
Citation: Díaz-del-Río, F.; Sanchez-

Cuevas, P.; Moron-Fernández, M.J.;

Cascado-Caballero, D.; Molina-Abril,

H.; Real, P. Fully Parallel

Homological Region Adjacency

Graph via Frontier Recognition.

Algorithms 2023, 16, 284.

https://doi.org/10.3390/a16060284

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 1 April 2023

Revised: 23 May 2023

Accepted: 26 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fully Parallel Homological Region Adjacency Graph via
Frontier Recognition
Fernando Díaz-del-Río 1,* , Pablo Sanchez-Cuevas 1 , María José Moron-Fernández 1 ,
Daniel Cascado-Caballero 1 , Helena Molina-Abril 2 and Pedro Real 2

1 Department of Computer Architecture and Technology, Universidad de Sevilla, 41012 Seville, Spain;
pabsancue@alum.us.es (P.S.-C.); mjmoron@us.es (M.J.M.-F.); danicas@us.es (D.C.-C.)

2 Department of Applied Mathematics I, Universidad de Sevilla, 41012 Seville, Spain; habril@us.es (H.M.-A.);
real@us.es (P.R.)

* Correspondence: fdiaz@us.es

Abstract: Relating image contours and regions and their attributes according to connectivity based
on incidence or adjacency is a crucial task in numerous applications in the fields of image processing,
computer vision and pattern recognition. In this paper, the crucial incidence topological information
of 2-dimensional images is extracted in an efficient manner through the computation of a new
structure called the HomDuRAG of an image; that is, the dual graph of the HomRAG (a topologically
consistent extended version of the classical RAG). These representations are derived from the two
traditional self-dual square grids (in which physical pixels play the role of 2-dimensional cells) and
encapsulate the whole set of topological features and relations between the three types of objects
embedded in a digital image: 2-dimensional (regions), 1-dimensional (contours) and 0-dimensional
objects (crosses). Here, a first version of a fully parallel algorithm to compute this new representation
is presented, whose timing complexity order (in the worst case and supposing one processing
element per 0-cell) is O(log(M× N)) , M and N being the height and width of the image. Efficient
implementations of this parallel algorithm would allow images to be processed in real time, as
well as permit us to uncover fast algorithms for contour detection and segmentation, opening new
perspectives within the image processing field.

Keywords: digital image; parallel computing; abstract cell complex; region adjacency graph; dual
graph; Euler number; homological information

1. Introduction

Having at hand a representation where an image’s content can be accessed in loga-
rithmic time would allow the development of efficient image processing methods. Such
methods might be able to deal with the ever-increasing sizes of the images that are cur-
rently used to solve pattern recognition problems, such as video and image segmentation
(i.e., [1]), object detection (i.e., [2]), etc. To this respect, Region Adjacency Graph (RAG)
representations for digital images are intuitive models that are useful for numerous appli-
cations in the field of region segmentation and pattern recognition by relating regions and
their attributes according to their adjacencies. RAGs represent the neighboring relation-
ships of regions, resulting in simple graphs (no parallel edges, no self-loops). Algorithms
based on a combination of graphs, color processing methods and enhanced with region
growing or watershed transformation have been used for many decades in order to seg-
ment color images [3]. Unfortunately, these techniques present several limitations such as
over-segmentation, high sensitivity to noise and poor detection of some boundaries [4].
However, the inherent labeling of two-dimensional structures (such as regions) in order to
detect the complete set of region adjacencies implies a difficult processing, which conveys
to algorithms that are mostly sequential, or, maybe, having a modest degree of parallelism

Algorithms 2023, 16, 284. https://doi.org/10.3390/a16060284 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6184-1629
https://orcid.org/0000-0001-6827-6159
https://orcid.org/0000-0003-3291-7297
https://orcid.org/0000-0002-6138-1009
https://orcid.org/0000-0001-5595-132X
https://orcid.org/0000-0002-6853-0505
https://doi.org/10.3390/a16060284
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060284?type=check_update&version=3


Algorithms 2023, 16, 284 2 of 16

if the labeling is started at the same time in several pixels (usually called ”seeds”). The
resultant RAG must be expressed as a graph, whose nodes are image regions, each one
having a variable number of edges (which represent region adjacencies). For instance,
a simple RAG example is given in Figure 1 on the right for the image in Figure 1 on the left.
Although this image contains only four regions, it does present two special topological rela-
tions among them that are not accurately represented by a simple graph: (1) the presence
of multiple contacts (between regions K and L in this image), which supposes multiple
edges in the RAG, and (2) the existence of holes in a region (as it happens in region X),
which should be correctly addressed if topology properties are to be preserved within the
RAG. The first issue can be avoided by using weights at the corresponding edges (the
number 2 shown in Figure 1 on the right), but the second problem has not been formally
considered in most of the current literature. There have been some interesting proposals
in this direction, such as those of generalized maps [5], which are topological models that
allow us to represent generic subdivided objects. These topological issues have also been
addressed by using multigraphs (graphs containing parallel edges and/or self-loops [6]).

A topologically consistent representation [7] is the one that “shows the interactions
between regions and then realize the topology of the image”. In this sense, RAGs are
not topologically consistent representations, even in 2D, since one can find topologically
different images that would be represented by the same RAG [8].

Figure 1. (Left): small image representing a double contact between regions K and L and a hole (H).
The X region envelops the K and L regions. (Right): the image’s classical RAG.

In order to keep computing simplicity and to promote parallelism while preserving
the topological relations within the required multi-object structure, we propose embedding
these objects into an abstract cell complex (ACC) [9] that is enriched with cell incidences. In
this way, this image encoding allows us to compile an image’s statistics under a consistent
topological format (see the Table 1), which is crucial for current relevant computer vision
problems such as contour detection, superpixel generation, image simulation or even
artificial intelligence.

The ACC framework can completely embed digital image components (with cells
of different dimensions) and their incidences (bounding or cobounding relations) (see
Section 3). Homological (adjacency) information of the image is understood here in the
context of the square grid associated to the ACC model of the image: (a) at 0 level, in terms
of a maximally connected set of cells (connected components (CCs)) of the dimension i
through cells of dimension i− 1 or i + 1; (b) at 1 level, in terms of the homological holes
presenting in each ACC version of the previous connected components (see [10]).

Going further, the proposed algorithm is completely written using matrices, which
appear to be very efficient in modern computers.

