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Abstract: Over time, human beings have built increasingly large astronomical observatories to
increase the number of discoveries related to celestial objects. However, the amount of collected
elements far exceeds the human capacity to analyze findings without help. For this reason, researchers
must now turn to machine learning to analyze such data, identifying and classifying transient objects
or events within extensive observations of the firmament. Algorithms from the family of random
forests (an ensemble of decision trees) have become a powerful tool that can be used to classify
astronomical events and objects. This work aims to illustrate the versatility of machine learning
algorithms, such as decision trees, to facilitate the identification and classification of celestial bodies
by manipulating hyperparameters and studying the attributes of celestial body datasets. By applying
a random forest algorithm to a well-known dataset that includes three types of celestial bodies, its
effectiveness was compared against some supervised classifiers of the most important approaches
(Bayes, nearest neighbors, support vector machines, and neural networks). The results show that
random forests are a good alternative for data analysis and classification in astronomical observations.

Keywords: machine learning; supervised classification; associative algorithm; diseases

1. Introduction

Since ancient times, human beings have been fascinated by observing the skies [1]. The
cultural manifestations of great civilizations attest to the precision with which peoples such
as the Maya recorded astronomical events [2]. The notable results of these observations
have undeniably brought usefulness to the daily lives of inhabitants, such as calendars,
numerical systems, agriculture, and social life, among other activities in which their impact
has been measured [3]. Over the years, centuries, and millennia, human beings have built
increasingly large astronomical observatories to increase the number of discoveries related
to celestial objects. The Webb telescope and the photographs it captures of celestial objects
are clear examples of these impressive advances [4].

This development in astronomical observation technology has led to a noticeable
increase in the number of collected elements, which far exceeds human capacity to analyze
findings. For this reason, researchers must now turn to machine learning to analyze such
data, identifying and classifying transient objects or events within extensive observations
of the firmament [5].

In this context, the classification of celestial objects has been a topic of great interest for
astronomers and astrophysicists for decades. With the increase in the size and complexity
of astronomical datasets, the use of machine learning algorithms has become essential for
classifying objects based on their spectral data [6].

On the other hand, the world is witnessing the evolution of new scientific ideas
that provide theoretical support for pattern recognition, machine learning, and related
areas. At the same time, machine learning algorithms are becoming closer to interesting
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applications in all sciences, including astronomy. In machine learning, there are four basic
tasks corresponding to two paradigms. The unsupervised paradigm includes the clustering
task, while the remaining three tasks belong to the supervised paradigm: classification,
recalling, and regression [7].

In the state of the art, there are several important approaches whose algorithms
perform the task of pattern classification. Among the most important, we can mention
the Bayesian approach [8], the nearest neighbors-based approach [9], support vector ma-
chines [10,11], and neural networks, especially multi-layer perceptron [12], and the whole
range of algorithms based on deep learning [13].

Several authors have studied astronomical topics using machine-learning techniques
to classify astronomical objects. It is worth mentioning [14] that the authors conduct an
interesting comparative study of different pattern classification algorithms applied to astro-
nomical datasets. In [15], the authors incorporate unsupervised algorithms (clustering) into
astronomical data and conduct a comparative study with pattern classification algorithms.

In this article, we propose the use of one of the most successful approaches in the
classification of astronomical objects. This approach involves decision trees [16], especially
when implemented as random forests [17], which are ensembles of decision trees. This is
particularly relevant, given that recent studies have compared the performance of some
random forest algorithms' performance with deep learning in classifying astronomical
objects [18]. Of particular interest to the authors of this manuscript are studies that use
datasets of astronomical objects extracted from the Sloan digital sky survey (SDSS) [19].

The rest of the paper is organized as follows: Section 2 consists of two subsections,
where the datasets and the random forest algorithm are described. Section 3 includes the
classification algorithms against which our proposal will be compared. Additionally, the
experimental results are presented and discussed. Finally, in Section 4, the conclusions
are provided.

2. Materials and Methods

This section is composed of two subsections. In Section 2.1, the materials used in this
paper are described. These materials consist of three datasets of astronomical objects, which
were extracted from the Sloan Digital Sky Survey (SDSS). In Section 2.2, the random forest
algorithm is described, which is an ensemble of decision trees, along with its characteristics
and specifications. Pseudo-code is also included.

