
Citation: Lopez-Martinez-Carrasco,

A.; Juarez, J.M.; Campos, M.;

Canovas-Segura, B. VLSD—An

Efficient Subgroup Discovery

Algorithm Based on Equivalence

Classes and Optimistic Estimate.

Algorithms 2023, 16, 274. https://

doi.org/10.3390/a16060274

Academic Editor: Frank Werner

Received: 26 April 2023

Revised: 18 May 2023

Accepted: 25 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

VLSD—An Efficient Subgroup Discovery Algorithm Based on
Equivalence Classes and Optimistic Estimate
Antonio Lopez-Martinez-Carrasco 1,2,*,† , Jose M. Juarez 1,2,† , Manuel Campos 1,2,3,†

and Bernardo Canovas-Segura 1,2,*,†

1 MedAI-Lab, University of Murcia, 30100 Murcia, Spain; jmjuarez@um.es (J.M.J.);
manuelcampos@um.es (M.C.)

2 Facultad de Informatica, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
3 Murcian Bio-Health Institute (IMIB-Arrixaca), 30120 Murcia, Spain
* Correspondence: antoniolopezmc@um.es (A.L.-M.-C.); bernardocs@um.es (B.C.-S.)
† These authors contributed equally to this work.

Abstract: Subgroup Discovery (SD) is a supervised data mining technique for identifying a set of
relations (subgroups) among attributes from a dataset with respect to a target attribute. Two key
components of this technique are (i) the metric used to quantify a subgroup extracted, called quality
measure, and (ii) the search strategy used, which determines how the search space is explored and
how the subgroups are obtained. The proposal made in this work consists of two parts, (1) a new
and efficient SD algorithm which is based on the equivalence class exploration strategy, and which
uses a pruning based on optimistic estimate, and (2) a data structure used when implementing the
algorithm in order to compute subgroup refinements easily and efficiently. One of the most important
advantages of this algorithm is its easy parallelization. We have tested the performance of our SD
algorithm with respect to some other well-known state-of-the-art SD algorithms in terms of runtime,
max memory usage, subgroups selected, and nodes visited. This was completed using a collection
of standard, well-known, and popular datasets obtained from the relevant literature. The results
confirmed that our algorithm is more efficient than the other algorithms considered.

Keywords: data mining; subgroup discovery; algorithm; equivalence classes; optimistic estimate

1. Introduction

Subgroup Discovery [1] (SD) is a supervised data mining technique that is widely used
for descriptive and exploratory data analysis. Its purpose is to identify a set of relations
between attributes from a dataset with respect to a target attribute of interest. SD is useful
as regards automatically generating hypotheses, obtaining general relations in the data and
carrying out data analysis and exploration. When executing an SD algorithm, the relations
obtained are denominated as subgroups. The SD technique has made it possible to obtain
remarkable results in both medical and technical fields [2–4].

Assessing the quality of a subgroup extracted by an SD algorithm is a key aspect of this
technique. There is a wide variety of metrics for this purpose, and these are denominated
as quality measures. A quality measure is, in general, a function that assigns one numeric
value to a subgroup according to certain specific properties [5], and selecting a good quality
measure for each specific problem is, therefore, essential. The quality measures are divided
into two groups, (1) quality measures designed to be applied when the target attribute is of
a nominal type, and (2) quality measures designed to be applied when the target attribute is
of a numeric type. Some examples of quality measures are Sensitivity, Specificity, Weighted
Relative Accuracy (WRAcc), or Information Gain, among others [6]. Some popular quality
measures, such as those previously enumerated, could be adapted to be applied to both
attributes of the nominal type or attributes of the numeric type.

Algorithms 2023, 16, 274. https://doi.org/10.3390/a16060274 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060274
https://doi.org/10.3390/a16060274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2990-886X
https://orcid.org/0000-0003-1776-1992
https://orcid.org/0000-0002-5233-3769
https://orcid.org/0000-0002-0777-0441
https://doi.org/10.3390/a16060274
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060274?type=check_update&version=1

Algorithms 2023, 16, 274 2 of 26

In addition to the quality measure, the other important aspect in this technique is the
search strategy used by the SD algorithm. This strategy determines how the search space
of the problem is explored and how the subgroups are obtained from it.

A preliminary six-page version of this work appeared in [7], in which we briefly
presented an initial and very simple version of our SD algorithm. This work continues
and extends that preliminary version on the basis of valuable reviewers’ feedback. This
manuscript incorporates a more detailed theoretical framework, an extended and improved
SD algorithm (to which several modifications have also been made), detailed explanations,
and extended experiments using a variety of well-known datasets. The main contributions
of this paper are, therefore (1) the new and efficient SD algorithm, which is based on the
equivalence class exploration strategy and uses a pruning based on optimistic estimate,
and (2) the extended and improved data structure used to implement that algorithm.

It is essential to remark that, although the ideas contained in this paper were already
presented in previous works separately, this is the first time that they are used, implemented
and validated together.

The remainder of this paper is structured as follows. Section 2 provides a background
to the SD technique and to some existing SD algorithms, and introduces related work, while
Section 3 describes the formal aspects of the SD technique. Section 4 shows and explains
our proposal, the VLSD algorithm and vertical list data structure. Section 5 describes the
configuration of the experiments carried out in order to compare our proposal with other
existing SD algorithms, the results obtained after this comparison process and a discussion
of those results. Finally, Section 6 provides the conclusions reached after carrying out
this research.

2. Related Work

Before introducing the state-of-the-art of the Subgroup Discovery (SD) technique, it is
important to highlight the differences between this technique and others, such as clustering,
pattern mining, or classification. In the first place, clustering and pattern mining algorithms
are unsupervised and do not use an output attribute or class, while SD algorithms are
supervised and generate relations (called subgroups) with respect to a target attribute. In the
second place, classification algorithms generate a global model for the whole population
with the aim of predicting the outcome of a new observation, while SD algorithms create
local descriptive models with subpopulations that are statistically significant with respect to
the whole population in relation to the target attribute. Moreover, the populations covered
by different subgroups may overlap, while this is not the case in a classification model.

SD algorithms have several characteristics, which make them different from each other
and which need to be considered depending on the problem and on the input data to
be analyzed. It is possible to highlight (1) the exploration strategy carried out by the SD
algorithm in the search space of the problem (exhaustive versus heuristic); (2) the number of
subgroups that the SD algorithm returns (all subgroups explored versus top-k subgroups);
(3) whether the SD algorithm carries out additional pruning in order to avoid the need to
explore regions of the search space that have less quality (e.g., pruning based on optimistic
estimate); and (4) the data structure that the SD algorithm employs (e.g., FPTree, TID List
or Bitset).

Exhaustive SD algorithms are those that explore the complete search space of the
problem, while heuristic SD algorithms are those that use a heuristic function in order to
guide the exploration of the search space of the problem. Exhaustive algorithms guarantee
that best subgroups are found; however, if the search space of the problem is too large,
the application of these algorithms is not feasible. The alternative is heuristic algorithms,
which are more efficient and make it possible to reduce the potential number of subgroups
that must be explored. However, these algorithms do not guarantee that the best subgroups
will be found [1,8].

When executing an SD algorithm (either exhaustive or heuristic) with a quality
measure and a certain quality threshold that is established a priori, it can return either all

Algorithms 2023, 16, 274 3 of 26

the subgroups explored or only the best k subgroups (i.e., the top-k). The main advantage of
the top-k strategy is that it reduces the memory consumption of the SD algorithm because
it is not necessary to store all the subgroups explored [1].

Many SD algorithms also implement additional pruning that improve the efficiency
and avoid the need to explore certain regions of the search space that have less quality.
One of them is the pruning based on optimistic estimate. An optimistic estimate is a
quality measure that, for a certain subgroup, provides a quality upper bound for all its
refinements [9]. This upper bound is a value that cannot be reached by any subgroup
refinement. Therefore, if this value is less than the established quality threshold, then it
means that not suitable subgroup can be generated by refining the current one, hence it
can be dropped. This pruning avoids the need to explore complete regions of the search
space that have less quality than the quality threshold established, after analyzing only
one subgroup.