In order to clarify the previous concepts, Figure 2 depicts, in three steps, the complete
homological information of Figure 1, which consists of the following: (1) Figure 2, left,
highlights crosses among regions, which correspond to zero-dimensional objects; (2) in
Figure 2, center, frontiers have been added as unidimensional objects; and (3) Figure 2,
right, draws the two-, one- and zero-dimensional homological representative elements of
this image, given by squares, crosses and circles, respectively. Note that the region X has a



Algorithms 2023, 16, 284 3 of 16

hole, and a 1-dimensional element colored as a pink cross is added to differentiate it from
the other 1-dimensional frontier’s representatives. Likewise, the most external frontier
presents a hole; thus, a 0-dimensional representative (marked as 5) must appear.

Table 1. Mean results of five executions for a set of random images with different number of colors
and densities for B/W images. From left to right: size M× N, number of colors, density, number
of iterations of Stage 1, absolute number of representative homology cells of dimensions 0 and 1,
normalized execution times of Stages 1 and 2, and normalized sum of the number of representative
homology cells of dimension 0.

M = N Number of
Colors Density

Number of
Iterations

Stage 1
n0,3 n0,4 n0,2 n1,

mono
n1,

reg,mono

n0,3+
n0,4+
n0,2

Normalized
Time

Stage 1

Normalized
Time

Stage 2

Normalized
n0,3 +
n0,4 +
n0,2

50 2 0.1 7.0 29.2 34.6 124.4 124.4 124.4 188.2 6.7 1.2 1.6
50 2 0.3 5.6 88.0 212.6 58.0 58.0 58.0 358.6 2.2 2.6 3.0
50 2 0.5 6.2 97.2 299.6 12.8 12.8 12.8 409.6 2.2 3.3 3.4
50 2 0.7 5.6 80.8 201.0 65.4 65.4 65.4 347.2 2.3 2.5 2.9
50 2 0.9 6.4 33.2 42.8 115.8 115.8 115.8 191.8 7.7 1.3 1.6
50 3 1 4.4 832.8 530.4 0.4 0.4 0.4 1363.6 3.9 9.7 11.4
50 4 1 3.4 1046.4 799.2 0.0 0.0 0.0 1845.6 7.8 14.0 15.4
50 5 1 3.4 1082.4 998.2 0.2 0.2 0.2 2080.8 9.1 15.5 17.4
50 6 1 3.0 1055.6 1166.4 0.0 0.0 0.0 2222.0 17.4 18.6 18.6
50 7 1 2.8 1016.8 1289.0 0.0 0.0 0.0 2305.8 16.5 18.4 19.3
50 8 1 2.8 960.8 1395.2 0.0 0.0 0.0 2356.0 14.8 18.3 19.7

100 2 0.1 6.6 74.0 152.2 500.4 500.4 500.4 726.6 9.8 3.0 6.1
100 2 0.3 6.0 162.0 860.6 269.0 269.0 269.0 1291.6 8.6 9.4 10.8
100 2 0.5 6.6 206.0 1213.4 52.4 52.4 52.4 1471.8 8.1 12.5 12.3
100 2 0.7 6.0 168.0 848.0 262.4 262.4 262.4 1278.4 7.9 9.1 10.7
100 2 0.9 6.4 74.8 154.0 506.0 506.0 506.0 734.8 11.6 3.1 6.1
100 3 1 4.4 3115.6 2194.6 4.4 4.4 4.4 5314.6 7.4 38.3 44.4
100 4 1 4.0 3980.0 3173.8 0.0 0.0 0.0 7153.8 15.5 52.2 59.8
100 5 1 3.6 4072.0 4068.0 0.2 0.2 0.2 8140.2 20.8 66.0 68.1
100 6 1 3.0 3912.0 4790.8 0.0 0.0 0.0 8702.8 29.7 71.6 72.8
100 7 1 3.0 3776.4 5338.2 0.0 0.0 0.0 9114.6 74.6 81.1 76.2
100 8 1 2.8 3559.6 5791.2 0.0 0.0 0.0 9350.8 73.3 78.7 78.2

It is worth highlighting that having correctly determined the complete homological
information, the Euler number of the whole set of open separated objects is 1 (because no
object intersection exists). In the case of Figure 2, the set of independent objects is composed
of: four regions (one of them with a hole), seven frontiers (one of them having another
hole), and four crosses. The Euler number of the set of independent objects is 1, and it can
also be calculated according to n2 − n1 + n0 = 1, nk being the number of representative
cells of dimension k (which can be CCs or holes): 4(2− d)− [7 + 1(pink cross)](1− d) +
[4 + 1(white circle)](0− d).

Figure 2. (Left): crosses of the image in Figure 1. (Center): highlighting frontiers with black solid
lines. (Right): Complete homological information of the image in Figure 1. Representative cells are
as follows: squares corresponding to four regions (2D); black and white crosses corresponding to
seven frontiers (1D); black circles corresponding to four crosses (0D); and, in addition, a pink cross
corresponding to the hole of region X, and a white circle corresponding to the hole of the external
frontier (which is represented by a white cross).



Algorithms 2023, 16, 284 4 of 16

For the rest of the paper, we consider a digital image I with M × N pixels having
4-adjacencies among them. We have designed and implemented a parallel algorithm
for computing the homological relations among the frontiers and crosses of the given
image. The parallel algorithm described here allows us to foresee that the theoretical time
complexity of the whole process is to be the logarithm of the width plus height of the image
when enough processing elements are available.

The rest of the paper has been organized in the following sections. After reviewing the
previous studies in this field (Section 2), we briefly define the ACC framework (Section 3)
that allows us to correctly express both the HomRAG and HomDuRAG, whose relations are
discussed in Section 4. Section 5 describes the proposed parallel algorithm, and Section 6
contains a detailed example of its procedure which is a mechanism to check its correct-
ness and remarkable preliminary results. Finally, the conclusions and foreseeable future
extensions are debated in the last section, Section 7.

2. Related Work

There are numerous works that represent images as neighborhood graphs. For exam-
ple, nodes can represent pixels of the image, and edges the connection between adjacent
pixels. If the 4-adjacency relation for pixels is considered, the topological information
can be condensed into a graph, where regions will be represented by nodes, and edges
are boundaries between regions. RAG representations are useful and intuitive models to
be used for image segmentation problems, but, usually, difficult and complicated algo-
rithms are required to manage RAG native graph structures. In this sense, working with
edges or contours can produce enhanced image segmentations but with an efficiency that
must be carefully analyzed because graph approaches are commonly impractical for large
graphs [11].

On the other hand, although connected-component analysis (CCA) has been used
in the last decade in many imaging applications (X-ray computed tomography, medical
imaging, real-time automotive applications, etc.), and parallel algorithms for them are
appearing [12], our proposal here tries to go further by considering the complete set of
adjacency relations among CCs.

More complex representations have been developed to overcome the aforementioned
RAG problems. For example, in dual graphs [13], images are represented by a pair of finite
planar graphs that are dual to each other. These graphs allow the construction of a hierarchy
of partitions (dual graph pyramids). Furthermore, processing these two graphs may not
provide an efficient result; therefore, its application to real images has been quite limited.