2.1. Materials

In astronomical observation, many methodologies allow for the detection of astronomi-
cal bodies, such as stars, exoplanets, quasars, galaxies, and others. These detection methods
yield a large amount of data that describes these bodies in particular. These methods can
range from direct observation in space to observation using spectroscopes, such as with the
Sloan Digital Sky Survey (SDSS), which uses an optical telescope that allows for studies of
redshift on astronomical bodies [20].

The SDSS conducts a celestial census, which has allowed for gathering information
about how many galaxies and quasars the universe contains, how they are distributed,
their individual properties, and how bright they are. This data collection uses an optical
telescope that allows studies of redshifts on astronomical objects. The SDSS has created
spectral maps of over three million astronomical objects [21,22].

In astronomy, it is common to carry out the task of classifying astronomical bodies
according to certain spectral characteristics. One of the most important astronomical
classification schemes is that of galaxies, quasars, and stars. The goal of this kind of dataset
is to classify stars, galaxies, and quasars based on their spectral characteristics [14].

In particular, the three datasets used in this work consist of different compilations
made over time from SDSS. From the wide range of astronomical datasets generated by
scientists throughout the centuries, we have chosen three of them due to the interest shown
by researchers. The prestige of these three datasets is reflected in the quantity and quality
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of scientific articles published in high-impact journals over the last lustrum [23–29]. The
objective of these datasets is to classify stars, galaxies, and quasars based on their spectral
characteristics, so the patterns of each dataset are divided into three classes: stars, galaxies,
and quasars. Since the three classes do not necessarily contain the same number of patterns,
it is necessary to characterize each dataset with an index that indicates the imbalance
of the classes.

The imbalance ratio (IR) is an index that measures the degree of imbalance of a dataset.
The IR index is defined as in [30]:

IR =
|majority_class|
|minority_class| (1)

where |majority_class| represents the cardinality of the majority class in the dataset, while
|minority_class| represents the cardinality of the minority class. A dataset is considered
balanced, if its IR value is close to or less than 1.5 (note that the IR value is always greater
than 1).

In all cases, each pattern is composed of 17 attributes, which are:

1. obj_ID: Object Identifier, the unique value that identifies the object
2. alpha: Right Ascension angle
3. delta: Declination angle
4. u: Ultraviolet filter in the photometric system
5. g: Green filter in the photometric system
6. r: Red filter in the photometric system
7. i: Near Infrared filter in the photometric system
8. z: Infrared filter in the photometric system
9. run_ID: Run Number used to identify the specific scan
10. rerun_ID: Rerun Number to specify how the image was processed
11. cam_col: Camera column to identify the scanline within the run
12. field_ID: Field number to identify each field
13. spec_obj_ID: Unique ID used for optical spectroscopic objects
14. redshift: Redshift value based on the increase in wavelength
15. plate: plate ID, identifies each plate in SDSS
16. MJD: Modified Julian Date, when a given piece of SDSS data was taken
17. fiber_ID: fiber ID, the fiber that pointed the light at the focal plane

The datasets used are DR14, DR16, and DR17.
Sloan Digital Sky Survey DR14
The Sloan digital sky survey DR 14 dataset contains observations from the SDSS taken

in July 2016. The dataset consists of 10,000 observations taken by the SDSS [31]. Each
observed pattern comprises 17 attributes and a class column identifying them as a star,
galaxy, or quasar. It contains 4998 observations of the galaxy class (GALAXY), 850 of the
quasar class (QSO), and 4152 of the star class (STAR). The imbalance ratio for this dataset is
IR = 5.88.

IR =
4998
850

= 5.88 (2)

Sloan Digital Sky Survey DR16
The Sloan digital sky survey DR 16 dataset contains observations from the SDSS taken

in August 2018. The dataset consists of 100,000 observations taken by the SDSS [32]. Each
observed pattern is made up of 17 attributes and a class column which, as in data release 14,
identifies them as stars, galaxies, or quasars. It contains 51,323 observations of the galaxy
class (GALAXY), 10,581 of the quasar class (QSO), and 38,096 of the star class (STAR). The
Imbalance ratio for this dataset is IR = 4.85.
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IR =
51, 323
10, 581

= 4.85 (3)

Sloan Digital Sky Survey DR17
The Sloan Digital Sky Survey DR17 dataset contains observations from the SDSS taken

in January 2021. The dataset consists of 100,000 observations taken by the SDSS [33]. Each
observed pattern comprises 17 attributes and a class column that identifies the same classes
described in DR14 and DR16. It contains 59,445 observations of the galaxy class (GALAXY),
18,961 of the quasar class (QSO), and 21,594 of the star class (STAR). The imbalance ratio
for this dataset is IR = 3.13.

