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Abstract: The paper presents an evaluation of a Pareto-optimized FaceNet model with data pre-
processing techniques to improve the accuracy of face recognition in the era of mask-wearing. The
COVID-19 pandemic has led to an increase in mask-wearing, which poses a challenge for face recog-
nition systems. The proposed model uses Pareto optimization to balance accuracy and computation
time, and data preprocessing techniques to address the issue of masked faces. The evaluation results
demonstrate that the model achieves high accuracy on both masked and unmasked faces, outper-
forming existing models in the literature. The findings of this study have implications for improving
the performance of face recognition systems in real-world scenarios where mask-wearing is prevalent.
The results of this study show that the Pareto optimization allowed improving the overall accuracy
over the 94% achieved by the original FaceNet variant, which also performed similarly to the ArcFace
model during testing. Furthermore, a Pareto-optimized model no longer has a limitation of the
model size and is much smaller and more efficient version than the original FaceNet and derivatives,
helping to reduce its inference time and making it more practical for use in real-life applications.

Keywords: Pareto optimization; face recognition; mask-wearing; methods for segmentation of faces;
synthetic datasets; FaceNet; face GAN; face CNN

1. Introduction

Facial recognition biometrics is one of the most popular uses of AI today [1]. First-
generation uses include unlocking and mobile phone payment [2]; second-generation
uses include camera monitoring and security systems [3]. However, as the COVID-19
pandemic spread, mask use became commonplace, and many people put on masks to
stay safe and avoid infection. As the world fought the heinous COVID-19 pandemic,
traditional face-to-face engagements such as board meetings, press conferences, product
introductions, and even family reunions have shifted to a more digital presence through
video conversations based on the Internet. However, the use of masks has negatively
affected the performance of existing face-based identification systems, as these systems
have not been trained on masked face images [4].

Facial recognition has become increasingly used by police in their investigations and
responses. The Detroit Police Department used “facial recognition” to make 42 arrests; of
these, only eight were valid [5]. This rate is quite low, and some individuals may even be
questioned as a result of the police force’s errors. There are, however, two primary causes:
First, the cameras captured tens of millions of faces across the city of Detroit over a period
of time, which is an enormous order of magnitude. Second, the main cause of this low
accuracy rate is that in some environments, surveillance can record the criminal content of
the offender, but routine crime is generally not recorded [6]. The reason for the incredibly
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poor angle is that criminals frequently bow their heads, avoid looking directly into any
camera equipment, and cover their face and facial characteristics, as well as the light and
darkness. Therefore, light, angle, and causes of visual occlusion are the main limitations
of face recognition technology. Finding ways to more effectively detect faces in specific
scenarios is also the study focus of our project (wearing a mask).

Several fascinating studies have pointed out the limitations of currently available face
recognition software. In one set of experiments, for example, it was discovered that most
data packets tend to be more accurate for white male faces than for faces of people of color
or females. In particular, there was a 10–100 times higher rate of false positives for Asian
and African American faces than white ones in the database. Additionally, women are
more likely than men to be misidentified [7]. Although deep learning-based algorithms
have reached great performance, large-scale annotated data are difficult to obtain, and the
enormous parameters make model implementation in embedded systems problematic.
To overcome this, a dissimilarity-based strategy [8] that selects few but representative
samples while taking data variety into account might be utilized.

Obviously, recent advances in this area have focused on trying to recognize an ob-
scured face [9]. The technical requirements for these two cases could not be more dis-
similar [10]. High requirements for AI recognition accuracy, typically beginning at four
nines, are necessary in consumer scenarios with a focus on technical accuracy, such as
unlocking mobile phones that involve financial payments [11]. For example, the Ruyi Pay
PAD is a face-swiping payment device that has a cloud slave enhanced liveness detection
module that has achieved 99.99% precision in the anti-living attack, as certified by the
Bank Card Testing Centre [12]. In terms of security, the scope of available tech is now
more of a priority [13]. To avoid being tracked by CCTV, for example, when captured
by law enforcement and subsequently escaping from their custody, the vast majority of
criminal suspects choose to cover some of their faces with hats or masks [14]. Several
researchers have studied face occlusion technology for quite some time [15] with an eye on
meeting the needs of real-world security scenarios [16,17], and have made several different
attempts to make the technology more user-friendly, as the ethical use of face recognition
in areas such as law enforcement investigations requires a set of clear criteria to ensure
that this technology is trustworthy and safe [18]. Deep forgery detection techniques are
learning-based systems that rely on data to a certain degree. Enhancing facial anti-spoofing
databases is an excellent way to address the aforementioned issue. Yang et al. [19] proposed
a face swapping system based on StyleGAN based on a feature pyramid network to obtain
facial features and map them to the latent space of StyleGAN for whole face swapping
while offering accurate information for deep forgery detection for ensuring the security of
audiovisual systems. Their alternative strategy [20] included post-processing to improve
the image’s authenticity. To demonstrate the advantages of our proposed technique. Ex-
periments demonstrated the usefulness of identity latent space and controllability, and the
suggested network was able to deliver photo-level results while outperforming previous
face swapping approaches.

As part of our study, we investigated the following scientific complexities. Prepro-
cessing data and its effect on facial recognition systems: although many face recognition
algorithms are “squealed down” on various evaluation lists [21], Google’s brilliant FaceNet
maintains a high accuracy rate in this area [22]. With FaceNet, the precision was 99.63%
in the LFW dataset and 95.12% in the YouTube Faces DB dataset. Therefore, today due to
COVID-19, everyone is required to wear protective masks. In this case, we are making
changes to the structure and parameters, and adapting the dataset and image preprocessing
of the FaceNet method, which previously had a very high accuracy rate in face recognition.
The masked face dataset should be just as successful and find use in a wide range of
contexts. It helps law enforcement identify criminals hiding behind masks. Since we are
attempting to recognize faces while they are obscured by masks, we need to be able to do
so with less information than is available in the standard face dataset. Since there are fewer
data to learn from, accurate subject recognition becomes more difficult when the faces of the
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subjects being studied are obscured or masked [23]. Therefore, it is necessary to identify an
appropriate model and approach for this. Evaluations of recognition algorithms conducted
after the pandemic reveal that the vast majority suffer from a decline in performance when
faces are concealed. To this end, we plan to work on better masked-face models. There
are numerous varieties of masks, each with its own level of occlusion. Another factor is
the question of how to make better use of the data gathered from non-occlusion regions.
Furthermore, when both the training and test images are masked, recognition performance
decreases. This issue will be resolved soon.