One disadvantage of the SD technique is the huge number of subgroups that could be
generated (i.e., pattern explosion), and it is especially relevant when using input datasets
with too many attributes. For this reason, the utilization of an optimistic estimate provides
a solution of this problem when the quality measure threshold established allows not to
explore a large part of the search space.

It is essential to remark that standard quality measures for SD, such as Sensitivity,
Specificity, WRAcc, or Information Gain, are neither optimistic estimates nor monotonic.
This means that, when using these standard quality measures, the refinements of a subgroup
could have a higher-quality measure than its father, so it is necessary to explore the complete
search space. However, optimistic estimate quality measures are monotonic by definition
and can, therefore, be used for pruning and to reduce the search space of a problem,
because if a certain subgroup is not of sufficient quality to be considered when using this
optimistic estimate, it is certain that none of its refinements will be of that quality either [9].

It is a common practice for SD algorithms to be based on other non-SD algorithms.
Many existing SD algorithms are adaptations of, for instance, classification algorithms or
frequent pattern mining algorithms, among others. In these cases, their data structures and
algorithmic schemes are modified with the objective of obtaining subgroups.

The following are examples of SD algorithms based on existing classification algorithms:
EXPLORA [10], MIDOS [11], PRIM [12], SubgroupMiner [13], RSD [14], CN2-SD [15] or
SD [16], among others. The following are examples of SD algorithms based on existing
frequent pattern mining algorithms, Apriori-SD [17], DpSubgroups [9], SD4TS [18], or
SD-Map* [19], among others.

In addition to the above, SD-Map [20] and BSD [21] algorithms (based on existing
frequent pattern mining algorithms) are explained, since they are two representative
examples of exhaustive SD algorithms.

SD-Map is an exhaustive SD algorithm based on the well-known FP-Growth [22]
algorithm for frequent pattern mining. This algorithm uses the FPTree data structure in
order to represent the complete dataset and to mine subgroups in two steps; a complete
FPTree is first built from the input dataset, after which successive conditional FPTrees are
built recursively in order to mine the subgroups.

BSD is an exhaustive SD algorithm that uses the Bitset data structure and the depth-first
search approach. Each subgroup has an associated Bitset data structure that stores the
instances covered and not covered by that subgroup through the use of bits. This data
structure has several advantages, including (1) reduced memory consumption, since it
uses bitset-based representation for the coverage information; (2) subgroup refinements
efficiently obtained by using logical AND operations; and (3) highly time and memory
efficient implementation in most programming languages. This data structure is used to
mine subgroups in two steps; the Bitset data structure for each single selector involved in
the subgroup discovery process is first constructed, after which all possible refinements are
constructed recursively.

Algorithms 2023, 16, 274 4 of 26

It is sometimes possible that two subgroups generated by a specific SD algorithm are
redundant, because they represent and explain the same portion of data from a specific
dataset. If these subgroups are redundant, one of them is dominant and the other is
dominated in terms of their coverage. The dominated subgroup can, therefore, be removed.
In this respect, it is possible to highlight two dominance relations, closed [23] and closed-on-
the-positives [21]. Two subgroups have a closed dominance relation if the instances covered
by both subgroup descriptions (no matter what the target value is) are the same. In this
case, the most specific subgroup is dominant and the most general subgroup is dominated.
Two subgroups have a closed-on-the-positives dominance relation if the positive instances
(i.e., the instances in which the target is positive) covered by both subgroup descriptions
are the same. In this case, the most general subgroup is dominant and the most specific
subgroup is dominated.

The algorithms mentioned above can also be modified and adapted in order to only
obtain closed subgroups or to only obtain closed-on-the-positives subgroups.

Apart from the exploration strategies indicated above, the equivalence class strategy
has also been used for frequent pattern mining. This strategy was proposed by Zaki et al. [24],
and there is, to the best of our knowledge, no SD algorithm that uses it.

With regard to pattern mining, other approaches with similar objectives can be
mentioned. Utility pattern mining is a technique that is widely used and discussed in
the literature and which consists of discovering patterns that have a high relevance in
terms of a numeric utility function. This function does not simply measure the quality or
the importance of a pattern in relation to a specific dataset, but can also consider other
additional criteria of that pattern beyond the database itself [25,26]. Note that, while these
algorithms use other types of upper bound measures that may not be monotonic in order to
reduce the search space that must be explored, we use optimistic estimate quality measures
that are monotonic by definition. Furthermore, other approaches with which to mine
patterns in those cases in which the amount of data is limited have recently been presented.
For example, the authors of [27] show an algorithm that can be used to mine colossal
patterns, i.e., patterns extracted from databases with many attributes and values, but with
few instances.

Finally, for a general review of the SD technique, we refer the reader to [1,8].

3. Problem Definition

The fundamental concepts of the Subgroup Discovery (SD) technique are provided in
this section. Additionally, these concepts are extended and detailed in Appendix A.

First, an attribute a is a unique characteristic of an object, which has an associated
value. An example of an attribute is a = age:30. Therefore, the domain of an attribute a
(denoted as dom(a)) can be defined as the set of all the unique values that said attribute can
take. An attribute can be nominal or numeric, depending on its domain. On the other hand,
an instance i is a tuple i = (a1, . . . , aM) of attributes. Given the attributes a1 = age:25 and
a2 = sex:woman, an example of an instance is i = (age:25, sex:woman). Additionally, a dataset
d is a tuple d = (i1, . . . , iN) of instances. Given the instances i1 = (age:30, sex:man) and
i2 = (age:25, sex:woman), an example of a dataset is d = ((age:30, sex:man), (age:25, sex:woman)).

It is necessary to state that all values from a dataset d can be indexed with two integers,
x and y. We use the notation vx,y to indicate the value of the x-th instance ix and of the y-th
attribute ay from a dataset d.

Given an attribute ay from a dataset d, a binary operator ∈ {=,,,<,>,≤,≥} and a value
w ∈ dom(ay), a selector e is a 3-tuple of the form (ay.characteristic, operator, w). Note that
when an attribute ay is nominal, only the = and , operators are permitted. Informally,
a selector is a binary relation between an attribute from a dataset and a value in the
domain of that attribute. This relation represents a property of a subset of instances from
that dataset.

It is essential to bear in mind that the first element of a selector refers only to the
attribute name, i.e., the characteristic, and not to the complete attribute itself.

Algorithms 2023, 16, 274 5 of 26

Definition 1 (Selector covering). Given an instance ix and an attribute ay from a dataset d, and a
selector e = (ay.characteristic, operator, w ∈ dom(ay)), then ix is covered by e (denoted as ix @ e) if
the binary expression “vx,y operator w” holds true. Otherwise, we say that it is not covered by e
(denoted as ix a e).

For example, given the instance ix = (age:25, sex:woman) and the selectors e1 = (age,<, 20)
and e2 = (sex,=, woman), it will be noted that ix a e1 and ix @ e2.

Subsequently, a pattern p is a list of selectors < e1, . . . , e j > in which all attributes of
the selectors are different. Moreover, its size (denoted as |p|) is defined as the number of
selectors that it contains. In general, a pattern is interpreted as a list of selectors (i.e., as a
conjunction) that represents a list of properties of a subset of instances from a dataset.

Definition 2 (Pattern covering). Given an instance ix from a dataset d and a pattern p, then ix
is covered by p (denoted as ix @ p) if ∀e ∈ p, ix @ e. Otherwise, we say that it is not covered by p
(denoted as ix a p).

Following these definitions, a subgroup s is a pair (pattern, selector) in which the
pattern is denoted as s.description and the selector is denoted as s.target. Given the dataset
d = ((fever:yes, sex:man, flu:yes), (fever:yes, sex:woman, flu:no)), an example of a subgroup is
s = (< (f ever,=, yes), (sex,=, woman) >, (f lu,=, yes)).

Definition 3 (Subgroup refinement s′). Given a subgroup s, each of its refinements s′ (denoted
as s ≺ s′) is a subgroup with the same target, s′.target = s.target, and with an extended description,
s′.description = concat(s.description,< e1, . . . , e j >).