IR =
59, 445
18, 961

= 3.13 (4)

2.2. Methods

The methods proposed in this article include the use of decision trees [16,34], especially
when implemented as random forests [17].

A decision tree is a machine learning algorithm that can be used for both classification
and regression tasks. It works by recursively partitioning the data into subsets based on
the input features’ values, then assigning a class label or regression value to each leaf node
of the resulting tree.

There are many different types of decision tree algorithms, but two of the most well-
known are 1D3 and C4.5.

1D3 (one-dimensional decision tree) is a simple decision tree algorithm that builds a
tree based on a single input feature at a time [35]. It works by finding the best split point for
each feature, and then choosing the best split to create a new node. This process is repeated
recursively until a stopping criterion is met, such as reaching a maximum depth or having
a minimum number of instances in each leaf node.

C4.5 is a more advanced decision tree algorithm introduced as an improvement over
its predecessor, ID3 [16]. Like 1D3, it works by recursively partitioning the data based on
the values of the input features, but it also includes several enhancements, such as handling
missing data, pruning, and handling continuous-valued features.

On the other hand, random forest is a popular machine-learning algorithm used
for classification and regression tasks. It is an ensemble method that combines multiple
decision trees to produce a more accurate prediction. random forest is based on the concept
of bagging, which is an approach that combines multiple models to improve the overall
performance [17].

In a random forest, a set of decision trees are trained on different subsets of the data,
each tree is trained on a random subset of the features, as shown in Algorithm 1 [16]. This
randomness helps to reduce overfitting and increase the accuracy of the model. The final
prediction is made by aggregating the predictions of all the trees in the forest, as shown in
Algorithm 2.

One of the main advantages of random forest is that it can handle high-dimensional
data with many features, making it a popular choice for image classification, text classifi-
cation, and bioinformatics. Additionally, it can handle missing values and outliers in the
data [17,35].

The algorithm we propose to obtain the classification results of astronomical objects
has the following characteristics and specifications:

• Number of trees = 100.
• Depth is set until the point of having simple leaves; that is, the maximum possible depth.
• Number of samples = 2.
• Number of attributes to consider = sqrt (features).
• Creation of samples by Bootstrap.
• Seed = 1.
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Algorithm 1: The Random Forest algorithm–Training Phase

Given:

- Tr: training set with n patterns, m features, and a specific class.
- K: number of total classes.
- S: number of classifiers (100 proposed).

For s = 1 to S

1. Bootstrapped sample Trs from the training set.
2. Create a tree with a random feature subset from bootstrapped Trs . For a new node

created t.

2.1 Randomly selection m =
√p features (p is a total features).

2.2 Find the best split features and cutpoints.
2.3 Send down the data using the best split and cutpoints.

* Repeat 2.1 – 2.3 until the maximum depth has been reaches *
3. Create trained classifiers RFs.

Output: Trained classifiers RFs.

Algorithm 2: The Random Forest algorithm—Test Phase

Given:

- Te: test set with n patterns, m features.
- S: number of classifiers (100 proposed).

Aggregate the S trained classifiers using majority voting. For a test pattern x
from Te, the predicted class label from classifiers RFs is given as:

RFs(x) = argmaxj∑S
s=1 I(RFs(x) = j), f or j = 1, . . . , K

Output: Class label k for the test pattern.

In this sense, it is important to talk about the core proposal of this work related to
RF implementation. Hyperparameter optimization is an area of utmost importance when
performing any of the tasks related to machine learning. Keeping the learning process
of classification algorithms under control is a complex task, since these hyperparameters
originate from the formulation of any machine learning models. Therefore, it can be defined
that the performance that a classification model can achieve depends significantly on the
proper adjustment of these hyperparameters, so it is assumed that the best combination of
hyperparameters will provide the best possible performance with a given classifier [36].

There are several hyperparameter optimization techniques for the random forest
algorithm, such as grid search, Bayesian optimization, or random search. These hyperpa-
rameters must be adjusted for each problem since no problem is solved exactly the same as
another [37].