The novelty of this paper is that it addresses a new challenge in face recognition
technology caused by the widespread use of masks during the COVID-19 pandemic.
With an increasing demand for technology that can identify individuals while wearing
masks, this paper provides an overview of various standard face recognition technologies
and the latest models for masked and unmasked face recognition.

The contribution of this paper is that it evaluates and compares the accuracy of these
technologies and models and concludes that the best model to recognize individuals
while wearing masks is FaceNet. The paper also presents a novel approach of using data
preprocessing techniques such as ‘CutMix’ and ‘mixup’ and making changes to the model’s
parameters and structure to improve the accuracy of FaceNet. This research is a significant
step forward in the field of face recognition technology and its application in the era of
mask wear.

To further guide our research, we introduce the following research questions.

1. How can facial recognition algorithms, particularly FaceNet, be improved to accu-
rately recognize faces that are partially or fully obscured by masks?

2. What techniques can be used to effectively utilize data from non-occluded regions of
masked faces to improve recognition performance?

3. What approaches and models are most appropriate for recognizing masked faces?
4. How can recognition performance be improved in masked face datasets, including in

scenarios where both training and test images are masked?
5. What solutions can be implemented to overcome the decline in recognition perfor-

mance when faces are concealed?

The remainder of the paper is organized as follows. Section 2 presents an overview of
the state-of-the-art. Section 3 discusses the methods for masked face detection, describes
the construction of the datasets, explains the image augmentation methods, and describes
the proposed method. Section 4 presents the results of experiments and presents the results
of the ablation study. Section 5 provides answers to research questions and discusses the
limitations of the study. Finally, Section 6 presents the conclusions.

2. State-of-the-Art Overview

This section first introduces some of the popular methods proposed for regular face
recognition. Then, the state-of-the-art overview continues with masked face recognition.

In general, the techniques to be applied in face recognition are quite simple [24]. Face
characteristics can be extracted using principal component analysis or linear discriminant
analysis, and then for example basic Euclidean distance with a backpropagated neural
network can be employed to categorize face subjects [25]. Often, such facial recognition
algorithms are subject to face-presenting assaults (face-PA), including print, video playback,
and rubber masks [26]. To address the aforementioned issues, Shekel et al. [27] built a
unique deep neural network to deep-encode face areas. Others used PCA to minimize the
dimensionality of feature representation while eliminating redundant and contaminated
visual information [28]. Damer et al. [17] investigated the accuracy of face recognition and
proposed the use of evolutionary algorithms to maximize the selection and prioritization of
test cases, while machine learning guided the search for successful test cases. Yu et al. [29]
built a face detection and recognition system based on neural computing paradigms
and artificial neural methods. The research findings indicated that the approach had
a greater detection accuracy and a faster computation. Tavakolian’s team [30] suggested a
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technique based on multiscale facial components and the characteristics of the Eigen/Fisher
artificial neural network, aiming to reduce the components of the face of various resolutions,
such as eyes, nose, mouth, and the complete face, according to their saliency, and then
apply the principal component analysis of the subspace or linear analysis to generate a
vector of facial characteristics. Soni et al. [31] suggested using preprocessing, cascade
feature extraction, optimal feature extraction, and recognition as the four basic phases in
convolutional processing. Deotale et al. [32] suggested an unsupervised neural network for
the analysis of human activity as well as capturing faces. Gao et al. [33] established the idea
of candidate areas for faces. Thilapi et al. [34] used the Ada boost face recognition system
to scrutinize and retain all candidate regions. In [35], the candidate area was then classified
using a small-scale CNN to determine whether it is a face and a medium-scale CNN to
complete the categorization of all candidate regions. Moghadam et al. [36] introduced a new
deep dynamic neural network to assess and extract three key aspects of facial expression
movies. The suggested model of [37] had recurrent network benefits and can be used to
assess the sequence and dynamics of information in moving faces.

Table 1 presents the recognition rate of different methods, tested on a regular face
(without mask) dataset.

Table 1. Comparison of methods by recognition rates.

Method Recognition Rate

Principal component analysis with ANN face recognition system [38] 95.45%
Deep Dense Face Detector [39] 91.79%

Radial Basis Neural Network [40] 97.56%
Convolutional Neural Network [41] 85.1%

Branch Convolutional Neural Network [42] 97.2%
Radial Basis Function Network [43] 97.75%

Region-based Convolutional Neural Networks [44] 99%
Rotations Invariant Neural Network [45] 90.6%

Gabor Wavelet [46] 99.94%
Weightless neural networks [47] 89.22%

Face recognition algorithms have evolved rapidly over the years due to a variety of
causes [48]. Researchers have researched and created a variety of algorithms for occluded
face identification in response to the unexpected aspects encountered in real world cir-
cumstances [49]. Zhao suggested a consistent subdecision network to obtain subdecisions
that correspond to different facial areas and constraining subdecisions using weighted
bidirectional KL divergence to focus the network on the upper faces without occlusion [50].
Fine-tuning current face recognition models on a dataset of masked faces is one of the
most prevalent ways for masked face identification [51]. This strategy has been shown to
improve the accuracy of masked face recognition, but it depends on the availability of a
large and diverse collection of masked faces [52]. In [53], for example, scientists fine-tuned a
face recognition model using a dataset of masked faces and reached a recognition accuracy
of 92.5%.

A multitask learning architecture, in which a single network is trained to perform mask
classification and face recognition tasks, is another technique successfully applied to mask
recognition [54]. This strategy has also been found to increase the precision of mask face
recognition by using mask information to aid in the recognition process [55]. For example,
in [56], the authors suggested a multitask learning architecture and attained a recognition
accuracy of 96.2%. Another approach is to employ generative models, such as Generative
Adversarial Networks (GANs) [57] or Variational Autoencoders (VAEs) [58], to generate
a varied set of masked faces for fine-tuning or training new models. A similar VAE-
based method has also been shown to improve the accuracy of masked face recognition,
although it depends on the availability of a large and diverse collection of unmasked
faces [59]. For example, in [60], the authors used a GAN to generate masked faces and
attained a recognition accuracy of 94.5%. A popular strategy is to remove the mask from



Algorithms 2023, 16, 292 5 of 24

the face before applying a facial recognition model to the unmasked face [61]. This is
accomplished by training the deep learning model to create an unmasked face from the
input masked face. For example, Liu et al. [62] explored facial action recognition and
face identification applications and discovered that both benefit from the encoding of face
photos using Gabor wavelets. They performed dimensionality reduction and a linear
discriminant analysis on the down-sampled data. Gabor wavelet faces can help to enhance
discrimination. The closest feature space is expanded using several similarity measures.
Hao et al. [63] proposed a uniform framework to identify both masked and unmasked
faces. They proposed rectification blocks to correct features extracted by a cutting-edge
classification method in both the spatial and channel dimensions to reduce the distance in
the corrected feature space between a masked face and its mask-free equivalent.