Definition 4 (Refine operator). Given two subgroups, sx and sy, the re f ine operator generates
a refinement sx,y of sx, extending its description with the non-common suffix of sy. For example,
if sx.description = <e1> and sy.description = <e2>, then sx,y.description = <e1, e2>; and if
sx.description = <e1, e2, e3> and sy.description = <e1, e2, e4>, then sx,y.description = <e1, e2, e3, e4>.

Given a subgroup s and a dataset d, a quality measure q is a function that computes
one numeric value according to that subgroup s and to certain characteristics from that
dataset d [5]. Moreover, given a quality measure q and a dataset d, an optimistic estimate oe
of q is a quality measure that, for a certain subgroup, provides a quality upper bound for all
its refinements [9].

Focusing on a specific subgroup s and on a specific dataset d, different functions with
which to compute quality measures can be defined.

The function tp (true positives) is defined as the number of instances ix from the dataset
d that are covered by the subgroup description s.description and by the subgroup target
s.target. Formally:

tp(s, d) = |{ix ∈ d : ix @ s.description∧ ix @ s.target}| (1)

The function f p (false positives) is defined as the number of instances ix from the
dataset d that are covered by the subgroup description s.description, but not by the subgroup
target s.target. Formally:

f p(s, d) = |{ix ∈ d : ix @ s.description∧ ix a s.target}| (2)

The function TP (true population) is defined as the number of instances ix from the
dataset d that are covered by the subgroup target s.target. Formally:

TP(s, d) = |{ix ∈ d : ix @ s.target}| (3)

Algorithms 2023, 16, 274 6 of 26

The function FP (false population) is defined as the number of instances ix from the
dataset d that are not covered by the subgroup target s.target. Formally:

FP(s, d) = |{ix ∈ d : ix a s.target}| (4)

A quality measure q can, therefore, be redefined using the previous four functions,
given a subgroup s and a dataset d, a quality measure q is a function that computes one
numeric value according to the functions tp, f p, TP, and FP.

They are sufficiently expressive to compute any quality measure. However, the fol-
lowing are also used in the literature.

The function n is defined as the number of instances ix from a dataset d that are covered
by the subgroup description s.description. Formally:

n(s, d) = |{ix ∈ d : ix @ s.description}| (5)

The function N is defined as the number of instances ix from the dataset d. Formally:

N(s, d) = |{ix ∈ d : ix}| (6)

The function p is defined as the distribution of the subgroup target s.target with
respect to the instances ix from a dataset d covered by the subgroup description s.description.
Formally:

p(s, d) =
|{ix ∈ d : ix @ s.description∧ ix @ s.target}|

|{ix ∈ d : ix @ s.description}|
(7)

The function p0 is defined as the distribution of the subgroup target s.target with
respect to all instances ix from a dataset d. Formally:

p0(s, d) =
|{ix ∈ d : ix @ s.target}|

|{ix ∈ d : ix}|
(8)

The function tn (true negatives) is defined as the number of instances ix from the
dataset d that are covered by neither the subgroup description s.description nor the subgroup
target s.target. Formally:

tn(s, d) = |{ix ∈ d : ix a s.description∧ ix a s.target}| (9)

The function f n (false negatives) is defined as the number of instances ix from the
dataset d that are not covered by the subgroup description s.description, but are covered by
the subgroup target s.target. Formally:

f n(s, d) = |{ix ∈ d : ix a s.description∧ ix @ s.target}| (10)

Table 1 shows the confusion matrix of a subgroup s with respect to a dataset d. This
matrix summarizes the functions describe above.

Table 1. Confusion matrix of a subgroup s with respect to a dataset d.

s.target

True False

s.description
True tp fp n = tp + fp

False fn = TP − tp tn = FP − fp TP + FP − tp − fp

TP = tp + fn FP = fp + tn N = TP + FP

Algorithms 2023, 16, 274 7 of 26

With regard to the functions defined previously, the following equivalences can be
highlighted:

p(s, d) =
tp(s, d)

tp(s, d) + f p(s, d)
=

tp(s, d)
n(s, d)

(11)

p0(s, d) =
TP(s, d)

TP(s, d) + FP(s, d)
=

TP(s, d)
N(s, d)

(12)

Having described the four functions with which to compute quality measures, some
popular quality measures for SD presented in the literature can be rewritten as follows:

Sensitivity =
tp
TP

(13)

Speci f icity =
FP− f p

FP
(14)

Piatetsky Shapiro = (tp + f p) · (
tp

tp + f p
−

TP
TP + FP

) (15)

WRAcc =
tp + f p

TP + FP
· (

tp
tp + f p

−
TP

TP + FP
) (16)

The WRAcc quality measure is defined between −1 and 1 (both included). Moreover,
an optimistic estimate of this quality measure [9] can be rewritten as follows:

WRAcc optimistic estimate =
tp2

tp + f p
· (1−

TP
TP + FP

) (17)

Note that, in this case, the parameters of the functions have not been shown for the
sake of brevity and for reasons of space.

It is essential to keep in mind from the beginning that, although only WRAcc quality
measure and its optimistic estimate are used in this research, they are only an example and,
therefore, all quality measures which have an optimistic estimate could be used.

Finally, given a dataset d, a quality measure q and a numeric value quality_threshold,
the subgroup discovery problem consists of exploring the search space of d in order to
enumerate the subgroups that have a quality measure value above the selected thresh-
old. Formally

R = {(s, q(s, d))|q(s, d) ≥ quality_threshold} (18)

The search space of a problem (i.e., of a dataset d) can be visually illustrated as a
lattice [24] (see Figure 1). According to this comparison, the first level of the search space
of a problem contains all those subgroups s whose descriptions have a size of 1 (i.e.,
|s.description| is equal to one), the second level of the search space of a problem contains all
those subgroups s whose descriptions have a size of 2 (i.e., |s.description| is equal to two)
and, in general, the level n of the search space of a problem contains all those subgroups s
whose descriptions have the size n (i.e., |s.description| is equal to n).

Algorithms 2023, 16, 274 8 of 26

Figure 1. Search space of a problem visually illustrated as a lattice.

4. Algorithm

We propose a new and efficient Subgroup Discovery (SD) algorithm called VLSD
(Vertical List Subgroup Discovery) that combines an equivalence class exploration strat-
egy [24] and a pruning strategy based on optimistic estimate [9]. The implementation of
this proposal is based on vertical list data structure, making it easily parallelizable [24].

The pruning based on optimistic estimate implies that, for all the nodes generated (i.e.,
subgroups), their optimistic estimate values are computed and compared with the threshold
in order to discover whether they must be pruned (and it is, therefore, not necessary to
explore their refinements), or whether their refinements (i.e., the next depth level) must
also be explored.

Our proposal is described in the VLSD function (Algorithm 1) that is accompanied
by a function that generates all subgroups whose descriptions have size one (GENER-
ATE_SUBGROUPS_S1 function, described in Algorithm 2) and by a function that explores
the search space and computes pruning (SEARCH function, described in Algorithm 3).

Algorithm 1 VLSD function.

Input: d { dataset }, target { selector }, q { quality measure }, q_threshold {R }, oe { optimistic esti-
mate of q }, oe_threshold {R }, sort_criterion_in_S1 { criterion }, sort_criterion_in_other_sizes
{ criterion }

Output: F : list of subgroups.
1: F :=<>
2: TP := TP((<>, target), d) ; FP := FP((<>, target), d)
3: S1 := GENERATE_SUBGROUPS_S1(d, target, oe, oe_threshold,

sort_criterion_in_S1, TP, FP)
4: for each subgroup s ∈ S1 do
5: q_value := q(tp(s, d), f p(s, d), TP, FP)
6: if q_value ≥ q_threshold then
7: F .add(s)
8: end if
9: end for

10: M := 2-dimensional |S1| × |S1| triangular matrix, initializedM[i, j] = NULL, in which
M[i, j] is a subgroup (i and j selectors acting as indices).

Algorithms 2023, 16, 274 9 of 26

Algorithm 1 Cont.