Dealing with the differentiator of the proposed algorithm, it is important to men-
tion that random search is an excellent alternative to perform an automatic adjustment
of hyperparameters.

Hyperparameter Tuning Based on Randomized Search

Unlike the grid search, not all attributes are used. This grid search searches exhaus-
tively through every combination of well-defined hyperparameter values, significantly
increasing the processing time. However, the random search is based on taking a con-
stant magnitude sample of attribute configurations determined by the distribution of their
values [38]. The fact of using a random search allows finding a more diverse region of hy-
perparameters, contrary to what happens when establishing a grid with constant separation
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intervals, this has the advantage that the algorithm can find a region of hyperparameters
that were not in the originally defined grid, as shown in Figure 1.
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Although it does not guarantee to find the hyperparameters that find the best combi-
nation of parameters, it is good enough to achieve a very good combination very quickly,
this feature is essential, particularly when working with datasets in the field of astronomy,
as there is usually a very large number of observations, a fact that generates a considerable
processing time [39]. By implementing this hyperparameter search and optimization tech-
nique, it is possible to achieve results that can compete with state-of-the-art algorithms, not
only in performance but also in processing time.

3. Results and Discussion

The present section is relevant to the purposes of this article. Its relevance lies in the fact
that the experimental results shown here will demonstrate the importance and relevance of
using random forests in classifying stars, quasars, and galaxies. This information could
support scientists since it will allow them to select a family of algorithms that is effective
and efficient to carry out tasks of classification of astronomical objects. The relevance
is evident when considering the possibilities currently offered by the state of the art of
machine learning.

This section consists of six subsections. Section 3.1 describes the validation method
used to present the results of the experiments on the classification of astronomical objects.
Section 3.2 describes the performance measures used to present the results. Section 3.3 contains
descriptions of five classifier algorithms, the most important approaches to the state of the art,
and references supporting the conceptual structures on which these algorithms rest.

The results of these state-of-the-art algorithms are presented in the remaining three
Sections 3.4–3.6. In Section 3.4, the results of applying the random forest algorithm proposed
in this work to the SDSS-DR14 dataset are presented, including tables and, importantly, the
analysis and discussion of comparative results with different machine learning algorithms
mentioned in Section 3.2. Similarly, in Sections 3.5 and 3.6, the data from the other two
datasets, SDSS-DR16 and SDSS-DR17, respectively, are used to develop and evaluate the
proposed algorithm. All of this will be of great support for measuring the performance of
the proposed algorithm and its potential relevance in state-of-the-art machine learning and
its applications.

3.1. Validation Method

In machine learning, every pattern classification experiment consists of two phases:
the learning phase (also called the training phase) and the testing phase. To carry out both
phases, validation methods are applied to the datasets to apply the classification algorithm.
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A validation method splits the dataset D into two disjoint or non-overlapping sets: a
training set E and a test set P, so that sets E and P form a partition of dataset D, as shown in
Figure 2.
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The patterns in the training set E must be disjoint from the patterns in the testing set P;
therefore, the sets E and P must form a partition, that is:

E ∩ P = ∅ and E ∪ P = D (5)

Among the most popular validation methods in recent publications, three stand out:
k-fold-cross-validation [40], Leave-one-out [41,42], and Hold-out [43]. To report the results
in this work, we have selected the stratified Hold-out partition method with an 80–20
partition; that is, in each of the sets E and P, all classes are represented proportionally, with
80% of the patterns for algorithm training and 20% for testing.

3.2. Performance Measures

In machine learning, every pattern classification experiment consists of two phases:
training and testing. After applying the selected validation method to the dataset (in our
case, we have selected Hold-out 80-20), the pattern classification algorithm is executed on
the training set E (in our case, the proposed random forest algorithm). Then, the trained
algorithm is presented with one-by-one test patterns from the set P. The classification
algorithm will output one of two options: correct or incorrect.

With these values, it is possible to calculate the measure that expresses the classification
algorithm’s performance on the specified dataset with the selected validation method [30].
In this paper, we will apply the proposed random forest algorithm to the SDSS-DE14,
SDSS-DE16, and SDSS-DE17 datasets, with partitions generated by the Hold-out 80–20
validation method.