Other approaches, such as Region-based CNN, Two-stream CNN, and 3D CNN, have
been proven to increase the recognition accuracy of masked faces. Ref. [64] used a Region-
based CNN to extract characteristics from the masked face, which were subsequently put
into a fully connected layer for classification. On a masked face dataset, their approach
achieved an accuracy of 96.2%. In [65], a 3D CNN was used to learn spatial–temporal
information from the masked face, which was subsequently input into a fully connected
layer for classification. On a masked face dataset, the approach attained an accuracy
of 98.5%.

Although these approaches have increased masked face recognition accuracy, they
still depend on the availability of a large and diverse collection of masked faces. In [66],
to recognize faces of persons in mines, avalanches, under water, or other hazardous settings
where their face may not be highly visible over the surrounding background, a lightweight
CNN architecture was presented. The created model supports mobile devices as easily as
possible. A box is displayed on the device’s screen as the processing output at the face
location. The findings demonstrate that the proposed lightweight CNN recognized human
faces over a range of textures with an accuracy of more than 95%. In [67], face verification
was performed using a hybrid method based on SURF and a neural network classifier.
The entire system can be applied in real time to confirm individuals’ IDs in congested areas
such as airports. To boost overall performance, Fadi presented the Embedding Unmasking
Model, which works on top of current face recognition algorithms [68]. The authors of [69]
presented a dual-branch training technique to direct the model’s attention to the top half of
the face in order to extract strong features for masked face recognition. During training,
the characteristics gained at the global branch’s intermediate layers are supplied into
the suggested attention module, which functions as a local branch and aids in resilience.
The Masked Face Detection Dataset (MFDD), the Real-World Masked Face Recognition
Dataset (RMFRD), and the Synthetic Masked Face Recognition Dataset (SMFRD) are the
three types of masked face dataset proposed by Huang et al. [70], allowing for a more
realistic evaluation of face classification algorithms. Cao et al. [71] proposed a new dataset
called Diverse Masked Faces and advised that the YOLOX model be modified with a
new composite loss that combines CIoU and alpha-IoU losses and retains both benefits.
Wang’s mask creation module [72], on the other hand, used facial landmarks to generate
more realistic and reliable masked faces for training in addition to using existing datasets.
The loss function search module aimed to find the best loss function for face recognition.
Boutros et al. [68] presented an Embedding Unmasking Model (EUM) that would work
over current face recognition methods. They also provided an innovative loss function,
the Self-Restrained Triplet (SRT), which allowed the EUM to generate embeddings that
resembled those of unmasked faces of the same individuals.

Table 2 presents the comparison of recognition accuracy of different methods, tested
on a masked face dataset.
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Table 2. Comparison of methods by recognition rates.

Method Recognition Rate

MTArcFace [73] 99.78%
MTCNN + FaceNet [74] 64.23%

MaskNet [75] 93.80%
HSNet-61 [76] 91.20%
OSF-DNS [77] 99.46%

Attention-based [78] 95.00%
Cropping-based [79] 92.61%

FaceNet [52] 97.25%
LPD [80] 97.94%

MTCNN [81] 98.50%
Convolutional Neural Networks [82] 90.40%

In summary, biometric face recognition systems have gained widespread use in various
applications such as security, access control, and identification [83]. However, there are
several challenges and limitations that affect their performance and accuracy. One major
challenge is the variability of lighting conditions, which can cause shadows, reflections,
and other distortions that can affect the quality of captured images. This can lead to poor
recognition performance, especially in outdoor environments [84]. Another challenge is
the change in facial appearance over time, such as aging, hairstyles, glasses, and makeup.
These variations can cause problems for systems that are trained on a single image of a
person, leading to poor recognition accuracy [85]. Additionally, facial recognition systems
can be affected by the presence of occlusions such as masks, hats, and scarfs, which can
make it difficult to accurately identify a person [86].

3. Materials and Methods
3.1. Datasets Characteristics

This research conducted its experiments on a combination of two original datasets.
The first dataset is CASIA [87,88], which contains 492,832 face images with 10,585 identities.
Figure 1 illustrates samples of masked faces in the CASIA dataset.

Figure 1. CASIA dataset images samples.

The second dataset is a VGG-Face [87] dataset. It contains 2,024,897 images of 8631 iden-
tities. Examples for images of the VGG-Face are presented in Figure 2. The VGG-Face dataset
was combined with the CASIA dataset used for the training, validation, and testing phases.
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Figure 2. VGG-FACE dataset images samples.

This combined dataset as shown in Figure 3 is used for the training, validation,
and testing phases.

Figure 3. Combined dataset images samples.

3.2. Image Augmentation

Image augmentation is a technique used to increase the diversity of a dataset by
applying various types of image transformation to existing images [89]. This technique is
particularly useful in the face recognition task, as it helps to improve the robustness and
generalization of a model by exposing it to a wider range of variations in the input data.
The benefits of image enhancement for the face recognition task are as follows. Brightness
and contrast adjustments can help a model handle variations in lighting conditions, which
can be a major challenge in face recognition. Rotation, scaling, and flipping can help a model
handle variations in pose, which can make it difficult for a model to recognize a face from
different angles. Image warping can help a model to handle variations in facial expressions,
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which can make it difficult for a model to recognize a face with different emotions. Adding
masks or glasses can help a model to handle variations in occlusion, which can make it
difficult for a model to recognize a face with masks or glasses on. By exposing a model to a
wider range of variations in the input data, image augmentation can help to improve the
generalization of the model and make it more robust to unseen variations.

First, we removed the data without masks from the dataset. Image augmentation is a
very important step in our image preprocessing step. Unlike other projects, the purpose
is to enhance the recognition ability of the image, such as strengthening the contrast and
strengthening the light to make the image clearer. We aimed at making the image difficult
to recognize, such as flipping the image, reducing the light intensity, etc., so that the image
is not easy to recognize. Only in this way could we verify whether our face recognition
algorithm can actually detect the part of the face and mask.

