of the system; (b) y-component of the solution; (c) the portrait; (d) emitting chart.

3. Calculator Software Application

We are developing a high-scalable, cloud-based software calculator using serverless
architecture [43]. The serverless architecture enables automatic scaling of the system
during high load. Furthermore, it can be used to parallelize suitable computations for
higher efficiency. Where possible, we employ various optimization techniques for high-
performance calculations, including multi-processor and multi-threading calculations, and
hardware intrinsics [44–46]. The system is exposing the implemented algorithms using
industry-standard application programming interface using HTTP and REST, with data
being serialized in JSON and XML formats.

We are developing mobile, native and web-based clients (intellectual property at this
stage) to provide an end-user experience for researchers. The following capabilities has
been implemented: the user sets: the polynomials Polyi(x) (see (1)), which can be arbitrary
orthogonal polynomials and their associated polynomials (such as associated Hermite
polynomials, associated Gegenbauer polynomials, associated Legendre polynomials, asso-
ciated Lommel polynomials, q–Lommel polynomials associated with the Jackson q-Bessel
function, continuous and bivariate q–Hermite polynomials, extended Gegenbauer polyno-
mials and their q–analogues, associated Jacoby polynomials, Chebyshev and Gegenbauer
polynomials of higher kind etc.); the function F(x).

The API can be used by reporting and analytics systems like PowerBI and Excel to
further investigate the results [47].
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The application provides an opportunity for research in two directions–the study of the
dynamics of differential systems and the generation of special classes of
radiation diagrams.

Some of the algorithms used in this paper

1. In the Melnikov polynomials M(r2, n), the coefficients are fractional numbers, and with
a high degree of the polynomial, the user is faced with solving a “classic problem with
imprecise data”. This requires as a first step the use of an algorithm to approximately
find the multiplicities of the zeros of the polynomial, then proceed to an algorithm with
a user-fixed rate of convergence to determine all the zeros of the polynomial.

2. Specialized algorithm for detailed Hamiltonian study of system (1) and visualization
of “level curves” (assuming implementation of software tools in a user-selected
computer-algebraic system for scientific calculations).

3. Algorithm for matching the initial approximations when solving the differential
system (1), given its interesting specificity and behavior of the solution in confidential
time intervals.

4. Algorithm for control and visualization of the “antenna factor” (with a possibly
user-set value of the lateral radiation).

4. Concluding Remarks

Some of our previous research on this issue encouraged us to start developing special-
ized modules, part of a much more general Web-based application for scientific computing.
We mention the above algorithms because some of them are hidden from the user. Deter-
mining the number and type of cycles, as we have already mentioned, is a complicated
task (with inaccurate data—Algorithm 1). Our proposed module automatically generates
theorems in light of Melnikov’s considerations (see e.g., Propositions 1 and 2). This is very
important for the user to take further steps in the detailed study of the dynamic model
(for example, “level curves”—Algorithm 2) with the corrective corrections set by him in
the Lienard differential system of the type of arbitrary high-order orthogonal polynomials
or their associated or appropriate classes of Morse-type polynomials, etc. We will explic-
itly note that the user does not have to be a mathematician! What information about it
would be, for example, the standard comment from existing computer algebra platforms:
“The solution of the differential system lacks consistency under your chosen set of initial
approximations”. After all, we have to provide the user with a satisfactory solution to
the task (typical example—the hidden Algorithm 3). Another algorithm hidden from the
user is checking the conditions in Lienard’s theorem for the existence of a limit cycle at
all! Another example of a hidden algorithm is the recurrent generation of the polynomi-
als under study at a user-fixed degree n. Algorithm 4 is extremely complex (and at this
stage—insufficiently specified and developed). The use of y(θ)-the solution component of
the corresponding Lienard differential system as an antenna factor is very complicated. As
far as the Dolph-Chebyshev technique for synthesis of power pattern end filter prototypes
is well known, we note that by analogy we can define hypothetical transmitting functions
based on “van Doorn polynomials” (object of consideration in this article). The experts
have a word! Of course, research on the “van Doorn array” can be carried out in the light of
Soltis considerations [48], but this is the subject of future development and will be omitted
here. We fully understand that the construction of such an ambitious Web-based platform
for scientific computing can only be realized with the active participation of specialists
from various branches of scientific knowledge.
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validation, N.K., A.R. and A.I.; formal analysis, N.K. and A.I.; investigation, V.K., A.R. and N.K.;
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V.K., N.K. and A.I.; writing—review and editing, A.R.; visualization, V.K.; supervision, N.K.; project
administration, N.K.; and funding acquisition, A.R. and A.I. All authors have read and agreed to the
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