11: for each sx, sy in S1 =< s1, s2, . . . , sn >, being x < y do
12: sxy := re f ine(sx, sy)
13: oe_quality := oe(tp(sxy, d), f p(sxy, d), TP, FP)
14: if (tp(sxy, d) + f p(sxy, d) > 0) AND (oe_quality ≥ oe_threshold) then
15: M[last(sx.description)][last(sy.description)] := sxy
16: end if
17: end for
18: if |S1| ≥ 2 then
19: for i := 0 to (|S1| − 2) do
20: selector_i := last(S1[i].description)
21: P := M[selector_i] { All subgroups whose descriptions have the size two and

start with selector_i }
22: P := P.sort(sort_criterion_in_other_sizes)
23: for each subgroup s ∈ P do
24: q_value := q(tp(s, d), f p(s, d), TP, FP)
25: if q_value ≥ q_threshold then
26: F .add(s)
27: end if
28: end for
29: F .add_all(SEARCH(d,P,M, q, q_threshold, oe, oe_threshold,

sort_criterion_in_other_sizes, TP, FP))
30: end for
31: end if
32: return F

Algorithm 2 GENERATE_SUBGROUPS_S1 function.

Input: d { dataset }, target { selector }, oe { optimistic estimate }, oe_threshold { R },
sort_criterion_in_S1 { criterion }, TP { N }, FP { N }

Output: S1: list of subgroups whose descriptions have the size one.
1: S1 :=<>
2: E := scan d (except the target attribute) to generate the selector list.
3: for each selector e ∈ E do
4: s := (< e >, target)
5: oe_quality := oe(tp(s, d), f p(s, d), TP, FP)
6: if oe_quality ≥ oe_threshold then
7: S1.add(s)
8: end if
9: end for

10: S1 := sort(S1, sort_criterion_in_S1)
11: return S1

Algorithm 3 SEARCH function.

Input: d { dataset }, P { subgroup list },M { matrix }, q { quality measure }, q_threshold { R },
oe { optimistic estimate of q }, oe_threshold { R }, sort_criterion_in_other_sizes { criterion },
TP { N }, FP { N }

Output: F : list of subgroups.
1: F :=<>
2: while |P| > 1 do
3: sx := pop_ f irst(P)
4: L :=<> { List of subgroups }
5: for each subgroup sy ∈ P do
6: sM := get(M, last(sx.description), last(sy.description))
7: oe_quality := oe(tp(sM, d), f p(sM, d), TP, FP)

Algorithms 2023, 16, 274 10 of 26

Algorithm 3 Cont.

8: if (sM , NULL) AND (oe_quality ≥ oe_threshold) then
9: sxy := re f ine(sx, sy)

10: oe_quality := oe(tp(sxy, d), f p(sxy, d), TP, FP)
11: if (tp(sxy, d) + f p(sxy, d) > 0) AND (oe_quality ≥ oe_threshold) then
12: L.add(sxy)
13: q_value := q(tp(sxy, d), f p(sxy, d), TP, FP)
14: if q_value ≥ q_threshold then
15: F .add(sxy)
16: end if
17: end if
18: end if
19: end for
20: if L ,<> then
21: L := sort(L, sort_criterion_in_other_sizes)
22: F .add_all(SEARCH(d,L,M, q, q_threshold, oe, oe_threshold,

sort_criterion_in_other_sizes, TP, FP))
23: end if
24: end while
25: return F

The VLSD function (Algorithm 1) requires the following parameters: a dataset d,
a target attribute (a selector) target, a quality measure q, a threshold q_threshold for that
quality measure, an optimistic estimate oe of q, a threshold oe_threshold for that optimistic
estimate, a sorting criterion used to sort those subgroups whose descriptions have a size
of 1, and a sorting criterion used to sort those subgroups whose descriptions have other
sizes greater than 1. These criteria could be, for instance, by ascending quality measure
value, by descending quality measure value, by description size ascending, no reorder, etc.
Finally, this function returns a list F of subgroups.

The VLSD function is a constructive function that starts with the creation of the
empty list F (in which the subgroups will be stored) and with the computation of the
true population TP and the false population FP (lines 1–2). All those subgroups whose
descriptions have a size of 1 (see Figure 1) are then generated, evaluated and added to the
list F (lines 3–9). Note that these subgroups have already been sorted by a given criterion.
A triangular matrixM is subsequently created and initialized (lines 10–17). This triangular
matrix contains only those subgroups whose descriptions have a size of 2 (see Figure 1).
The indices of this matrix are selectors, and for two indices, i and j,M[i][j] contains the
subgroup whose descriptions have two such selectors (or NULL if that subgroup has
been pruned). Moreover, the notationM[i] can be used to refer to all those subgroups
whose descriptions have a size of 2 and start with the selector i. Finally, for each selector
selector_i (lines 19–20), those subgroups fromMwhose descriptions have a size of 2 and
start with that selector are obtained, evaluated, added to the list F and explored recursively
(lines 18–31).

The utilization of matrixMmakes the algorithm very efficient, because storing those
subgroups whose descriptions have a size of 2, makes it possible to prune the rest of
the search space with a higher cardinality quickly and easily (i.e., refinements of those
subgroups whose descriptions have a size of 2) [28].

TheGENERATE_SUBGROUPS_S1 function (Algorithm 2) requires the following parameters,
a dataset d, a target attribute (a selector) target, an optimistic estimate oe, a threshold
oe_threshold for that optimistic estimate, a sort criterion used to sort those subgroups whose
descriptions have a size of 1, and the TP and FP from the dataset d (these are passed by
parameters in order to avoid the need to compute multiple times). Finally, this function
returns a list S1 of those subgroups whose descriptions have a size of one.

The GENERATE_SUBGROUPS_S1 function starts with the creation of an empty list S1 in
which the subgroups will be stored (line 1). A selector list E is then generated from the

Algorithms 2023, 16, 274 11 of 26

dataset d (line 2), and for each selector of that list, a subgroup is created, evaluated, and
added to S1 (lines 3–9). Finally, the subgroup list S1 is sorted (line 10).

The SEARCH function (Algorithm 3) requires the following parameters, a dataset d,
a subgroup listP, a triangular matrixM, a quality measure q, a threshold q_threshold for that
quality measure, an optimistic estimate oe of q, a threshold oe_threshold for that optimistic
estimate, a sort criterion used to sort those subgroups whose descriptions have other sizes
greater than 1, and the TP and FP from the dataset d (these are passed by parameters in
order to avoid the need to compute multiple times). Finally, this function returns a list F
of subgroups.

The SEARCH function starts with the creation of an empty list F in which the subgroups
will be stored (line 1). A double iteration through the subgroup list P is then carried out
(loops of the lines 2 and 5). New subgroup refinements are subsequently generated and
added to the subgroup list L (lines 9–18). Moreover, these subgroups are also evaluated
and added to the list F (lines 13–16). It is important to highlight that matrixM is used
in order to avoid the unnecessary generation of subgroup refinements, i.e., pruning the
search space (lines 6–8). This is one of the key points of the efficiency of this algorithm [28].
Finally, the subgroup list L is sorted and the function is called recursively (lines 20–23).

Since the matrixM is a triangular matrix, indexing must be performed properly. This
is taken into account in line 6.

The second part of our proposal is the vertical list data structure. This data structure is
used in the algorithm implementation in order to compute the subgroup refinements easily
and efficiently by making list concatenations and set intersections. Moreover, it stores all the
elements required, with the objective of avoiding multiple and unnecessary recalculations.

Given a dataset d and a subgroup s, a vertical list vl is formed of the following elements:

1. The subgroup description (denoted as vl.description).
2. The set of IDs of the instances counted in f p(s, d) (denoted as vl.set_ f p).
3. The set of IDs of the instances counted in tp(s, d) (denoted as vl.set_tp).

Note that |vl.set_ f p| is equal to f p(s, d) and |vl.set_tp| is equal to tp(s, d).
An example of a vertical list data structure and an adapted re f ine operator for it is

depicted in Figure 2. In this case, the re f ine operator is not applied over subgroups, but over
vertical lists. First, this operator is applied over vl1 and vl2 in order to generate vl3 and,
next, this operator is applied over vl3 and vl4 in order to obtain vl5.

Figure 2. Examples of vertical list data structure and adapted refine operator.