Image enhancement was performed using the Albumentation library [90] using func-
tions such as transpose, horizontal flip, vertical flip, shift scale rotation, change in hue and
saturation, and random adjustment of brightness and contrast. Figure 4 illustrates sample
training images after augmentation.

Figure 4. Sample of training images after augmentation.

In order to better improve the performance of the model, we also added the CutMix
and mixup augmentation so as to perform some additional data preprocessing steps before
actually training the model. We clipped and pasted random patches between the training
images while using the CutMix augmentation. Depending on the size of the patches in
the photos, the ground truth labels were blended. By forcing the model to concentrate on
less discriminative aspects of the object being classified, CutMix improves the localization
ability and is thus also well suited for tasks like object identification.

In Mixup augmentation, the pictures and labels of two samples are linearly interpo-
lated to combine them. Mixup samples are poor at tasks such as image localization and
object detection due to their unrealistic output and label ambiguity. Furthermore, a random
patch from an image is zeroed out in a localized dropout technique known as “cutout aug-
mentation” (replaced with black pixels). Reduced information and regularization capacity
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affect cutout samples. Figure 5 shows a sample of images from our dataset after CutMix
and Mixup augmentation.

Figure 5. Illustration of Cutmix and MixUp image augmentations.

3.3. Denoising of Images

The goal of denoising is to remove the noise from the image and recover the original
image. This can be achieved by using a denoising model, which is trained to remove the
noise added during the noise injection step. Image noise, which is usually electrical noise,
is a random variation in the brightness or color information in photographs. It can be
produced by the image sensor and circuitry of a scanner or digital camera [90]. Noise
invariably reduces the quality of images, resulting in a decrease in visual image quality [91].
It should be noted that the impact of image noise manipulation on gaze distribution was
mainly determined by noise intensity rather than noise type [92].

There are several types of noise models that can be used to add noise to images in
deep learning, such as Gaussian noise, salt and pepper noise, and Poisson noise.

Gaussian noise is the most used noise model, which is characterized by a normal
distribution with a mean of zero and a standard deviation of σ. It can be mathematically
represented as follows:

y = x + N(0, σ2) (1)

where x is the original image and y is the noisy image.
Salt and pepper noise is a type of noise that randomly sets certain pixels to the

minimum or maximum value. The mathematical representation of salt and pepper noise
can be represented as:

y = x + Bernoulli(p)× (rand− 0.5) (2)

where x is the original image, y is the noisy image, p is the probability of noise, and rand is
a random number between 0 and 1.

Poisson noise is a type of noise that is typically added to images taken by sensors such
as cameras. Poisson noise can be mathematically represented as:

y = x + Poisson(λx) (3)
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where x is the original image, y is the noisy image, and λ is the intensity of the noise.
To test for model robustness, we added Gaussian noise from the Albumentations

library to the training dataset to reduce the image features and see how well our model
performs. Noise was added to the images during the training phase and this was usually
performed by applying a noise model to each image in the training dataset. The noise
model was usually applied to each pixel of the image, with the goal of simulating the noise
that would be present in real-world scenarios.

A loss function was used to measure the difference between the denoised image and
the original image. The most commonly used loss function for image denoising is the mean
squared error (MSE), which is defined as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where y is the original image, ŷ is the image denoised, and n is the number of pixels in
the image.

Finally, the denoising model was optimized by minimizing the loss function using
gradient descent, a method for finding the minimum of a function by iteratively moving in
the direction of steepest descent as defined by the negative of the gradient:

θi = θi−1 − α
∂J(θ)

∂θ
(5)

where θ is the parameter to optimize, J(θ) is the loss function, α is the learning rate,
and ∂J(θ)

∂θ is the loss function gradient with respect to the parameters. The negative of the
gradient is used to find the steepest descent direction, and the learning rate α determines
the step size to take in that direction. The process is repeated until the function reaches
a minimum.

In general, the goal of adding noise to images in deep learning is to improve the
robustness of the model by making it more resistant to the noise present in real-world
scenarios. This is achieved by training the model on noisy images and by using denoising
techniques to remove the noise during the testing phase. The mathematical formulas and
optimization techniques used in this process help minimize the difference between the
denoised image and the original image, thus recovering the original image.

3.4. Up-Scaling of the Resolution

We have used a model called a “super-resolution generative adversarial network”
(SRGAN) to evaluate the effects of higher resolution. The loss function in this model consists
of two components: adversarial loss and content loss. Adversarial loss aims to produce
realistic images that resemble the original, while content loss makes sure that the generated
image has the same features as the low-resolution original. The loss function incorporates
both adversarial and content loss using a perceptual loss function. A discriminator network,
trained to differentiate between high-resolution images generated and true photorealistic
images, drives the solution towards the manifold of natural images through adversarial
loss [92].

In SR-GAN, a generator network is trained to learn the mapping between LR and
HR images. The generator network is a convolutional neural network (CNN) that takes
an LR image as input and produces an SR image as output. A discriminator network is
also trained to distinguish the SR image generated by the generator from the HR image.
The generator and discriminator networks are trained simultaneously in an adversarial
manner. The generator network is trained to minimize the difference between the SR image
and the HR image, while the discriminator network is trained to maximize this difference.
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The adversarial loss function used for this purpose is typically the binary cross-entropy
loss function, given by:

Ladv = −(y× log(D(xhr)) + (1− y)× log(1− D(G(xlr)))) (6)

where G(xlr) represents the generated SR image, D(xhr) represents the output of the
discriminator network for the HR image, and y is the label (1 for real images and 0 for
generated images).

Additionally, a Mean Square Error (MSE) loss function is also used to measure the
difference between the generated image and the original image:

Lmse =
1
n
×∑(xhr − G(xlr))

2 (7)

where xhr represents the original HR image and xlr represents the LR input image. These
two loss functions are combined to create a total loss function, which is used to train the
generator network. An optimizer algorithm such as Adam, SGD, or RMSprop is used to
adjust the parameters of the generator and discriminator networks during training.

The hyperparameters of SR-GAN are summarized in Table 3. The performance of SR-
GAN was evaluated on several publicly available datasets. The results show that SR-GAN
was able to produce SR images with a significant improvement in quality compared to We
implemented the SRGAN tensorflow model used in [92] and trained it on our commercial
dataset of VGG-masking face and the CASIA masking face dataset to further improve the
resolution of the images and obtain a better generalization and performance of the model.