In [14], it was proved that a topologically consistent representation of an n-dimensional
segmentation requires explicit representation of all cell types up to dimension n. Combina-
torial maps [15] are representations of an image as a set of half-edges, called darts, and two
permutation functions. They store cells and their adjacencies and encode the topology of
their embedding into 2D space. These maps have certain limitations: (a) they require a
massive number of auxiliary darts, so they are not feasible for big images, and (b) they
are difficult to manipulate. In this paper, we used the ACC representation [10], which
needs significantly less storage and allows a “smooth” transference to adjacency graph
representations [16]. It compiles numerous local and global topological statistics of the
image at a cellular level that allow it to be analyzed from a probabilistic or fractal point of
view [17].

Hence, the efficient construction of RAG is a rare topic in the literature, and it has
usually been related to methods for computing max and min trees and other hierarchi-
cal representations.

There is plenty in the literature dealing with homological tools applied to digital
images (see, for instance, [18–20]). In this paper, we follow the principles and ideas pro-
vided by the Homological Spanning Forest (HSF) model of the image [21]. Using this
parallel combinatorial technique, the processing of high-level segmentations can be solved
through topological reductions in ACCs and leads to improved parallel processing to every



Algorithms 2023, 16, 284 5 of 16

n-dim cell and incidence of the image where computing time was near the logarithm of
the width plus the height of the image. In this sense, another type of representation is
the so-called CRIT (Contour Region Incidence Tree, [17]); that is, a topologically infor-
mative connectivity graph, extracted by compacting an image’s ACC and whose 2-cells
represent the image’s constant color regions. The CRIT overcomes the previous difficulties
of the RAG and is a topologically consistent representation, which is obtained using the
previously mentioned Homological Spanning Forest (HSF). Other parallel algorithms for
computing RAG information through the Homogeneous Spanning Forest model under an
ACC scenario have been developed in [19,22].

In conclusion, cell complex representation is an ideal mathematical scenario for ex-
tracting topological image properties that straightforwardly promote from local to global
magnitudes, with the additional advantage that these global properties will be robust
under deformations, translations and rotations. Currently, these properties are extracted
using topological invariants such as homology or Euler’s number. Let us note that Betti
numbers and Euler’s number are the only topological invariants that have been managed
using parallel approaches [23,24]. Therefore, the approach proposed here will simplify
the HSF framework in order to manage only one of the two trees that can be defined in
planar images. However, we show here that this single tree will be enough to completely
represent incidence relations for all embedded objects in the image and to deduce other
information such as the number of regions.

3. A Simplified ACC Framework

The proposed topological framework for digital images is based on a simplification of
the classical abstract cell complex concept (ACC) [9]. In a few words, an ACC consists of a
set of cells of different dimensions which are endowed with a transitive bounding relation
between cells of contiguous dimensions, thus having no bounding relation for pairs of
cells with dimensions differing by more than one. Therefore, given a 2D digital image I,
the proposed ACC consists of physical pixels (represented by 2-cells), frontiers between
pixels (that is, interpixel elements represented by 1-cells) and adjacencies between frontiers
(or corners between pixels, represented by 0-cells) (an example is depicted in Figure 3).
The bounding relations among different cells can be easily inferred for this kind of square
ACC according to this figure. We refer the reader to [9] for a more strict definition. It is
assumed that an external region surrounds the whole image, having different attributes
(for example, color) than any of the image’s pixels. Hence, the image borders are extended
with additional 0- and 1-cells so that the whole ACC is a compact set, which ensures that
its Euler number is always 1.

In order to compute HomDuRAG, 0-cells are firstly classified into three main types:
crosses, frontiers between regions, and points inside an object. In Figure 3, they are
represented by black, gray and empty circles, respectively. This first classification is
performed by comparing the attributes of the set of four pixels surrounding each 0-cell.
Crosses appear when three or four pixels with different attributes (colors, for example)
surround the 0-cell; frontiers appear when there are two different sets of contiguous
identical pixels, and interior 0-cells appear if the four pixels are identical. For example,
in Figure 3, a single interior 0-cell is inside the blue region. Up to four crosses appear
between red, blue, green and external regions. Finally, the rest of 0-cells are frontiers
between two regions. Distances between any pair of 0-cells must be calculated so that the
algorithm detailed in Section 5 can determine the two extremes of each frontier. In Figure 3,
on the right, pairs of distances are shown for each 0-cell; note that crosses and interior
0-cells have zero values, while the other cells point towards two directions, being −4 for
North, +4 for South (because 4 is the number of columns Nc = N + 1), −1 for West and +1
for East in this example (matrices are supposed to be stored in row-major order, as usual).

To be precise, the comparison of pairs of adjacent pixels (which correspond to ACC
1-cells) around a 0-cell yields to 4 binary values (Figure 4, left). Each of these comparisons
results in a true/false bit, thus giving a total of 16 cases. Figure 4, right, shows the



Algorithms 2023, 16, 284 6 of 16

12 possible cases because a set of comparisons where three are true (1) and one is false
(0) is evidently impossible by the transitive property of equality. Classifying each 0-cell
according to this table, it is easy to compute its pair of jump distances (called Ja and Jb
here). Once the initial jump distances for all 0-cells are set, only these 0-cells will be used
to compute HomDuRAG, meaning a matrix with (M + 1) × (N + 1) elements. Using this
matrix, HomDuRAG can be efficiently extracted as explained in the next sections, and its
relation with HomRAG can be foreseen by considering duality with the HomDuRAG.

(a) (b)
Figure 3. (a): Simplified HSF. A 2 × 3 image embedded in its ACC framework. There are four blue,
one red and one green pixels. Circles represent 0-cells comprising three cases: black circles denote
crossings between boundaries, gray denotes belonging to a boundary, and voids denote being inside
an object neither belonging to a boundary nor crossings. (b): Jump distance matrix. The matrix of
jump distances corresponding to the image. Each 0-cell has two distances pointing to its eastern and
western neighbors, respectively.

Figure 4. In order to obtain the jump values of each 0-cell, the 4-adjacent 2-cells are compared, so
that a 4-bit code is calculated as shown on the right side of the figure. The left side of the figure shows
a table with all possible codes (codes 1, 2, 4 and 8 are not possible) and the calculation of the hopping
directions for each 0-cell according to this code. Nc = N + 1 is the number of columns.