It is important to state that both sets of IDs are actually implemented using bitsets in
order to improve the efficiency to an even greater extent.

Algorithms 2023, 16, 274 12 of 26

5. Experiments, Results and Discussion

The objective of these experiments was to test the performance of the VLSD algorithm
with respect to some other well known state-of-the-art Subgroup Discovery (SD) algorithms.
All experiments were implemented using a computer with an Intel Core i7-8700 3.20 GHz
CPU, 32 GB of RAM memory, Windows 10, Anaconda3-2021.11 (x86_64), Python 3.9.7
(64 bits) and the following python libraries, pandas v1.3.4, numpy v1.20.3, and matplotlib
v3.4.3. We used these python libraries because they are a reference in the Machine
Learning field and they have been very used and tested by the community. Moreover,
our proposal was implemented in subgroups python library (Source code available on:
https://github.com/antoniolopezmc/subgroups, accessed on 24 May 2023).

We used a collection of standard, well-known, and popular datasets from the literature
for performance evaluation. The following preprocessing pipeline was also applied to
these datasets: (1) attribute type transformation (i.e., attributes that are actually nominal,
but are represented with numerical values), (2) the treatment of missing values (imputing
with the most frequent value in the nominal attributes and with the mean value in the
numerical attributes), and (3) the discretization of numerical values using the Entropy based
method [29]. Table 2 shows the datasets used in the experiments, along with their principal
characteristics. Moreover, Table 3 shows the algorithms, along with their corresponding
settings which were executed for this performance evaluation process. It is relevant to
highlight that, although there are different heuristic SD algorithms, such as CN2-SD [15] or
SDD++ [30], only exhaustive algorithms have been used in these experiments. Additionally,
note that all these algorithms were implemented in the same programming language
(Python 3) and strictly following the definitions from the original papers, and their results
were also validated.

Table 2. Datasets used and their characteristics.

Name Instances Attributes Selectors Target

balloons 100 5 12 inflated = F

car-evaluation 1728 6 21 safety = acc

titanic 891 8 19 Survived = no

tic-tac-toe 958 10 29 class = positive

heart-disease 918 12 29 HeartDisease = yes

income 899 13 95 workclass = Private

vote 435 17 34 class = republican

lymph 148 19 54 class = malign_lymph

credit-g 1000 21 70 class = good

mushroom 8124 22 118 class = p

After all the aforementioned executions had been carried out, the following metrics
were measured: runtime, max memory usage, subgroups selected, and nodes visited.
The results obtained are depicted and explained in this section.

It is important to keep in mind that the search space of a problem (i.e., of a dataset)
can be visually illustrated as a lattice in which the depth levels generally correspond to the
number of attributes from the dataset and the nodes in each depth level correspond to the
unique selectors extracted from the dataset. This means that (1) the more attributes in the
input dataset the deeper the lattice, and (2) the greater the difference among the selectors in
the input dataset the wider the lattice. Moreover, there is a fundamental difference between
those algorithms that implement a pruning based on optimistic estimate and those that do
not; while the former may not explore the complete search space, the latter always do so.
This difference is shown in Figure 3.

https://github.com/antoniolopezmc/subgroups

Algorithms 2023, 16, 274 13 of 26

Table 3. Algorithms and settings.

Algorithm Quality Measure Optimistic Estimate Parameters

VLSD WRAcc Expression (17)
q_threshold and

oe_threshold = −1, −0.25, 0, 0.25
both sort criteria = no reorder

SD-Map WRAcc -
threshold = −1, −0.25, 0, 0.25

min_support = 0

BSD WRAcc Expression (17)
top-k = 25, 50, 100, 250

min_support = 0
max_depth = maximum

Closed-BSD WRAcc Expression (17)
top-k = 25, 50, 100, 250

min_support = 0
max_depth = maximum

Closed-on-the-positives-BSD WRAcc Expression (17)
top-k = 25, 50, 100, 250

min_support = 0
max_depth = maximum

Figure 3. Examples of search spaces with (left side) and without (right side) optimistic estimate.

According to the above, it is to be expected that algorithms that do not implement a
pruning based on optimistic estimate will have an exponential runtime and an exponential
max memory usage with respect to the input size (i.e., dataset size). However, the utilization
of optimistic estimates and other pruning strategies could, in practice, possibly produce
other lower magnitude orders or at least make the exponential trend less steep. This is
precisely one of the aspects that will be analyzed below.

In order to evaluate the scalability of the VLSD algorithm, ‘mushroom’ dataset is used
to represent the runtime (see Figure 4) and the max memory usage (see Figure 5) when
increasing the number of attributes (i.e., the depth of the lattice). This means that we start
using only two attributes and we continue adding attributes up to 22 (i.e., all of them).
Note that all instances are always used.

The scalability evaluation of the VLSD algorithm in terms of runtime (Figure 4) shows
that there are significant differences between the datasets with less than 20 attributes and
the datasets with more than 20 attributes. While the former spend less than 1 h, the latter
spend significantly longer. Moreover, the runtime decreases considerably when using
higher threshold values (i.e., when the search space is not completely explored). These
results are owing to the exponential behavior of this algorithm (i.e., because it explores a
data structure that grows exponentially in relation to the dataset size). Additionally, despite
this exponential behavior, this figure also shows that the utilization of a pruning based on

Algorithms 2023, 16, 274 14 of 26

optimistic estimate makes the exponential trend less steep. Here, it is possible to observe
that, while the curves corresponding to the −1, −0.25 and 0 threshold values have the same
trend, the curve corresponding to the 0.25 threshold value produces a less steep trend.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of attributes

0

2500

5000

7500

10,000

12,500

15,000

17,500

20,000
Ru

nt
im

e
(s

ec
on

ds
)

VLSD (threshold = 1)
VLSD (threshold = 0.25)
VLSD (threshold = 0)
VLSD (threshold = 0.25)

Figure 4. VLSD algorithm: runtime of mushroom dataset varying the number of attributes.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of attributes

58

59

60

61

62

63

64

65

66

M
ax

 m
em

or
y

us
ag

e
(M

B)

VLSD (threshold = 1)
VLSD (threshold = 0.25)
VLSD (threshold = 0)
VLSD (threshold = 0.25)

Figure 5. VLSD algorithm: max memory usage of mushroom dataset varying the number of attributes.

The scalability evaluation of the VLSD algorithm in terms of max memory usage
(Figure 5) shows that the growth of the amount of memory in relation to the number of
instances is not significant. Moreover, the max memory usage decreases when using higher
threshold values (i.e., when the search space is not completely explored). These results are
owing to the fact that, although the algorithm has exponential behavior, its design and the
utilization of the equivalence class exploration strategy make it more efficient in relation to
the max memory usage, because not all the search space is stored simultaneously in the
memory (please recall that the regions already explored are being eliminated). This is a
clear advantage when compared to the SD-Map algorithm, as will be shown below.

Algorithms 2023, 16, 274 15 of 26

Additionally, Figures 6 and 7, which show the runtime and the max memory usage
for each dataset and for each threshold value, also confirm the evidences about the VLSD
algorithm described previously.

ba
llo

on
s

ca
r-

ev
al

ua
tio

n

tit
an

ic

tic
-ta

c-
to

e

he
ar

t-
di

se
as

e

in
co

m
e

vo
te

ly
m

ph

cr
ed

it-
g

m
us

hr
oo

m

Dataset

10 2

10 1

100

101

102

103

104
Ru

nt
im

e
(s

ec
on

ds
)

VLSD (threshold = 1)
VLSD (threshold = 0.25)
VLSD (threshold = 0)
VLSD (threshold = 0.25)

Figure 6. VLSD algorithm: runtime for each dataset (logarithmic scale).

ba
llo

on
s

ca
r-

ev
al

ua
tio

n

tit
an

ic

tic
-ta

c-
to

e

he
ar

t-
di

se
as

e

in
co

m
e

vo
te

ly
m

ph

cr
ed

it-
g

m
us

hr
oo

m

Dataset

0

10

20

30

40

50

60

70

M
ax

 m
em

or
y

us
ag

e
(M

B)

VLSD (threshold = 1)
VLSD (threshold = 0.25)

VLSD (threshold = 0)
VLSD (threshold = 0.25)

Figure 7. VLSD algorithm: max memory usage for each dataset.