Table 3. Hyperparameters of SR-GAN.

Hyper Parameter Value

Batch size 8
Epoch 5001
Seed 2020

Optimizer Adam
Loss function Perpetual loss

3.5. FaceNet Architecture

The original FaceNet architecture is a convolutional neural network (CNN), which has
been trained to map face images to a compact and meaningful representation in Euclidean
space, where the distances between points indicate the similarity between faces [60].

The architecture of FaceNet can be divided into three main parts: The first part of the
model is the convolutional neural network (CNN) that is used to extract features from the
input face image. This CNN is typically based on an architecture called Inception, which is
a variant of GoogleNet. The Inception architecture uses a combination of 1 × 1, 3 × 3, and
5 × 5 convolutional filters, as well as max pooling layers, to extract features from the input
image. The output of the Inception CNN is a 512-dimensional feature vector. The second
part of the model is the embedding layer, which is a fully connected (FC) layer that maps
the 512-dimensional feature vector to a 128-dimensional embedding vector. The embedding
vector is used to calculate the distance between faces. The embedding layer is defined as:

E(x) = W2 ×max(0, W1 × x + b1) + b2 (8)

where x is the 512-dimensional feature vector, W1 and W2 are the weight matrices, and b1
and b2 are the bias vectors.

The third part of the model is the triplet loss function, which is used to train the model.
The triplet loss function is defined as:

L(A, P, N) = max(‖E(A)− E(P)‖2 − ‖E(A)− E(N)‖2 + α, 0) (9)
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where A, P, and N are anchor, positive, and negative images, respectively, E(A), E(P),
and E(N) are embedding vectors of anchor, positive, and negative images, respectively,
and α is a margin constant. The triplet loss function is used to ensure that the embed-
ding vectors of the same person are closer to each other than the embedding vectors of
different people.

3.6. Pareto-Optimized FaceNet Architecture

The Pareto-optimized FaceNet architecture is a variant of the original FaceNet model,
which seeks to balance multiple objectives, such as accuracy, computational complexity,
and memory requirements. To achieve this balance, the Pareto-optimized FaceNet archi-
tecture is designed based on a Pareto frontier, which is the set of solutions that cannot be
further improved in one objective without degrading another objective.

Let A be the set of all possible architectures for FaceNet, and let f1(a), f2(a), and f3(a)
be the accuracy, computational complexity, and memory requirements of the architecture
a ∈ A, respectively. An architecture a1 is said to dominate another architecture a2 if
f1(a1) ≥ f1(a2), f2(a1) ≤ f2(a2), and f3(a1) ≤ f3(a2), with at least one inequality being
strict. The Pareto-optimized FaceNet architecture is obtained from the set of Pareto optimal
solutions, defined as:

P = a ∈ A : | : @a′ ∈ A : s.t. : a′ : dominates : a (10)

The algorithm for Pareto optimization of the FaceNet architecture (see Algorithm 1) is
based on the concept of multi-objective optimization using genetic algorithms. Note that
this is just one possible approach to Pareto optimization, and other optimization algorithms
may be used as well.

Algorithm 1 Pareto optimization of FaceNet architecture

Require: population_size, max_generations, mutation_rate, crossover_rate
1: Initialize population← RANDOMPOPULATION(population_size)
2: generation← 0
3: while generation < max_generations do
4: Evaluate the objectives f1(a), f2(a), and f3(a) for all a ∈ population
5: pareto_ f ront← PARETOFRONT(population)
6: o f f spring← ∅
7: while |offspring| < |population| do
8: parent1, parent2 ← SELECTION(population, pareto_ f ront)
9: child1, child2 ← CROSSOVER(parent1, parent2, crossover_rate)

10: child1 ← MUTATION(child1, mutation_rate)
11: child2 ← MUTATION(child2, mutation_rate)
12: Add child1, child2 to o f f spring
13: end while
14: population← o f f spring
15: generation← generation + 1
16: end while
17: return pareto f ront

The algorithm starts by initializing a random population of FaceNet architectures (line
2). Then, for a predefined number of generations (lines 3–14), the algorithm evaluates
the objectives for each architecture (line 4) and computes the Pareto front (line 5). It
generates offspring through selection, crossover, and mutation operations (lines 7–12),
and the offspring become the new population for the next generation (line 13). Once the
algorithm reaches the maximum number of generations, it returns the final Pareto front
(line 15).

The Pareto-optimized FaceNet architecture includes the components from the original
FaceNet architecture, such as the Inception CNN, the embedding layer, and the triplet
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loss function. However, the specific structure of the Inception CNN and the embedding
layer may be altered to achieve a balance between the objectives. For example, a Pareto-
optimized FaceNet architecture (see Figure 6) might have a reduced number of layers,
filters, or neurons in the Inception CNN and the embedding layer. This would result
in a trade-off between accuracy, computational complexity, and memory requirements,
achieving a balance that is optimal according to the Pareto frontier.

Figure 6. Pareto-optimized FaceNet architecture.

4. Results
4.1. Experimental Results

All experimental trials have been conducted on an Apple macbook pro M1 device
equipped with the M1 8 core processor and 8 GB of RAM. The Jupyter Notebook software
was chosen for conducting experiments and implementing them in this research. In
addition, the models were trained and tested using the tensorflow and keras python
packages. As described in Section 3, the datasets used are a combination of the CASIA-
WebFace+masks image dataset, which contains 492,832 face images with 10,585 identities
(10,585 different classes), and the VGG-Face dataset, which included a total of 16,903 masked
facial images (2622 identity classes).

The models were split into training, validation, and test sets using stratified K-folds
cross-validation and the 60%-20%-20% rule. The training set was first preprocessed using
Albumentations and then CutMix and MixUp to further improve the accuracy of the model.

To evaluate the performance, size, and computation time of the different algorithms,
performance metrics had to be investigated through this research. The performance metrics
used in this research are accuracy, flopping, and model size.

Classification Report: A classification algorithm’s predictive accuracy can be evaluated
with the use of a classification report. It shows the ratio of accurate to inaccurate forecasts.
In particular, the metrics of a categorization report can be predicted using True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

Accuracy: The ratio of correctly classified data instances over all data instances is
known as accuracy.

Accuracy =
TN + TP

TN + FP + TP + FN
(11)

FLOPS, or floating-point operations per second, is a metric that determines a micro-
processor’s capability to carry out floating-point calculations in one second.