One of the simplest and easiest to calculate performance measures is accuracy [44],
defined as the ratio of correct predictions to the total number of test patterns. The value of
accuracy ranges from 0 to 1.

accuracy =
number o f correct predictions

number o f test patterns
(6)

The accuracy performance measure considers classification errors in general. However,
in the calculation of accuracy, the costs of different types of errors are not considered; that is,
it is equally important to misclassify a pattern from class 1 as misclassifying a pattern from
class 2. In an imbalanced dataset, there is a real risk that a classifier (no matter how good it
is) will exhibit a bias towards the majority class, ignoring the minority class. The solution
to this problem is addressed using the confusion matrix, which allows for considering the
particularities of the decisions made by state-of-the-art classifiers.

To work with the confusion matrix, it is necessary to define one of the classes as
positive and the other class(es) as negative. From there, four possibilities arise that are
shown below in a confusion matrix for two classes:
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Where:

• TP: True Positive
• TN: True Negative
• FP: False Positive
• FN: False Negative

True Positive (TP) represents the number of positive patterns that are correctly classi-
fied as positive. In contrast, True Negative (TN) represents the number of negative patterns
correctly classified as negative. False Positive (FP) is the number of negative patterns that
are incorrectly classified as positive, and False Negative (FN) is the number of positive
patterns that are incorrectly classified as negative.

The confusion matrix for three or more classes is simply an extension of the scheme in
Figure 3.
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Figure 3. Schematic illustration of a confusion matrix for two classes.

From the four elements of the confusion matrix, it is possible to define many perfor-
mance measures. Next, we present the four performance measures used in the experiments
of this paper, including the expression of accuracy in terms of the four elements: TP, FN,
FP, and TN [45,46].

sensitivity =
TP

TP + FN
(7)

speci f icity =
TN

FP + TN
(8)

balanced accuracy =
sensitivity + speci f icity

2
(9)

What happens to the values of accuracy and balanced accuracy when the value of
IR increases?

Noticeably, as the value of IR increases, the performance measure balanced accuracy
becomes more reliable than accuracy, due to the tendency of most classifiers towards highly
imbalanced datasets: classifiers exhibit bias towards the majority class.

The balanced accuracy performance measure is more reliable than accuracy because it
considers the contributions of both classes in the average [46].

3.3. State-of-the-Art Classifiers for Comparison

This subsection concisely describes the conceptual basis of five of the most important
state-of-the-art classifiers implemented on the WEKA platform [47]. These are the classifi-
cation algorithms against which the random forest algorithm proposed in this paper, will
be compared. The proposed random forest algorithm was implemented in Python, using
the scikit-learn library [48].
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Naïve Bayes [8]
The Naïve Bayes classifier is a probabilistic algorithm with a superstructure based

on Bayes’ theorem. The classifier assumes that the features are independent of each other,
which is why it has the naïve name.

IBk (Instance-Based) [9]
IBk (Instance-based classifiers) is a family of classifiers based on metrics, which arises

as an improvement to the k-NN family of classifiers (the k nearest neighbors). The difference
between these two families of classifiers is that IBk can classify patterns with mixed features
and missing values, thanks to the use of the HEOM metric. (Heterogeneous Euclidean–
overlap Metric) [49].

SVM [10,11]
Support vector machines (SVMs) are a popular and powerful machine learning algo-

rithm used for classification and regression analysis. SVMs aim to find the hyperplane
that best separates the data points of different classes in a high-dimensional space. The
hyperplane is chosen to maximize the margin, which is the distance between the hyper-
plane and the closest data points of each class. SVMs have shown high performance in
various applications, including text classification, image classification, and bioinformatics.
In this paper, a version of SVM called SMO is used, which is implemented in the WEKA
platform. [47]

MLP [12]
The multi-layer perceptron classifier is an artificial neural network consisting of mul-

tiple layers, which allows for solving non-linear problems. Although neural networks
have many advantages, they also have their limitations. If the model is trained correctly,
it can give accurate results, in addition to the fact that the functions only look for local
minima, which causes the training to stop even without having reached the percentage of
allowed error.

A summary of the five algorithms against which the random forest algorithm will be
compared is included in Table 1.

Table 1. Algorithms against which the random forest algorithm will be compared.