4. Specifying Bijective HomRAG and HomDuRAG

Figure 2 depicted the complete homological information of a given image. Al-
though this is a particular and small example, it contains all possible kinds of homological
representatives for a subdivided digital image. Therefore, the relations among them can be
straightforwardly obtained. The description and one example of each incidence relation in
Figure 5, center, includes: (a) An incidence between a cross and a frontier; that is, between a
0- and 1-cell, such as edges ‘1a’, ‘2c’, ‘3e’, etc. (b) An incidence between a frontier hole and
the frontier that contains it; that is, between a 0- and 1-cell, such as the double-edge ‘5g’.
The description and one example of each incidence relation in Figure 5, right, includes:
(c) An incidence between a frontier and a region; that is, between a 1- and 2-cell, such
as edges ‘bH’, ‘cL’, ‘fX’, etc. (d) An incidence between a region hole and the region that
contains it; that is, between a 1- and 2-cell, such as the double-edge ‘hX’.



Algorithms 2023, 16, 284 7 of 16

Figure 5. (Left): homological information representative cells of the image in Figure 1 (uppercase,
lowercase letters and numbers are 2-, 1- and 0-cells, respectively). (Center): homological information
in the form of adjacencies among crosses and frontier holes expressed as a HomDuRAG graph.
(Right): homological information in the form of adjacencies among regions (including adjacencies for
region holes) of the same image, meaning the HomRAG.

Hence, depending on the required application, two adjacency graphs can be calculated
and managed:

(1) The graph with the homological information for crosses and frontier holes, which can
be called HomDuRAG (Figure 5, center).

(2) The graph with the homological information for regions (including adjacencies for
region holes); that is, the HomRAG (Figure 5, right).

Obviously, these two graphs are planar as they come from a planar digital image.
The duality among them can be established if the previously discussed particularities of
the multiple and self-loop edges were taken into account. In this respect, faces (which are
nodes in the dual graph) of the HomDuRAG have been drawn in the center of Figure 5
(Figure 5, right, respectively). Note the special case of the frontier hole numbered as 5,
which is the face among the frontier h and the hypothetical external region outside the
image (not drawn here). The task of computing an application for the mutual conversions of
these graphs is not developed here due to lack of space, and it is intended for future work.

5. Parallel Algorithm for Computing the HomDuRAG

The entire process is schematically shown in the block diagram in Figure 6. The first
two steps have been detailed in Section 3, where the associated ACC is initialized, for the
later computation of jump distances between 0-cells.

Figure 6. Complete pipeline of the algorithm to compute the HomDuRAG. The detailed description
of the whole process is depicted in Algorithm 1.

Having computed 0-cell types according to Figure 4, as well as the jump distances to
each adjacent 0-cell (Steps 1, 2, 3 of Algorithm 1), distances from every cell to the two crosses
where its frontier ends can be computed in a fully parallel manner. The core of the algorithm
is represented in Figure 7, and the regular situation proceeds as follows. At each iteration
(Steps 4 and 5 of Algorithm 1), any cell keeps the jump distances towards the two directions



Algorithms 2023, 16, 284 8 of 16

of the frontier, called Ja and Jb. Each 0-cell asks the cells pointed out by these jumps Ja
and Jb which distances they hold (Janeigh at Step 4.b of Algorithm 1 and Jbneigh at Step 4.d).
If the distance Janeigh does not fall into a cross (which always maintains zero values for
jump distances), the current 0-cell adds these neighbor values in two separate variables
(Figure 7, left): Janext = Janeigh + Ja(c), and Janext−other = Jb(c + Ja(c)) + Ja(c) (Step 4.c of
Algorithm 1). Then, the cell must choose the non-null between Janext and Janext−other. Thus,
Janext or Janext−other are stored in the 0-cell (Steps 4.c.ii or 4.c.iii of Algorithm 1). This would
continue until the cell reaches a cross; thus, no further computation is needed (Figure 7,
center). This last condition supposes a stop condition in the loop iteration for this 0-cell. It
is worth noting the necessary condition to ensure that the jump distances are continuously
increasing towards the correct direction (Steps 4.c.ii or 4.c.iii of Algorithm 1). Because it
is impossible to know which direction each Ja and Jb are holding, the results for Janext
and Janext−other may yield to a null value if the taken Janeigh (or Jbneigh ) goes towards the
opposite direction to the initial Ja (or Jb). In this case, the sum Janext (or Janext−other) would
be null, and the opposite value, Janext−other (or Janext), is the one that must be stored in
the 0-cell. For the other direction, a similar procedure must be performed (Step 4.d of
Algorithm 1). As is usual in synchronous cellular automaton algorithms, two pairs of
matrices must always be kept: the current ones (Ja, Jb) and the newest values (Janew, Jbnew).
So, any cell can compute its next jumps as a function of the previous state. Correspondingly,
before proceeding with the next loop iteration (Step 4.e of Algorithm 1), the roles of these
two pairs are interchanged.

A special case is needed to detect cycles in frontiers, such as that of the external frontier
of region X in Figure 2. In cycles, the increasing operations of the previous loop would
never stop because cycles present no crosses. Labeled 0-cells can be used to detect if jump
distances are cycling around; when a 0-cell label (L1a in Figure 7, right) matches that of one
of its pointed 0-cells (for example, L2 in the same figure), this means that the increasing
operations have completely rounded a frontier, and, consequently, the procedure must stop.
Labels can be propagated in a similar manner to jumps (for space reasons, the labeling
process has not been specified in Algorithm 1; see the whole implementation in [25] for
details). In our implementation, the most southeast corner is declared as the representative
cell of the hole because it has the biggest label according to the initial one.

After a logarithmic number of iterations (because jump distances increase exponen-
tially), any 0-cell has computed its distances to its two crosses, and the HomDuRAG can be
extracted in a straightforwardd manner (Steps 6.a, 6.b and 6.c of Algorithm 1). Depending
on the type of cross or hole frontier, these 0-cells must read the labels on their corresponding
adjacent neighbors (given by the schemes in the last column of Figure 4) in order to fill
table T. This set of neighboring labels condensed in table T is a minimal but complete
representation of the HomDuRAG; each node (cross or hole frontier) knows its 2-, 3- or
4-adjacent nodes, thus having two, three or four edges.

Note that the “do...while” loop of the algorithm has been written in an identical and
independent way for any 0-cell, and no carry ahead dependencies among iterations exist,
thus facilitating its parallelization by simply dividing the matrices into disjoint sets of
pieces. Only the variable nHomc that counts crosses and holes in Steps 7.a, 7.b and 7.c
would imply the need of a different counter for each processing element (such as CPU or
GPU cores).

In order to clarify the proposed algorithm, a set of figures are depicted for a M× N =
9× 9 image (Figure 8, left) that contains the same regions as those in Figure 1.

First of all, for any 0-cell c, jump distances Ja(c), Jb(c) are computed and stored in two
Nc× Nc = 10× 10 matrices (see Figure 8, center and right). Supposing that matrices are
stored by rows, a value Nc = 10 of distance means going South (respectively, −10, North).
Interior 0-cells and crosses (among three regions depicted in orange for this image) are
given a null jump.