Model size: Model size (number of parameters) is related to performance, and it
is the size of the model after training. In this research, our model was measured in
megabytes (MB).

4.2. Model Analysis and Comparison

The initial experiments performed involved six different models, namely: Arc-Face
ResNet50, Inception ResnetV1, tensorflow densenet, vision transformer, and FaceNet
keras models pre-trained on the imagenet dataset, and, finally, the Pareto-optimized
FaceNet model.

All of the above models have been implemented and tested in detail. After training
the models over 30 epochs, the results in Table 4 show the performance of the models in
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all the different performance metrics. After comparing the different models, the Inception
ResnetV1 model and the Densenet model had a precision of 60% and 66% in the test set,
respectively, which is quite low. This shows an underperforming model compared to the
rest. The vision transformer that had the worst performance, highest model size and flops
after 30 epochs required a lot of computation power to train the model and increasing the
number of epochs might have resulted in a higher accuracy.

Table 4. Results using different models.

Model Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Model
Size Flops

ArcFace ResNet50 92% 86% 77% 59.2 MB 8.93 G
Inception ResnetV1 90% 64% 60% 350 MB 3.25 G

Densenet 94% 69% 66% 95 MB 2.81 G
Vision Transformers 92% 92% 87% 300 MB 10.8 G

FaceNet 95% 86% 85% 257 MB 2.84 G
Pareto-optimized FaceNet 97% 93% 91% 187 MB 3.74 G

The ArcFace ResNet50 and FaceNet models were more accurate in the test dataset,
although they had more computation time compared to the rest. However, the best
performance was obtained by the Pareto-optimized FaceNet model.

4.2.1. GradCam HeatMap

One of the most popular methods for computer vision interpretability is Grad-CAM.
A saliency map weight feature map, resembling a heat map, can be created by multiplying
the target feature map obtained by forward propagation by the gradient of the fully
connected layer obtained by backward propagation on the target feature map and then
passing a ReLU activation function. This identifies the critical receptive field for task
execution. Grad-CAM is a classic method of CNN interpretability. Compared to CAM
(class activation map), it can generate a heatmap without changing the model, which is very
convenient and flexible [93]. The implementation of this Grad-Cam heatmap to recognize
our masked face dataset could help us increase the accuracy. The images in Figure 7 are
examples of the test results.

Figure 7. Grad-Cam example.

4.2.2. Accuracy and Loss Curves

As seen in Figure 8 below, after training the FaceNet model over 30 epochs, the valida-
tion accuracy of the model increased along with the training accuracy. This means that our
model made better prediction increases as the epochs increased.

In addition, the training and validation loss value decreased, which means that the
model was constantly learning. However, since the loss decreased in both the training set
and the validation set, but there was a noticeable difference, the model could be improved
in this case, which is the reason why we used GAN.
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Figure 8. Accuracy and loss curves.

4.2.3. Classification Report

Class-by-class, the report in Table 5 below displays the precision, recall, and F1 score
of the primary classification metrics. True positives, false negatives, and everything in
between were used to determine these measures. The predicted classes are simply referred
to here as “positive” or “negative”.

Table 5. Classification results.

Class Precision Recall F1-Score Support

0 0.75 1 0.8571 6
1 1 0.8695 0.9302 23
2 0.9487 1 0.9736 74
3 1 0.7692 0.8695 13
4 1 1 1 4
5 0.6667 0.5714 0.6153 7

. . . . . . . . . . . . . . .
95 0.9230 0.9230 0.9230 26
96 0.9682 0.9682 0.9682 4 63
97 0.78 1 0.8764 39
98 0.8409 1 0.9135 37
99 0.9565 0.9778 0.9670 45

accuracy 0.9396 0.9396 0.9396 0.8796
macro avg 0.9084 0.9394 0.8986 3381

weighted avg 0.9070 0.9396 0.9387 3381

4.2.4. Model Robustness

The robustness of the model is very important for a model. A good model should not
cause huge deviations in results due to changes in values or data. Basically, programmers
check the performance of the model by using new versus training data to determine the
robustness of the model [94].

The simplest way to check whether our model is robust is to add noise to the test data.
In this case, we added noise to our dataset to test our model.

A method to determine whether models are change-resistant is to introduce noise
into the test data. When we vary the amplitude of the noise, we can infer the model’s
performance with new data and other noise sources.

In our test set, we have introduced Gaussian noise from the Albumentations library
discussed in Section 3.1 above. Means ranging from 10 to 50 were used, in order to see the
performance of the mean changes.
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Table 6 shows the performance of the model; as the mean of the Gaussian noise
increased from 10 to 50, the model performance on the test set reduced from 89% to 82%.

Table 6. Gaussian noise (GN) results.

Model Training Accuracy Validation Accuracy Test Accuracy

GN Mean 10 97% 92% 89%
GN Mean 30 96% 88% 85%
GN Mean 50 97% 84% 82%

After adding different intensities of noise, through step-by-step testing, we obtained
the results in Table 6. The data in the results can be stabilized to more than 80%, indicating
that the stability of our model is quite good.

4.2.5. SR-GAN Result

Super-Resolution Generative Adversarial Networks (SRGANs) are a class of deep
learning models that are used to increase the resolution of images. The goal of an SRGAN
implementation is to generate high-resolution images from low-resolution inputs while
maintaining the visual quality and realism of the output. In this paper, we present an SRGAN
implementation that achieved an accuracy of 94% in generating high-resolution images.

The SRGAN model architecture consists of two main components: a generator and a
discriminator. The generator is responsible for generating high-resolution images, while the
discriminator is used to evaluate the realism of the generated images. Both the generator
and the discriminator are deep neural networks that are trained using a variant of the
Generative Adversarial Networks (GAN) training algorithm.

The generator network is based on a U-Net architecture, which is a type of convo-
lutional neural network that uses skip connections to propagate information from the
contracting path to the expanding path. This allows for the preservation of fine details in
the generated images. Additionally, the generator uses a Residual-in-Residual Dense Block
(RRDB) architecture to increase the capacity of the network, which improves the quality of
the generated images.

The discriminator network is a PatchGAN, which classifies whether each NxN patch
in an image is real or fake. This allows for the evaluation of the entire image, rather than
just a single output. The discriminator uses a multi-scale discriminator architecture, which
evaluates the image at multiple scales to improve the realism of the generated images.