Focusing on the runtime of the VLSD and SD-Map algorithms, Figure 8 shows that
(1) there are significant differences among the executions of the VLSD algorithm (the higher
the threshold, the less the time); (2) there are no significant difference between any of the
execution of the SD-Map algorithm (i.e., using different threshold values), because that
algorithm does not use a pruning based on optimistic estimate, and the complete search

Algorithms 2023, 16, 274 16 of 26

space is, therefore, always explored; and (3) although both algorithms have an exponential
trend, VLSD runtime is, in general, less than SD-Map runtime. Finally, Figure 9 also
confirms these statements.

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Ru
nt

im
e

(s
ec

on
ds

)

0

10

20

30

40

50

60

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime Max memory usage

(a)
VL

SD 1
VL

SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.1

0.2

0.3

0.4

0.5

Ru
nt

im
e

(s
ec

on
ds

)

0

10

20

30

40

50

60

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime Max memory usage

(b)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ru
nt

im
e

(s
ec

on
ds

)

0

10

20

30

40

50

60

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime Max memory usage

(c)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

1

2

3

4

5

6

7

Ru
nt

im
e

(s
ec

on
ds

)

0

20

40

60

80

100

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime
Max memory
usage

(d)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

2

4

6

8

10

Ru
nt

im
e

(s
ec

on
ds

)

0

20

40

60

80

100

120

140

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime
Max memory
usage

(e)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

2

4

6

8

10

12

14

Ru
nt

im
e

(s
ec

on
ds

)

0

100

200

300

400

500
M

ax
 m

em
or

y
us

ag
e

(M
B)

Runtime Max memory usage

(f)

Figure 8. Cont.

Algorithms 2023, 16, 274 17 of 26

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

20

40

60

80

100

120

Ru
nt

im
e

(s
ec

on
ds

)

0

200

400

600

800

1000

1200

1400

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime
Max memory
usage

(g)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

(s
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

7000

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime
Max memory usage

(h)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1

SD
-M

ap
0.

25

SD
-M

ap
0

SD
-M

ap
0.

25

0

2000

4000

6000

8000

10,000

Ru
nt

im
e

(s
ec

on
ds

)

0

20

40

60

80

100

M
ax

 m
em

or
y

us
ag

e
(M

B)
Runtime
Max memory usage

(i)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1

SD
-M

ap
0.

25

SD
-M

ap
0

SD
-M

ap
0.

25

0

5000

10,000

15,000

20,000
Ru

nt
im

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

M
ax

 m
em

or
y

us
ag

e
(M

B)

Runtime
Max memory usage

(j)

Figure 8. Runtime and max memory usage of all algorithms for each dataset. (a) balloons dataset.
(b) car-evaluation dataset. (c) titanic dataset. (d) tic-tac-toe dataset. (e) heart-disease dataset.
(f) income dataset. (g) vote dataset. (h) lymph dataset. (i) credit-g dataset. (j) mushroom dataset.

threshold = 1 threshold = 0.25 threshold = 0 threshold = 0.25

1500

2000

2500

3000

3500

Ru
nt

im
e

(s
ec

on
ds

)

VLSD (mean runtime of all datasets)
SD-Map (mean runtime of all datasets)

Figure 9. Mean runtime of all datasets for each quality threshold.

On the other hand, considering the runtime of the VLSD, BSD, CBSD, and CPBSD
algorithms, Figure 8 shows that (1) there are significant differences when increasing the
top-k parameter in the BSD algorithm, and (2) there are no significant differences when

Algorithms 2023, 16, 274 18 of 26

increasing top-k parameter in the CBSD and CPBSD algorithms. The BSD algorithm
explores a larger search space than the CBSD and CPBSD algorithms, which include an
additional pruning for closed and closed-on-the-positives subgroups. The search space,
therefore, increases in a more moderate manner in the CBSD and CPBSD algorithms when
increasing the value of the top-k parameter. It is for this reason that the runtime increment
of the BSD algorithm when increasing the top-k parameter is more significant than that of
the CBSD and CPBSD algorithms. It will also be observed that (1) when the VLSD algorithm
explores all the search space, its runtime is significantly higher than the runtime of the BSD,
CBSD, and CPBSD algorithms; and (2) when the VLSD algorithm does not explore all the
search space, there are no significant differences among its runtimes.

Concerning the max memory usage of the VLSD and SD-Map algorithms, Figure 8
shows that (1) there are no significant differences among the executions of the VLSD
algorithm, because its design and the utilization of the equivalence class exploration
strategy make it extremely efficient and, although the complete search space may not
explored in all cases, the memory usage is, in general, always reduced; (2) there are no
significant differences among any of the executions of the SD-Map algorithm (i.e., using
different threshold values), because the complete search space is always stored in the FPTree
data structure, and (3) there are significant differences between both algorithms (as will be
clearly noted in Figure 8i,j). Finally, Figure 10 confirms these statements, because it shows
that the mean of the max memory usage of all datasets for each quality threshold value is
always more than 20% larger when using the SD-Map algorithm.

threshold = 1 threshold = 0.25 threshold = 0 threshold = 0.25
60

62

64

66

68

70

72

74

M
ax

 m
em

or
y

us
ag

e
(M

B)

VLSD (mean of the max memory usage of all datasets)
SD-Map (mean of the max memory usage of all datasets)

Figure 10. Mean of the max memory usage of all datasets for each quality threshold.

Comparing the max memory usage of the VLSD, BSD, CBSD, and CPBSD algorithms,
Figure 8 shows the same behavior for BSD, CBSD, and CPBSD algorithms and for the
same reasons as in the previous case. Additionally, note that, in general, these algorithms
consume significantly more memory than the VLSD and SD-Map algorithms, and it is for
this reason that it was impossible to execute them with the last two datasets.

When focusing on the search space nodes of the VLSD algorithm (Figure 11), it is
important to state that, although it may not explore certain regions in the search space that
have less quality owing to the utilization of the pruning based on optimistic estimate, this
algorithm guarantees that the best subgroups will be found, because it is exhaustive.

Algorithms 2023, 16, 274 19 of 26

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f n
od

es

1e2

100%
100%

100%
100%

100%
63%

83%
0%

100%
100%

100%
100%

100%
63%

100%
0%

100%
12%

100%
12%

100%
12%

100%
12%

84%
46%

84%
60%

100%
91%

100%
91%

84%
46%

84%
60%

100%
91%

100%
91%

Complete search space Nodes visited Subgroups selected

(a)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Nu
m

be
r o

f n
od

es

1e3

100%
100%

100%
100%

100%
50%

53%
0%

100%
100%

100%
100%

100%
50%

100%
0%

54%
4%

54%
8%

54%
17%

57%
33%

54%
4%

54%
8%

54%
17%

56%
34%

54%
4%

54%
8%

54%
17%

56%
33%

Complete search space Nodes visited Subgroups selected

(b)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f n
od

es

1e3

100%
100%

100%
100%

100%
43%

68%
0%

100%
100%

100%
100%

100%
43%

100%
0%

79%
3%

81%
6%

86%
10%

100%
18%

78%
3%

79%
6%

82%
10%

90%
20%

78%
3%

79%
6%

82%
10%

90%
21%

Complete search space Nodes visited Subgroups selected

(c)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f n
od

es
1e5

100%
100%

100%
100%

100%
60%

63%
0%

100%
100%

100%
100%

100%
60%

100%
0%

77%
0%

77%
0%

77%
0%

78%
1%

77%
0%

77%
0%

77%
0%

77%
1%

77%
0%

77%
0%

77%
0%

77%
1%

Complete search space Nodes visited Subgroups selected

(d)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f n
od

es

1e5

100%
100%

100%
100%

100%
54%

51%
0%

100%
100%

100%
100%

100%
54%

100%
0%

69%
0%

70%
0%

71%
0%

72%
1%

69%
0%

70%
0%

71%
0%

71%
0%

69%
0%

70%
0%

71%
0%

71%
0%

Complete search space Nodes visited Subgroups selected

(e)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f n
od

es

1e6

100%
100%

100%
100%

100%
64%

60%
0%

100%
100%

100%
100%

100%
64%

100%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

79%
0%

Complete search space Nodes visited Subgroups selected

(f)

Figure 11. Cont.