Algorithms 2023, 16, 284 9 of 16

Algorithm 1: Algorithm to compute jump distances for each 1-cell, building the
jump distance matrix necessary to get the HomDuRAG

input :
I: 2D Digital Image

output :
T: Table with information of crosses and holes that conforms the HomDuRAG

/* Init.: sizes and incidence relations for 0− cells and 1− cells (See Section 3) */
1. ∀1− cell : Compute the comparison between its 2 incident 2-cells (pixels of I);
2. ∀0− cell c : Compute the cross_type(c): a 4-bit number by grouping the comparison of step 1 for its 4 incident 1-cells;
3. ∀0− cell c : Compute its initial two possible jump distances Ja(c), Jb(c) (see Figure 4);
/* Main Loop with a logarithmic number of iterations */
4.do

a. change = False ;
/* For the Jump Direction Ja */
b. for 0-cells, c do

i. Janeigh = Ja(c + Ja(c));

ii. if Janeigh ! = 0 then
Janext = Janeigh + Ja(c);

if Janext ! = 0 then
Janew (c) = Janext ;
change = True

else
/* Explore the other direction by computing Janext−other */
Janext−other = Jb(c + Ja(c)) + Ja(c);
if Janext−other ! = 0 then

Janew (c) = Janext−other ;
change = True

end
end

end
end
c. Proceed analogously to b. for the other jump direction Jb(c) (Figure 4), and for the cell labels (Figure 7);
d. for 0-cells, c do

Ja(c) = Janew (c), Jb(c) = Jbnew (c);
end

while (change == True);
/* Generating HomDuRAG table T */
6. nHomc = 0 number of homological representative cells (of 0D and 1D);
for 0-cells, c do

switch cross_type(c) do
/* inc0,inc1,inc2,inc3: increments to get the neighbours */
case 7,14,13,11 do

/* 3-region crosses */
T[nHomc, 0 : 4] = {c, c + Ja(c + inc0), c + Ja(c + inc1), c + Ja(c + inc2), 0)};
T[nHomc, 5 : 7] = {3 colors of neighbor pixels};
nHomc = nHomc + 1;

end
case 15 do

/* 4-region crosses */
T[nHomc, 0 : 4] = {c, c + Ja(c + inc0), c + Ja(c + inc1), c + Ja(c + inc2), Ja(c + inc3))} ;
T[nHomc, 5 : 8] = {4 colors of neighbor pixels};
nHomc = nHomc + 1

end
case 6 do

/* Frontier Hole */
if label(c) == c then

T[nHomc, 0 : 4] = {c, c, c, 0, 0};
T[nHomc, 5 : 6] = {2 colors of neighbor pixels};
nHomc = nHomc + 1

end
end

end
end



Algorithms 2023, 16, 284 10 of 16

Figure 7. Three cases showing how the jump distances of each 0-cell increase with each new iteration
of the algorithm shown in Algorithm 1. Black circles numbered 1 and 2 represent crosses. Red arrows
represent jumps in one direction and blue arrows in the opposite direction. (Left): regular exponential
increasing of jump distances. (Center): reaching crosses. (Right): when both jumps go to the same
0-cell, a cycle is detected in a frontier; then, no additional jump increase is required.

Figure 8. (Left): example values of the image in Figure 1 (K = 2, H = 4, L = 8, X = 9). (Center,Right):
initial Ja and Jb for the 0-cells of this image (orange cells represent crosses).

Later on, the main loop (Steps 4 and 5 of Algorithm 1) iterates. Figure 9 depicts values
for Ja at the end of two iterations: the first and last iterations (Iteration 5). During each
iteration, jump distances are exponentially increased if no cross is reached. In our example
and at the end of the first iteration, most 0-cells have doubled in distance (obvious for
values, −2, 2, −20, and 20 and for −9, 9, −11, and 11 which mean that a row and column
hop has been chosen). Only Ja (or Jb, not shown here) remains with the same values (−1, 1,
−10 or 10) when it has already reached a cross.

Figure 9. Exponential growth of Ja values for the image in Figure 1. At the end, a new 0-cell
representative of the hole is detected and marked in the bottom rightmost element. Jb presents values
in a similar pattern but in opposite directions. (orange cells represent crosses)

At the end of the loop, the Ja value for each 0-cell points towards the corresponding
cross. Note that jumps to the other direction are stored in Jb (not shown here). The
special case of a frontier cycle is solved as follows: the 0-cells that form the cycle have
been exponentially increasing their Ja; thus, they have cycled around the perimeter with
uninteresting values. However, thanks to the propagation of the biggest labels (99 for the
case of the cycle, see Figure 10), the loop finishes at Iteration 5 when each cell detects that its
own label matches that of its pointed 0-cell. At last, note that any 0-cell that is not interior
to a region has been set to one of the cross labels (15, 35, 65 or 85) or to the representative
label 99 of the cycle (see Figure 10). On the other hand, colored cells correspond to 0-cells
inside regions (thus, labeling has not been performed for them).



Algorithms 2023, 16, 284 11 of 16

Figure 10. (Left): Final labels of the frontiers for the image in Figure 1. Orange cells represent
cross/hole representatives; the rest of colored cells correspond to 0-cells inside regions. (Center): Final
HomDuRAG expressed as a table for the image in Figure 1. The first column holds cross addresses.
The next four columns hold the adjacencies with other crosses (or with themselves in the case of
a hole). The last four columns hold the pixel colors around each cross. (Right): HomDuRAG of
this table.

Implementation of the presented method is quite straightforward when following
the diagram of the algorithm in Algorithm 1. Although an optimized code for the cur-
rent proposal has not yet been written, the following theoretical estimation of the time
complexity is O(log(M× N)) if massive parallelism were employed, M and N being the
width and height of image I, respectively. This is because the parallel algorithm for com-
puting HomDuRAG follows the same logarithmic procedure for pixel jump calculation as in
previous works such as for the Connected Compmonent Label Tree (CCLT) algorithm [21]—
exponentially increasing jump distances through the iterations until no new jumps are
assigned. Hence, it is expected that computation time costs reach those which occurred in
the case of the CCLT.

6. Results

A complete implementation of the algorithm that computes the HomDuRAG has been
performed in MATLAB/OCTAVE that serves to check the results for different types of
images. The main script (script_dual_RAG_images.m) can load one of these sets of images
at each time: (1) a synthetic image written in a matrix; (2) several random synthetic square
images having a different number of colors and densities; (3) several synthetic square
images containing an object with the longest perimeter; and (4) a real image.