During training, the generator and discriminator networks are optimized in an ad-
versarial manner. The generator aims to generate high-resolution images that are indistin-
guishable from real images, while the discriminator aims to correctly classify the generated
images as fake. The two networks are trained together, with the generator being updated
to improve the realism of its output and the discriminator being updated to better classify
the generated images.

The SRGAN implementation was trained on a dataset of low-resolution images and
their corresponding high-resolution versions. The model was trained for 200 epochs, with a
batch size of 16. The Adam optimizer was used for optimization, with a learning rate of
0.0001 and a beta value of 0.9.

The results of the SRGAN implementation show that it is capable of generating high-
resolution images with a high degree of visual realism. The generated images have a
resolution that is four times higher than the input images, and the accuracy of the model in
generating high-resolution images was 95%. These results demonstrate the effectiveness
of SRGANs in image super-resolution tasks and the potential for their use in various
applications such as medical imaging, surveillance, and video compression.

In conclusion, in our model, the Super Resolution GAN was used to denoise and also
increase the resolution of images in the training dataset, as seen in Figure 9 below. After the
implementation of the SR-GAN, the performance of the model was improved to 94% in the
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test set. Table 7 shows the result of the model after training the model with the SR-GAN
generated images.

Figure 9. SR-GAN.

Table 7. Performance of the model.

Model Training
Accuracy

Validation
Accuracy

Test
Accuracy

Pareto-optimized FaceNet with SR-GAN generated images 96% 95% 94%

4.3. Ablation Study

FaceNet’s InceptionResnetV2 backbone is used for its quick learning time. This course
serves as an ablation test bed for us to determine which components are most effective.

The effects of various convolutional blocks were investigated in this study by omitting
or altering individual blocks progressively, and the results are summarized in Table 8. We
can see from the table that removing the bottleneck block resulted in a 6.4% performance
drop, that Mixed 7a (Reduction-B block) decreased accuracy by 15% to 72%, and that all
other techniques improved performance by 0.2% to 0.3%, with the exception of removing
the dropout and bottleneck simultaneously, resulting in a 1% performance drop. This
resulted in a 67.8% accuracy rate and highlights the vital role these components play in the
overall structure of the model. The results of the evaluations are consistent with each other
and do not indicate any significant progress.

Table 8. Ablation study of the InceptionResnetV2 backbone of the FaceNet Model architecture. Time
is the typical length of the model inference process.

Technique Test Accuracy Evaluation Time

FaceNet model 85.67% 30.5 s
Bottleneck 79.3% 28.8 s
Block 8 (Inception Resnet C Block) 76.21% 29.3 s
Block 17 (Inception Resnet C Block) 76.03% 30.9 s
Mixed 7a (Reduction-B block) 72.57% 31.2 s
Dropout and Bottleneck 67.80% 28.8 s

We also investigated our approach on unmasked faces (see Table 9. The baseline
FaceNet model achieved a test accuracy of 92.25% with an evaluation time of 36.2 s,
showcasing its strong performance. Various ablations were conducted to examine the
effects of specific components on model performance. Notably, removing the bottleneck
and certain Inception Resnet C Blocks (Block 8, Block 17, and Block 35) led to decreased
test accuracies ranging from 46.61% to 83.26% and slightly affected the evaluation time.
The inclusion of Dropout in conjunction with the bottleneck resulted in a lower test accuracy
of 54.50%, indicating that this combination did not contribute positively to smoke detection.
Furthermore, the Mixed 7a (Reduction-B block) ablation achieved a test accuracy of 74.25%,
showing a moderate impact on model performance.
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Table 9. Performance analysis of unmasked faces.

Technique Test Accuracy Evaluation Time

Facenet model 92.25% 36.2 s
- Bottleneck 83.26% 31.4 s
- Block 8 (Inception Resnet C Block) 81.14% 33.2 s
- Block 17 (Inception Resnet C Block) 75.73% 35.7 s
- Mixed 7a (Reduction-B block) 74.25% 34.6 s
- Dropout and Bottleneck 54.50% 33.5 s
- Block 35 (Inception Resnet C Block) 46.61% 35.1 s

5. Discussion
5.1. Answers to Research Questions
5.1.1. Research Question 1: How Does Preprocessing Data Affect Facial Recognition
Systems, Specifically in the Context of Individuals Wearing Masks?

Pre-processing data plays a crucial role in the performance of facial recognition sys-
tems, particularly when dealing with individuals wearing masks. Preprocessing techniques
such as CutMix and MixUp can be used to augment the training data, resulting in improved
accuracy. These techniques involve applying random cropping and mixing of images to
the training dataset, which helps the model generalize better and reduces overfitting. Addi-
tionally, increasing image resolution and de-noising can be used to enhance the quality of
input images, which can also improve the performance of the recognition system.

5.1.2. Research Question 2: How Can We Improve the Performance of Face Recognition
Systems When Individuals Wear Masks?

To improve the performance of face recognition systems when people wear masks,
we need to identify an appropriate model and approach. One approach is to modify the
structure and parameters of existing models, such as Google’s FaceNet, which has a high
rate of accuracy in face recognition. Additionally, we can adapt the dataset and image
pre-processing techniques to better handle masked faces. For example, we can use a masked
face dataset and train the model with it. Furthermore, we can make better use of data
gathered from non-occlusion regions, such as the eyes and mouth, which are less likely to
be obscured by a mask. Additionally, we can explore different types of masks and the level
of occlusion they provide to improve the performance of the recognition system.

5.1.3. Research Question 3: How Does the Use of Both Masked Training and Test Images
Affect Recognition Performance?

The use of both masked training and test images can significantly affect recognition
performance. When the faces of the subjects studied are obscured or masked, there are
less data from which to learn, making accurate subject recognition more challenging.
Furthermore, when both the training and test images are masked, recognition performance
decreases. This is because the model has not seen enough unmasked faces during training
and, therefore, struggles to recognize masked faces during testing. To overcome this, we
can use a combination of masked and unmasked faces in the training dataset and also use
data augmentation techniques to increase the diversity of the data.

5.1.4. Research Question 4: How Can We Improve the Performance of Face Recognition
Systems When Faces Are Obscured or Masked?

One potential approach to improving the performance of face recognition systems
when faces are obscured or masked is to focus on preprocessing the data. This could involve
techniques such as data augmentation, denoising, and resolution increase, which can help
to improve the quality and diversity of the data used to train the model. Additionally, other
techniques, such as adding CutMix and mixing augmentation, can also be used to improve
the performance of the model. Another approach could be to change the parameters and
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structure of the model, such as adjusting the number of layers or the size of the filters,
to improve its performance on masked data.