Algorithms 2023, 16, 274 20 of 26

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0

1

2

3

4

5

6

7

Nu
m

be
r o

f n
od

es

1e6

100%
100%

100%
100%

100%
36%

20%
0%

100%
100%

100%
100%

100%
36%

100%
0%

35%
0%

35%
0%

35%
0%

37%
0%

35%
0%

35%
0%

35%
0%

35%
0%

35%
0%

35%
0%

35%
0%

35%
0%

Complete search space Nodes visited Subgroups selected

(g)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1
SD

-M
ap

0.
25

SD
-M

ap
0

SD
-M

ap
0.

25 BS
D

25 BS
D

50 BS
D

10
0

BS
D

25
0

CB
SD 25 CB
SD 50 CB
SD

10
0

CB
SD

25
0

CP
BS

D
25

CP
BS

D
50

CP
BS

D
10

0
CP

BS
D

25
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f n
od

es

1e7

100%
100%

100%
100%

100%
41%

22%
0%

100%
100%

100%
100%

100%
41%

100%
0%

41%
0%

41%
0%

42%
0%

46%
0%

40%
0%

41%
0%

41%
0%

42%
0%

40%
0%

41%
0%

41%
0%

42%
0%

Complete search space Nodes visited Subgroups selected

(h)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1

SD
-M

ap
0.

25

SD
-M

ap
0

SD
-M

ap
0.

25

0

1

2

3

4

5

6

7

Nu
m

be
r o

f n
od

es

1e8

100%
100%

100%
100%

100%
65%

46%
0%

100%
100%

100%
100%

100%
65%

100%
0%

Complete search space Nodes visited Subgroups selected

(i)

VL
SD 1

VL
SD 0.
25

VL
SD 0

VL
SD

0.
25

SD
-M

ap 1

SD
-M

ap
0.

25

SD
-M

ap
0

SD
-M

ap
0.

25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Nu

m
be

r o
f n

od
es

1e9

100%
100%

100%
100%

100%
44%

41%
0%

100%
100%

100%
100%

100%
44%

100%
0%

Complete search space Nodes visited Subgroups selected

(j)

Figure 11. Search space nodes of all algorithms for each dataset. (a) balloons dataset. (b) car-
evaluation dataset. (c) titanic dataset. (d) tic-tac-toe dataset. (e) heart-disease dataset. (f) income
dataset. (g) vote dataset. (h) lymph dataset. (i) credit-g dataset. (j) mushroom dataset.

Regarding the search space nodes of the VLSD and SD-Map algorithms, Figure 11
shows that, first, the same subgroups are always generated for each dataset and for each
threshold value. This proves that VLSD has been correctly designed and implemented,
because it generates the same subgroups as the SD-Map, which is an exhaustive algorithm
without optimistic estimate. Moreover, this figure also demonstrates the utilization of a
pruning based on optimistic estimate, because, while the VLSD algorithm does not always
explore the complete search space, the SD-Map algorithm always does so. Note that the
VLSD algorithm explores fewer nodes when the threshold value is higher.

On the other hand, when comparing the search space nodes of the VLSD, BSD, CBSD,
and CPBSD algorithms, Figure 11 shows that the BSD, CBSD, and CPBSD algorithms
(1) do not explore the complete search space, because they use a pruning based on
optimistic estimate; and (2) select significantly fewer subgroups than the VLSD and SD-Map
algorithms, because they implement an additional pruning based on relevant subgroups
(and, moreover, CBSD and CPBSD also implement another pruning based on closed
subgroups and closed-on-the-positives subgroups, respectively).

It is necessary to state that the bitsets used by the VLSD algorithm are different from
those employed by the BSD, CBSD and CPBSD algorithms. While our algorithm considers
all the dataset instances in both bitsets, the others use bitsets of different sizes.

Algorithms 2023, 16, 274 21 of 26

In summary, when comparing the VLSD and SD-Map algorithms, it will be noted that
the utilization of a pruning based on optimistic estimate by the VLSD algorithm has an
evident impact. It will also be noted that, overall, this pruning strategy allows the VLSD
algorithm to spend less time, consume less memory, and visit fewer nodes; all of this while
remaining exhaustive and generating the same subgroups. Additionally, when comparing
the VLSD, BSD, CBSD, and CPBSD algorithms, it will be noted that the last three algorithms
are at a clear disadvantage with respect to the VLSD algorithm as regards the max memory
usage. However, it will also be noted that, overall, the BSD, CBSD, and CPBSD algorithms
spend less time and select less nodes owing to the pruning based on optimistic estimate,
relevant subgroups, closed subgroups, and closed-on-the-positives subgroups.

6. Conclusions

This research was carried out in order to design and implement a new exhaustive
Subgroup Discovery (SD) algorithm that would be more efficient than the state-of-the-art
algorithms. We have proposed the VLSD algorithm, along with a new data structure
denominated as a vertical list. This algorithm is based on the equivalence class exploration
strategy and uses a pruning based on optimistic estimate.

Note that, although all these concepts already appear in the literature separately, this
is the first time that they are used, implemented, and validated together.

Some existing SD algorithms, such as SD-Map or BSD, have adapted and used classical
data structures, such as FPTree or Bitsets. Our algorithm uses a vertical list data structure,
which represents both a subgroup and the dataset instances in which it appears. Moreover,
it provides an easy and efficient computation of the subgroup refinements. The VLSD
algorithm is also easily parallelizable owing to the utilization of the equivalence class
exploration strategy, along with the aforementioned data structure.

Our experiments were carried out using a collection of standard, well-known, and
popular datasets from the literature, and analyzed certain metrics, such as runtime, max
memory usage, subgroups selected, and nodes visited. They confirmed that, overall, our
approach is more efficient than the other algorithms considered.

Additionally, as an example of practical implications, this algorithm could be applied
to certain specific domains, e.g., medical research or patient phenotyping.

Future research could continue and extend the algorithm in different ways. First,
certain modifications could be made in order to avoid the need to extract all the subgroups
explored (e.g., extracting only the top-k subgroups). Finally, some other pruning strategies
could be added in order to make the VLSD algorithm even more efficient (e.g., closed
subgroups or closed-on-the-positives subgroups).

Author Contributions: All authors contributed equally to this work: conceptualization, methodology,
software, validation, formal analysis, investigation, resources, data curation, writing—original draft
preparation, writing—review and editing, visualization, supervision, A.L.-M.-C., J.M.J., M.C. and
B.C.-S.; project administration, J.M.J. and M.C.; funding acquisition, A.L.-M.-C., J.M.J. and M.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the CONFAINCE project (Ref: PID2021-122194OB-I00)
by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European
Union” or by the “European Union NextGenerationEU/PRTR”, and by the GRALENIA project
(Ref: 2021/C005/00150055) supported by the Spanish Ministry of Economic Affairs and Digital
Transformation, the Spanish Secretariat of State for Digitization and Artificial Intelligence, Red.es
and by the NextGenerationEU funding. Moreover, this research was also partially funded by a
national grant (Ref:FPU18/02220), financed by the Spanish Ministry of Science, Innovation and
Universities (MCIU).

Data Availability Statement: We use a collection of public, well-known and popular datasets from the
literature. For easing the reproducibility of our research, our proposal is implemented in subgroups
python library, which is available on PyPI and on https://github.com/antoniolopezmc/subgroups,
accessed on 24 May 2023.

https://github.com/antoniolopezmc/subgroups

Algorithms 2023, 16, 274 22 of 26

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Extended Problem Definition

The fundamental concepts of the Subgroup Discovery (SD) technique are extended
and detailed as follows:

Definition A1 (Attribute a). An attribute a is a unique characteristic of an object, which has an
associated value. An example of an attribute is a = age:30.

Definition A2 (Domain of an attribute a). The domain of an attribute a (denoted as dom(a)) is
the set of all the unique values that said attribute can take. An attribute can be nominal or numeric,
depending on its domain.