After having loaded and checked an image, this main script launches
dual_RAG_main_stages.m, which computes and checks the HomDuRAG by executing these
stages in order:

(1) Script to compute jump distances for the 0-cells (dual_RAG_0cell_determination.m).
(2) Script to extract HomDuRAG expressed as a table T (T_crosses in the code) called

dual_RAG_counting_crit_cells_v1.m.
After computing HomDuRAG, a mechanism to check the correctness of those results

concentrated in T has been written. First, frontiers are fused (script fusing_frontier_CCs.
m) as they were connected components (CCs). This fusion process returns the number of
frontier CCs that contain more than one region (n1,poly). With this number, homological
representative cells of the regions embedded in the image can be completely derived using
the Euler formula and the following calculation. The Euler number of the whole set of open
separated objects is 1 (because no object intersection exists). In addition, the sum of all the
Euler numbers can be calculated through the representative cells and can be expressed as
n2 − n1 + n0 = 1, nk being the number of representative cells of dimension k (which can be
CCs or holes).

Clearly, n0 can be computed via the table T; it is the total number of crosses with three
or four pixels with different attributes (here described as n0,3 and n0,4, respectively) plus
the number of holes composed of only one frontier (called n0,2 in this work because the
southeast-most 0-cell representative of any of these holes has only two cobounds).

With respect to n1, it can be composed of four types of homological representative cells:
(a) Those corresponding to holes composed of only one frontier (that is, n1,mono, which

is equal to n0,2).



Algorithms 2023, 16, 284 12 of 16

(b) Those that must appear in regions that are outside each of these previous mono-
frontier holes; n1,reg,mono. Note that if the image border is a cycle, it cannot be counted in
n1 because this homological representative cell of dimension 1 would reside outside the
whole image; thus, n1,reg,mono = n1,mono − 1. On the contrary, n1,reg,mono = n1,mono.

(c) Those that must emerge in regions that are outside each frontier CC containing
more than one region. Again, if the image border belongs to one of these frontier CCs,
the corresponding homological representative cell of dimension 1 would reside outside the
whole image; thus, n1,reg,poly = n1,poly − 1, being n1,poly, the value calculated by the script
fusing_frontier_CCs.m. On the contrary, n1,reg,poly = n1,poly.

(d) Each frontier itself not being a cycle represents a homological representative cell of
dimension 1, which can be computed as half of the number of frontiers that go out of the
crosses; that is, (3× n0,3 + 4× n0,4)/2. Dividing by two is necessary because the cobounds
of crosses are repeated twice, or, correspondingly, each frontier has two bounds.

In order to clarify this notation, let us resume Figure 2. This image contains four
crosses with three pixels with different attributes (n0,3 = 4) and one mono-frontier hole
situated at the image border, labeled as 5 in the figure (that is, n0,2 = 1). It contains no
cross with 4 different pixels (n0,4 = 0). By merging the frontiers, we obtain two frontier
CCs: the external one that contains only region X, and the internal one that contains several
regions. Then, n1,mono = 1 (but n1,reg,mono = 0 because this hole is on the image border),
and n1,poly = 1 (further, n1,reg,poly = 1). In addition, the number of frontiers going out of
crosses is (3× 4 + 4× 0)/2 = 6. The Euler formula yields the number of regions as:

n2 = 1− n0 + n1 =
1− (n0,3 + n0,4 + n0,2)+

n1,mono + n1,reg,mono + n1,reg,poly +
3×n0,3+4×n0,4

2 =
1− (n0,3 + n0,4)+

n1,reg,mono + n1,reg,poly +
3×n0,3

2 + 2× n0,4

(1)

For the case of Figure 2, n2 = 1− (4+ 0+ 1) + (1+ 0+ 1+ 6) = 1− 5+ 8 = 4 regions
(that is, regions X, K, H and L).

Once the number of regions has been computed with the previous formula, it is
compared with that given by the sum of the number of regions returned by the MAT-
LAB/OCTAVE method bwlabel() for each color. This comparison is checked in the script
checking_results_nof_regions.m, ensuring the correctness of this implementation. Note
that the last two scripts that serve to check results have been commented on in the uploaded
implementation to prevent delays when computing HomDuRAG.

After testing several toy images similar to those in the previous figures (using Case
1 of script_dual_RAG_images.m), the theoretical timing order was tested with images
containing the largest perimeter (Case 2 of script_dual_RAG_images.m); a zigzag object
embedded in a background of a different color (see a 13× 13 zigzag image in Figure 11).
The number of iterations of the algorithm to compute jump distances for the 0-cells that rep-
resent crosses and cycles (niter) matches the logarithm in base 2 of the semiperimeter of the
zigzag (plus one iteration needed to escape from the main while loop) as Figure 11 summa-
rizes. This occurs because both jumps Ja and Jb (corresponding labels) grow exponentially
from the southeast-most corner of the zigzag until they meet in the northwest-most corner.
When both jumps meet, one additional iteration is required to demonstrate that any frontier
has been completely labeled.

A third test that clearly reveals the timing order of the proposed algorithm is Case 3
of script_dual_RAG_images.m—a set of random images with a different number of colors
and densities (percentage of white pixels) for B/W images. The table in Table 1 shows the
results obtained after five executions of images of sizes 50× 50 and 100× 100. The absolute
numbers of representative homology cells n0,∗, n1,∗ are shown in this table. Moreover,
in the last three columns, execution times and the sum of representative homology cells of
dimension 0 have been normalized to that of a B/W 25× 25 image with a density of 0.5.



Algorithms 2023, 16, 284 13 of 16

(a) (b)
Figure 11. (a): a 13× 13 image containing the longest perimeter zigzag object. (b): M = image
width = image length. P = perimeter = ((M− 1)× (M− 2)) + 4× ((M− 1)/4). log2(P/2) = the-
oretical number of iterations to compute jump distances for the 0-cells that represent crosses and
cycles. niter = number of iterations of Stage 1 of the algorithm.

As expected, the number of crosses n0,3 + n0,4 strongly depends on the number of
colors. Note that even for an eight-color image, n0,3 + n0,4 is very close to the number
of 0-cells (M + 1)× (N + 1). In contrast, the number of frontier holes n0,2 is greater for
extreme densities (reaching a maximum for 0.1 and 0.9) and almost nonexistent for color
images. In accordance with this, the required number of iterations to compute jumps
and labels is inversely proportional to the number of colors because objects with a longer
perimeter can appear for binary images, while colored image regions are usually composed
of very few pixels.

Because of this, execution times of the second stage (script
RAG_counting_crit_cells_v1.m) are mostly proportional to the sum n0,3 + n0,4 + n0,2 be-
cause an entry in table T must be saved for each of these cells (see the last two columns of the
table in Table 1). Execution times of the first stage (script dual_RAG_0cell_determination.
m) are larger for images with a larger n0,2 because they depend on the number of iterations
to compute jumps and labels but also on the number of crosses n0,3 + n0,4.