Algorithm Conceptual Basis

Naïve Bayes Calculation of probabilities using Bayes’ theorem
IB1 Dissimilarity: HEOM and Euclidean distance
IB3 Dissimilarity: HEOM and Euclidean distance

SVM (SMO) Finding a kernel-based hyperplane
MLP Artificial Neural Networks

3.4. Results and Comparative Analysis for the SDSS DR14 Dataset

As previously specified in Section 2.1, the Sloan digital sky survey DR 14 dataset
contains 4998 observations of the galaxy class (GALAXY), 850 of the quasar class (QSO),
and 4152 of the star class (STAR). The imbalance ratio for this dataset is IR = 5.88.

When running the proposed random forest algorithm on the SDSS DR14 dataset, the
following confusion matrix is obtained (Figure 4):

If we consider the case GALAXY as positive, the values of the three performance
measures: sensitivity, specificity, and balanced accuracy, are calculated based on the values
in the confusion matrix. For comparative purposes, the values of these four performance
measures are included in Table 2.
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Table 2. Performance measures (in %) for the SDSS DR14 dataset (best values in bold).

Naïve Bayes IB1 IB3 SVM (SMO) MLP Random Forest

sensitivity 0.9409 0.8581 0.8466 0.9080 0.9710 0.9792
specificity 0.9685 0.9251 0.9250 0.9433 0.9845 0.9940

balanced accuracy 0.9547 0.8916 0.8858 0.9256 0.9777 0.9866

The results obtained by the proposed random forest algorithm on the SDSS DR14
dataset are good in all four performance measures.

The comparative table shows that the proposed random forest algorithm outperforms
the other five state-of-the-art classifiers, considering GALAXY as the positive class.

The same applies when changing the positive class. Although these two additional
results were not included, in both cases, the superiority of the proposed random forest
algorithm persists.

It is relevant to note a significant fact: despite the high-class imbalance in the SDSS
DR14 dataset, which deviates from the IR 1.5 value specified for balanced datasets, the
proposed random forest algorithm outperforms all others in the performance measure:
balanced accuracy.

These results are shown graphically in the bar chart of Figure 5 for balanced accuracy.
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3.5. Results and Comparative Analysis for the SDSS DR16 Dataset

As previously specified in Section 2.1, the Sloan digital sky survey DR 16 dataset
contains 51,323 observations of the galaxy class (GALAXY), 10,581 of the quasar class
(QSO), and 38,096 of the star class (STAR). The Imbalance ratio is IR = 4.85. Figure 6 shows
the corresponding confusion matrix:
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If we consider the case GALAXY as positive, the values of the four performance
measures: accuracy, sensitivity, specificity, and balanced accuracy are calculated based on
the values in the confusion matrix. For comparative purposes, the values of these four
performance measures are included in Table 3.

In this case, when applying the proposed random forest algorithm on the SDSS DR16
dataset, the results in three of the four performance measures surpass the other classifiers.
The exception is the performance of the MLP algorithm in sensitivity, which outperforms
the proposed random forest algorithm. This means that the MLP algorithm is better than the
proposed random forest algorithm in detecting the other two classes that are not GALAXY,
which are QSO and STAR.

Despite the above, it still holds that despite the high-class imbalance in the SDSS DR16
dataset, the proposed random forest algorithm outperforms all others in both performance
measures: accuracy and balanced accuracy.

These results are shown graphically in the bar chart of Figure 7 for balanced accuracy.
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Table 3. Performance measures (in %) for SDSS DR16 dataset (best values in bold).

Naïve Bayes IB1 IB3 SVM (SMO) MLP Random Forest

sensitivity 0.9630 0.8515 0.8544 0.9433 0.9788 0.9783
specificity 0.9862 0.9243 0.9261 0.9676 0.9898 0.9940

balanced accuracy 0.9746 0.8879 0.8858 0.9554 0.9843 0.9861

3.6. Results and Comparative Analysis for the SDSS DR17 Dataset

As previously specified in Section 2.1, the Sloan digital sky survey DR 17 dataset
contains 59,445 observations of the galaxy class (GALAXY), 18,961 of the quasar class
(QSO), and 21,594 of the star class (STAR). The Imbalance ratio for this dataset is IR = 3.13.

When running the proposed random forest algorithm on the SDSS DR17 dataset, the
following confusion matrix is obtained (Figure 8):
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Figure 8. Confusion matrix resulting from applying the proposed random forest algorithm on the
SDSS DR17 dataset.