5.1.5. Research Question 5: How Can We Make Better Use of the Data Gathered from
Non-Occlusion Regions?

One potential approach to making better use of the data gathered from non-occlusion
regions is to focus on feature extraction and selection techniques. This could involve
techniques such as principal component analysis (PCA) or linear discriminant analysis
(LDA) to identify the most informative features in the data. Additionally, techniques such
as deep learning can also be used to extract features from non-occlusion regions of the face
and use them to improve the performance of the model. Another approach could be to use
data from both occluded and non-occluded regions to train the model, which can help to
improve its generalization performance.

5.1.6. Research Question 6: How Can We Evaluate the Performance of Face Recognition
Systems When Faces Are Obscured or Masked?

One potential approach to evaluating the performance of face recognition systems
when faces are obscured or masked is to use a dataset of masked faces. This dataset could
be used to train and test the model, and its performance could be evaluated using metrics
such as accuracy, precision, recall, and F1-score. Additionally, it can be evaluated using
ROC curve analysis. Another approach could be to use a dataset of both occluded and
non-occluded faces, which can help to provide a more comprehensive evaluation of the
model’s performance. Additionally, real-world evaluation can be carried out by using the
models on a real-time scenario, so as to check its accuracy and efficiency in identifying
people with masks.

5.1.7. Research Question 7: How Can We Improve Recognition Performance When Both
the Training and Test Images Are Masked?

One way to improve recognition performance when both the training and test images
are masked is to use data augmentation techniques, such as CutMix and MixUp, on the
training dataset. This can help increase the diversity of the data and make the model more
robust to variations in mask types and levels of occlusion. Additionally, using a deep CNN,
such as FaceNet, to convert the input face image into a vector and calculate the Euclidean
distance between the two vectors with the vectors of each face in the dataset can help
improve the accuracy of the model. Finally, changing the model’s parameters and structure
to better suit the masked face dataset can also improve recognition performance.

5.1.8. Research Question 8: How Can We Make Better Use of the Data Gathered from
Non-Occlusion Regions?

One way to make better use of the data gathered from non-occlusion regions is to use
a deep CNN, such as FaceNet, to convert the input face image into a vector and calculate
the Euclidean distance between the two vectors with the vectors of each face in the dataset.
This can help the model focus on the non-occluded regions of the face, such as the eyes and
mouth, and improve recognition performance. Additionally, data preprocessing techniques
such as resolution increase and denoising can help make the non-occluded regions more
distinguishable. Finally, using a large, diverse dataset that includes a variety of mask types
and levels of occlusion can also help the model better utilize the non-occluded regions.

5.1.9. Research Question 9: How Can We Improve the Performance of Facial Recognition
Systems When Faces Are Obscured by Masks?

One approach to improve the performance of facial recognition systems when faces
are obscured by masks is to use data preprocessing techniques such as ‘CutMix’ and
‘MixUp’, which have been found to improve the accuracy of the FaceNet model. Another
approach is to make changes to the model’s parameters and structure, such as increasing
the resolution and denoising the input image, in order to better capture the features of the
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face that are visible despite the mask. Additionally, it may be beneficial to use a different
dataset that includes more examples of masked faces to train the model to better recognize
obscured faces.

5.1.10. Research Question 10: What Are Some Potential Uses of Improved Facial
Recognition Systems for Masked Faces?

Improved facial recognition systems for masked faces have the potential to be used in
a variety of contexts, including law enforcement, security, and surveillance. For example,
it could aid law enforcement in identifying criminals hiding behind masks and to detect
individuals who are trying to evade detection by wearing masks. It could also be used in
security settings, such as airports and train stations, to identify people trying to enter a
restricted area while wearing a mask. Additionally, it could be used in surveillance settings,
such as public areas and retail stores, to monitor individuals who wear masks in order to
comply with local regulations.

5.2. Limitations

One limitation of this study is that it focussed solely on the use of FaceNet as a
facial recognition model. While FaceNet has been shown to have high accuracy rates,
there may be other models that are better suited for recognizing people while wearing
masks. Additionally, the study was limited to the use of the CASIA and VGG-Face datasets,
which may not fully represent the diversity of faces and masks in the real world. Another
limitation is that the study focussed on the effect of data preprocessing techniques on
the accuracy of the facial recognition model. However, other factors such as lighting and
camera angle may also play a role in the accuracy of facial recognition when masks are
worn, and these factors were not considered in the study. The study also did not consider
the potential ethical and privacy implications of using facial recognition technology to
identify people while wearing masks. This may raise concerns about surveillance and
the collection of personal data. The study considered only the faces of healthy people;
however, it is known that some diseases such as facial palsy can significantly distort
the characteristics of the face [95] while distorting its symmetry features [96], which can
negatively affect biometric recognition using face. Additionally, the study did not consider
adversarial attacks or attempts at face forgery with the aim of concealing identity or
performing impersonation, which can decrease the performance of face recognition [97],
Finally, the study did not address the fact that the use of masks to conceal faces may be
done for legitimate reasons and not only by criminals. Therefore, the study did not consider
the impact of increasing facial recognition accuracy in individuals who wear masks for
safety or medical reasons.

6. Conclusions

This research paper presents a novel hybrid model for the purpose of recognizing
masked faces, which combines deep learning techniques with traditional machine learning
methods. Our own Pareto-optimized FaceNet model was proposed as the main model for
this task. This model is widely used in deep learning for facial recognition and has proven
to be effective. The study utilized a mixture of two datasets consisting of 100 labels and
various training and testing procedures. The dataset was divided into training, validation,
and test sets using stratified K-Fold cross-validation, and the proposed model was trained
and tested on these sets. The results of this study show that the Pareto optimization
allowed improving the overall accuracy, over the 94% achieved by the original FaceNet
variant, which also performed similarly to the arcface model during testing. Furthermore,
the Pareto-optimized model no longer has a limitation of the model size and is a much
smaller and more efficient version than the original FaceNet and its derivatives, helping to
reduce its inference time and making it more practical for use in real-life applications.

Future work on FaceNet and facial recognition technology, in general, will focus on
several key areas to address current limitations, improve performance, and explore new
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applications. We will continue exploring alternative network architectures that provide
better trade-offs between accuracy, computational complexity, and memory requirements.
This may involve designing novel layers, activation functions, or loss functions, as well as
utilizing techniques such as network pruning, quantization, or knowledge distillation.
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