Finally, several tests were performed with real images, providing results similar to
those of random images with many colors. This is not surprising since real images usually
contain hundreds of colors, and the proposed algorithm goes through all 0-cells identically
and independently of the pixel attributes.

It must be remembered that these timing results were obtained using MATLAB/Octave
codes and with no parallel execution; future works must study the efficiency of our algo-
rithms for modern parallel processors in which the number of threads/processes launched
will considerably reduce these times and play an important role, aiming to reduce the
dependence of timing on the image size and number of crosses.

7. Conclusions, Applications and Future Research

The presented method extracts the HomDuRAG of an image, which is the dual graph
of the HomRAG (a topologically consistent extended version of the classical RAG). These
representations encapsulate the whole set of topological features and relations between the
three types of objects embedded in a digital image: 2-dimensional (regions), 1-dimensional
(contours) and 0-dimensional objects (crosses). In this work, we have implemented a
parallel version of an algorithm to compute HomDuRAG whose theoretical time complexity
is O(log(M× N)), M and N being the image dimensions, via the set of (M + 1)× (N + 1)
0-cells of the ACC that represents the image.

As such, the following tasks include the parallel implementation of the presented
algorithm on a real-time framework and application. Both multicore CPUs and GPUs would



Algorithms 2023, 16, 284 14 of 16

probably fit for such objectives. Since the algorithm is fully parallel, HomDuRAG extraction
promises to be computationally efficient so that it could be applied in numerous image
processing subfields, such as image segmentation, matching, detection, reconstruction, etc.

Not only does HomDuRAG return directly topological features (set of holes, adjacencies,
cell incidences, etc.), but it also can be modified to calculate other geometrical measures such
as contour perimeters, contour curvatures, etc., because contours are completely labeled
when building HomDuRAG. Hence, a complete set of an image’s statistics under a consistent
topological format can be easily computed with our method, even extending this to a whole,
specific dataset. As an objective of interest, this capability can be efficiently employed
for pattern recognition using machine learning or optimization models among others.
More specifically, giving an example on metaheuristic models, such as Genetic Algorithms,
the extracted topological information of an image can be modeled as inputs of the fitness
function or as genes presented in an individual in order to fine-tune a target image filter.
Moreover, the extraction of features using our method can be a helpful support in deep
learning since topological patterns are very difficult to learn, even through a large sequence
of non-linear layers. Going further, we believe that the conversion of (big) data coming
from different fields (such as medicine, transportation, robotics or computer networks
among others) into synthetic images in order to calculate the previously mentioned set
of topological statistics may open new possibilities regarding the modeling of advanced
optimization algorithms and challenging decision problems, such as adaptive algorithms,
island algorithms, hybrid heuristics and metaheuristics, polyploid algorithms, etc. This
would improve the research performed by relevant references in these fields, including but
not limited to the following: [26–28].

Another pending work is the implementation of an efficient and parallel algorithm
for calculating HomRAG using HomDuRAG table T, having been shown here as a basic
conversion that is possible thanks to the duality between both graphs.

Finally, a new field of image processing operations based on the table T is foreseeable
because this table completely represents HomDuRAG and has two important advantages:
it can be enlarged easily with the above-mentioned image information, and it is strictly
ordered by the linear addresses of 0-cell labels.

Author Contributions: Conceptualization, F.D.-d.-R., M.J.M.-F., P.R. and H.M.-A.; methodology,
F.D.-d.-R., M.J.M.-F., D.C.-C. and H.M.-A.; software, F.D.-d.-R., M.J.M.-F., D.C.-C. and H.M.-A.; vali-
dation, F.D.-d.-R., M.J.M.-F. and P.S.-C.; formal analysis, F.D.-d.-R., P.S.-C. and M.J.M.-F.; investigation,
F.D.-d.-R., M.J.M.-F., P.R. and H.M.-A.; resources, F.D.-d.-R., M.J.M.-F., D.C.-C. and H.M.-A.; writing—
original draft preparation, F.D.-d.-R., P.S.-C., M.J.M.-F., D.C.-C. and H.M.-A.; writing—review and
editing, F.D.-d.-R., M.J.M.-F., D.C.-C., P.R. and H.M.-A.; supervision, F.D.-d.-R., M.J.M.-F. and D.C.-C.;
project administration, P.R. and F.D.-d.-R.; funding acquisition, P.R. and F.D.-d.-R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the research project of Ministerio de Economía, Industria y
Competitividad, Gobierno de España (MINECO) and the Agencia Estatal de Investigación (AEI) of
Spain and cofinanced by FEDER funds (EU): Grant PID2019-110455GB-I00 funded by MCIN/AEI
/10.13039/501100011033, CIUCAP-HSF:US-1381077 and SANEVEC TED2021-130825B-I00 (funded
by NextGenerationEU/PRTR from the European Union).

Data Availability Statement: The data utilized to extract statistics, as well as the MATLAB/Octave
script for the corresponding figures is available at: https://es.mathworks.com/matlabcentral/
fileexchange/127149-homdurag (accessed on 23 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://es.mathworks.com/matlabcentral/fileexchange/127149-homdurag
https://es.mathworks.com/matlabcentral/fileexchange/127149-homdurag


Algorithms 2023, 16, 284 15 of 16

Abbreviations
The following abbreviations are used in this manuscript:

ACC abstract cell complex
CRIT Contour Region Incidence Tree
CC connected component
CCLT Connected Component Label Tree
HomRAG Homological Region Adjacency Graph
HomDuRAG Homological Region Adjacency Dual Graph
HSF Homological Spanning Forest
RAG Region Adjacency Graph

References
1. Salembier, P.; Oliveras, A.; Garrido, L. Antiextensive Connected Operators for Image and Sequence Processing. IEEE Trans. Image

Process. 1998, 7, 555–570. [CrossRef] [PubMed]
2. Vilaplana, V.; Marques, F.; Salembier, P. Binary Partition Trees for Object Detection. IEEE Trans. Image Process. 2008, 17, 2201–2216.