If we consider the case GALAXY as positive, the values of the four performance
measures: accuracy, sensitivity, specificity, and balanced accuracy are calculated based on
the values in the confusion matrix. For comparative purposes, the values of these four
performance measures are included in Table 4.

Table 4. Performance measures (in %) for SDSS DR17 dataset (best values in bold).

Naïve Bayes IB1 IB3 SVM (SMO) MLP Random forest

sensitivity 0.6329 0.8185 0.8022 0.9313 0.9657 0.9756
specificity 0.8108 0.9057 0.8988 0.9636 0.9818 0.9874

balanced accuracy 0.7219 0.8621 0.8505 0.9474 0.9738 0.9815

Again, the results on the SDSS DR17 dataset are similar to those obtained by the
proposed random forest algorithm on the SDSS DR14 dataset, which are good in all four
performance measures.

The comparative table shows that the proposed random forest algorithm clearly outper-
forms the other five state-of-the-art classifiers, considering GALAXY as the positive class.

It is also worth noting that the proposed random forest algorithm outperforms all
others in both performance measures: accuracy and balanced accuracy.

These results are shown graphically in the bar charts of Figure 9 for balanced accuracy.
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Given the results in Tables 2–4, unusual behavior is observed within the pattern
classification task [50]. It is observed that for the set SDSS DR14, whose unbalance rate is
the highest (IR = 5.88), a better performance is achieved compared to the most recently
created datasets, SDSS DR16 and SDSS DR17, this for the most reliable performance measure
for unbalanced datasets, the balanced accuracy [51]. In this circumstance, it cannot be
established that the unbalanced factor determines the performance, but it can be attributed
to the data acquisition; although the attributes considered for each dataset are the same, it
should be remembered that these data are obtained from photometric signals, and being
acquired in different seasons of the year, these can provide better or worse information of
the phenomena occurred [52].

Remarkably, the performance metrics shown for the SMO and MLP algorithms are
extremely close concerning the performance achieved by the random forest algorithm
proposal developed in this work. However, in that sense, it is evident that RF improves the
results achieved by the algorithms of greater scientific relevance, although this difference
in some measures seems to be minimal. In this circumstance, it is important to demonstrate
that the results are reliable by applying statistical significance tests, these tests consist of
accepting or rejecting the null hypothesis H0, i.e., that there are no significant differences
between one group of data and another. In this regard, the Friedman test will be used [53] to
identify whether there are significant differences between the performance results achieved
by the proposed classification algorithms.

Looking at Tables 2–4, the results for the different metrics calculated are similar be-
tween the algorithms. However, after performing Friedman’s statistical test, the null
hypothesis was rejected with a confidence level of 95%, and a p-value of 0.0262, which
provides evidence showing statistically significant differences between the classifiers. In
addition, the RF algorithm was ranked best according to Friedman’s mean rank for the
methods compared, while the SMP and MLP algorithms ranked fourth and fifth, respec-
tively, as shown in Table 5.

Table 5. Friedman test mean ranking.

Algorithm Ranking 1

Random forest 1.333
IB1 2.333

Naïve Bayes 3.000
SMO
MLP
IB3

3.333
5.000
6.000

1 Ordered from best to worst.
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4. Conclusions

Upon analyzing the data and results of the three confusion matrices in Tables 2–5, as
well as Figures 4–9, we can conclude that the purpose of this research has been fulfilled. We
have shown with hard data that the proposed random forest algorithm achieves remarkable
results when applied to three well-known SDSS datasets. Moreover, the comparative tables
demonstrate that in the vast majority of cases, the proposed random forest algorithm out-
performs state-of-the-art pattern classification algorithms such as Bayes, nearest neighbors,
support vector machines, and neural networks. The results have shown that random forests
are a good alternative for data analysis in astronomical observations.

It is also important to mention that one of the major limitations of random forest-based
ensembles is that they can behave as a black box from the point of view of statistical
modelers since there is little control over what the model does. In that sense, the most
that can be tested are different parameters and random seeds. On the other hand, the
main disadvantage of the RF algorithm implementation is that the performance may
decrease when there is a reduced number of observations and features since the number
of combinations is significantly reduced, and establishing in advance some phenomenon
that would not improve the performance compared to other methods is complex, but this
is supported by the no free lunch theorem.
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