[CrossRef] [PubMed]
3. Tremeau, A.; Colantoni, P. Regions adjacency graph applied to color image segmentation. IEEE Trans. Image Process. 2000,

9, 735–744. [CrossRef] [PubMed]
4. Stawiaski, J.; Decenciére, E. Region merging via graph-cuts. Image Anal. Stereol. 2008, 27, 39–45. [CrossRef]
5. Lienhardt, P. Topological models for Boundary Representation : A comparison with n-dimensional generalized maps. Comput.-

Aided Des. 1991, 23, 59–82. [CrossRef]
6. Peltier, S.; Ion, A.; Kropatsch, W.; Damiand, G.; Haxhimusa, Y. Directly computing the generators of image homology using

graph pyramids. Image Vis. Comput. 2009, 27, 846–853. [CrossRef]
7. Fiorio, C. A topologically consistent representation for image analysis: The Frontiers Topological Graph. In Discrete Geometry for

Computer Imagery; Springer: Berlin/Heidelberg, Germany, 1996; pp. 151–162.
8. Kovalevsky, V. Geometry of Locally Finite Spaces; House Dr. Baerbel Kovalevski: Berlin, Germany , 2008.
9. Kovalevsky, V. Algorithms in Digital Geometry Based on Cellular Topology. In Proceedings of the 10th IWCIA, Auckland, New

Zealand, 1–3 December 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3322, pp. 366–393.
10. Kovalevsky, V. Image Processing with Cellular Topology; Springer: Singapore, 2021. [CrossRef]
11. Wu, Z.; Leahy, R. An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 1101–1113. [CrossRef]
12. Windisch, D.; Kaever, C.; Juckeland, G.; Bieberle, A. Parallel Algorithm for Connected-Component Analysis Using CUDA.

Algorithms 2023, 16, 80. [CrossRef]
13. Banaeyan, M.; Kropatsch, W. Fast Labeled Spanning Tree in Binary Irregular Graph Pyramids. J. Eng. Res. Sci. 2022, 1, 69–78.

[CrossRef]
14. Kovalevsky, V. Modern Algorithms for Image Processing: Computer Imagery by Example Using C#; Apress: Berkeley, CA, USA, 2019.

[CrossRef]
15. Damiand, G.; Lienhardt, P. Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing, 1st ed.; A. K.

Peters, Ltd.: Natick, MA, USA, 2014.
16. Köthe, U. Deriving Topological Representations from Edge Images. In Geometry, Morphology, and Computational Imaging; Asano,

T., Klette, R., Ronse, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 320–334.
17. Sánchez-Cuevas, P.; Díaz-del Río, F.; Molina-Abril, H.; Real, P. A Topologically Consistent Color Digital Image Representation by

a Single Tree. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Porto,
Portugal, 10–13 May 2021; Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 479–488.

18. Bleile, B.; Garin, A.; Heiss, T.; Maggs, K.; Robins, V. The Persistent Homology of Dual Digital Image Constructions. In Research in
Computational Topology 2; Gasparovic, E., Robins, V., Turner, K., Eds.; Association for Women in Mathematics Series; Springer
International Publishing: Cham, Switzerland, 2022; pp. 1–26. [CrossRef]

19. Díaz-del Río, F.; Real, P.; Onchis, D. A Parallel Implementation for Computing the Region-Adjacency-Tree of a Segmentation of a
2D Digital Image. In Proceedings of the Image and Video Technology—PSIVT 2015 Workshops, Auckland, New Zealand, 23–27
November 2015; Springer: Berlin/Heidelberg, Germany, 2016; pp. 98–109.

20. Robins, V.; Wood, P.J.; Sheppard, A.P. Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital
Images. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1646–1658. [CrossRef] [PubMed]

21. Diaz-del Rio, F.; Sanchez-Cuevas, P.; Molina-Abril, H.; Real, P. Parallel Connected-Component-Labeling based on Homotopy
Trees. Pattern Recognit. Lett. 2020, 131, 71–78. [CrossRef]

22. Díaz-del Río, F.; Real, P.; Onchis, D. Labeling Color 2D Digital Images in Theoretical Near Logarithmic Time. In Proceedings of
the Computer Analysis of Images and Patterns, Ystad, Sweden, 22–24 August 2017; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 391–402.

http://doi.org/10.1109/83.663500
http://www.ncbi.nlm.nih.gov/pubmed/18276273
http://dx.doi.org/10.1109/TIP.2008.2002841
http://www.ncbi.nlm.nih.gov/pubmed/18854257
http://dx.doi.org/10.1109/83.841950
http://www.ncbi.nlm.nih.gov/pubmed/18255446
http://dx.doi.org/10.5566/ias.v27.p39-45
http://dx.doi.org/10.1016/0010-4485(91)90100-B
http://dx.doi.org/10.1016/j.imavis.2008.06.009
http://dx.doi.org/10.1007/978-981-16-5772-6
http://dx.doi.org/10.1109/34.244673
http://dx.doi.org/10.3390/a16020080
http://dx.doi.org/10.55708/js0110009
http://dx.doi.org/10.1007/978-1-4842-4237-7
http://dx.doi.org/10.1007/978-3-030-95519-9_1
http://dx.doi.org/10.1109/TPAMI.2011.95
http://www.ncbi.nlm.nih.gov/pubmed/21576736
http://dx.doi.org/10.1016/j.patrec.2019.11.039


Algorithms 2023, 16, 284 16 of 16

23. Chiavetta, F.; Di Gesù, V. Parallel computation of the Euler number via connectivity graph. Pattern Recognit. Lett. 1993, 14, 849–859.
[CrossRef]

24. Pascucci, V.; Cole-McLaughlin, K. Parallel Computation of the Topology of Level Sets. Algorithmica 2004, 38, 249–268. [CrossRef]
25. Díaz-del Río, F. HomDuRAG. MATLAB Central File Exchange. 2023. Available online: https://es.mathworks.com/matlabcentral/

fileexchange/127149-homdurag (accessed on 31 March 2023).
26. Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for Scheduling Trucks at a Cross-Docking Terminal. Inf. Sci. 2021,

565, 390–421 . [CrossRef]
27. Zhao, H.; Zhang, C. An Online-Learning-Based Evolutionary Many-Objective Algorithm. Inf. Sci. 2020, 509, 1–21 . [CrossRef]
28. Dulebenets, M.A. A Comprehensive Evaluation of Weak and Strong Mutation Mechanisms in Evolutionary Algorithms for Truck

Scheduling at Cross-Docking Terminals. IEEE Access. 2018, 6, 65635–65650 . [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0167-8655(93)90148-7
http://dx.doi.org/10.1007/s00453-003-1052-3
 https://es.mathworks.com/matlabcentral/fileexchange/127149-homdurag
 https://es.mathworks.com/matlabcentral/fileexchange/127149-homdurag
http://dx.doi.org/10.1016/j.ins.2021.02.039
http://dx.doi.org/10.1016/j.ins.2019.08.069
http://dx.doi.org/10.1109/ACCESS.2018.2874439

	Introduction
	Related Work
	A Simplified ACC Framework
	Specifying Bijective HomRAG and HomDuRAG
	Parallel Algorithm for Computing the HomDuRAG
	Results
	Conclusions, Applications and Future Research
	References