Definition A3 (Instance i). An instance i is a tuple i = (a1, . . . , aM) of attributes. Given the
attributes a1 = age:25 and a2 = sex:woman, an example of an instance is i = (age:25, sex:woman).

Definition A4 (Dataset d). A dataset d is a tuple d = (i1, . . . , iN) of instances. Given the
instances i1 = (age:30, sex:man) and i2 = (age:25, sex:woman), an example of a dataset is
d = ((age:30, sex:man), (age:25, sex:woman)).

The dataset space is denoted asD.
All values from a dataset d can be indexed with two integers, x and y. We use the

notation vx,y to indicate the value of the x-th instance ix and of the y-th attribute ay from a
dataset d.

Definition A5 (Selector e). Given an attribute ay from a dataset d, a binary operator ∈ {=,,,<,>
,≤,≥} and a value w ∈ dom(ay), a selector e is a 3-tuple of the form (ay.characteristic, operator, w).
Note that when an attribute ay is nominal, only the = and , operators are permitted.

Informally, a selector is a binary relation between an attribute from a dataset and a
value in the domain of that attribute. This relation represents a property of a subset of
instances from that dataset.

It is essential to bear in mind that the first element of a selector refers only to the
attribute name, i.e., the characteristic, and not to the complete attribute itself.

Definition A6 (Selector covering). Given an instance ix and an attribute ay from a dataset d,
and a selector e = (ay.characteristic, operator, w ∈ dom(ay)), then ix is covered by e (denoted as
ix @ e) if the binary expression “vx,y operator w” holds true. Otherwise, we say that it is not covered
by e (denoted as ix a e).

For example, given the instance ix = (age:25, sex:woman) and the selectors e1 = (age, <, 20)
and e2 = (sex, =, woman), it will be noted that ix a e1 and ix @ e2.

Definition A7 (Pattern p). A pattern p is a list of selectors < e1, . . . , e j > in which all attributes
of the selectors are different. Moreover, its size (denoted as |p|) is defined as the number of selectors
that it contains.

In general, a pattern is interpreted as a list of selectors (i.e., as a conjunction) that
represents a list of properties of a subset of instances from a dataset.

Definition A8 (Pattern covering). Given an instance ix from a dataset d and a pattern p, then ix
is covered by p (denoted as ix @ p) if ∀e ∈ p, ix @ e. Otherwise, we say that it is not covered by p
(denoted as ix a p).

Algorithms 2023, 16, 274 23 of 26

Definition A9 (Subgroup s). A subgroup s is a pair (pattern, selector) in which the pat-
tern is denoted as s.description and the selector is denoted as s.target. Given the dataset
d = ((fever:yes, sex:man, flu:yes), (fever:yes, sex:woman, flu:no)), an example of a subgroup
is s = (< (f ever,=, yes), (sex,=, woman) >, (f lu,=, yes)).

The subgroup space is denoted as S.

Definition A10 (Subgroup refinement s′). Given a subgroup s, each of its refinements s′ (denoted
as s ≺ s′) is a subgroup with the same target, s′.target = s.target, and with an extended description,
s′.description = concat(s.description,< e1, . . . , e j >).

Definition A11 (Refine operator). Given two subgroups, sx and sy, the re f ine operator generates
a refinement sx,y of sx, extending its description with the non-common suffix of sy. For example,
if sx.description = <e1> and sy.description = <e2>, then sx,y.description = <e1, e2>; and if
sx.description = <e1, e2, e3> and sy.description = <e1, e2, e4>, then sx,y.description = <e1, e2, e3,
e4>. Formally:

re f ine : S×S → S (A1)

This means that the re f ine operator takes as an input two subgroups and generates as
an output one subgroup.

Definition A12 (Quality Measure q). Given a subgroup s and a dataset d, a quality measure q is a
function that computes one numeric value according to that subgroup s and to certain characteristics
from that dataset d. Formally:

q : S×D → R (A2)

q(s, d) ∈ R (A3)

Definition A13 (Optimistic Estimate oe). Given a quality measure q and a dataset d, an optimistic
estimate oe of q is a quality measure that satisfies the following condition:

∀s, s′ , s ≺ s′ ⇒ oe(s, d) ≥ q(s′, d) (A4)

Informally, an optimistic estimate is a quality measure which, for a certain subgroup,
provides a quality upper bound for all its refinements [9].

Focusing on a specific subgroup s and on a specific dataset d, the following functions
can be defined:

Definition A14 (Function tp (true positives)). The function tp is defined as the number of
instances ix from the dataset d that are covered by the subgroup description s.description and by the
subgroup target s.target. Formally:

tp : S×D → N (A5)

tp(s, d) = |{ix ∈ d : ix @ s.description∧ ix @ s.target}| (A6)

Definition A15 (Function f p (false positives)). The function f p is defined as the number of
instances ix from the dataset d that are covered by the subgroup description s.description, but not by
the subgroup target s.target. Formally:

f p : S×D → N (A7)

f p(s, d) = |{ix ∈ d : ix @ s.description∧ ix a s.target}| (A8)

Algorithms 2023, 16, 274 24 of 26

Definition A16 (Function TP (true population)). The function TP is defined as the number of
instances ix from the dataset d that are covered by the subgroup target s.target. Formally:

TP : S×D → N (A9)

TP(s, d) = |{ix ∈ d : ix @ s.target}| (A10)

Definition A17 (Function FP (false population)). The function FP is defined as the number of
instances ix from the dataset d that are not covered by the subgroup target s.target. Formally:

FP : S×D → N (A11)

FP(s, d) = |{ix ∈ d : ix a s.target}| (A12)

A quality measure q can, therefore, be formally redefined using the previous four
functions as follows:

Definition A18 (Quality Measure q). Given a subgroup s and a dataset d, a quality measure q is a
function that computes one numeric value according to the functions tp, f p, TP, and FP. Formally:

q : N×N×N×N→ R (A13)

q(tp(s, d), f p(s, d), TP(s, d), FP(s, d)) ∈ R (A14)

The four functions described above are sufficiently expressive to compute any quality
measure. However, the following are also used in the literature:

Definition A19 (Function n). The function n is defined as the number of instances ix from a
dataset d that are covered by the subgroup description s.description. Formally:

n : S×D → N (A15)

n(s, d) = |{ix ∈ d : ix @ s.description}| (A16)

Definition A20 (Function N). The function N is defined as the number of instances ix from the
dataset d. Formally:

N : S×D → N (A17)

N(s, d) = |{ix ∈ d : ix}| (A18)

Definition A21 (Function p). The function p is defined as the distribution of the subgroup target
s.target with respect to the instances ix from a dataset d covered by the subgroup description
s.description. Formally:

p : S×D → N (A19)

p(s, d) =
|{ix ∈ d : ix @ s.description∧ ix @ s.target}|

|{ix ∈ d : ix @ s.description}|
(A20)

Definition A22 (Function p0). The function p0 is defined as the distribution of the subgroup
target s.target with respect to all instances ix from a dataset d. Formally:

p0 : S×D → N (A21)

p0(s, d) =
|{ix ∈ d : ix @ s.target}|

|{ix ∈ d : ix}|
(A22)

Algorithms 2023, 16, 274 25 of 26

Definition A23 (Function tn (true negatives)). The function tn is defined as the number of
instances ix from the dataset d that are covered by neither the subgroup description s.description nor
the subgroup target s.target. Formally:

tn : S×D → N (A23)

tn(s, d) = |{ix ∈ d : ix a s.description∧ ix a s.target}| (A24)

Definition A24 (Function f n (false negatives)). The function f n is defined as the number of
instances ix from the dataset d that are not covered by the subgroup description s.description, but are
covered by the subgroup target s.target. Formally:

f n : S×D → N (A25)

f n(s, d) = |{ix ∈ d : ix a s.description∧ ix @ s.target}| (A26)

Table 1 shows the confusion matrix of a subgroup s with respect to a dataset d. This
matrix summarizes the functions describe above.

With regard to the functions defined previously, some equivalences are defined in
Section 3. Moreover, some popular quality measures for SD presented in the literature are
described in that section.

Definition A25 (Subgroup Discovery problem). Given a dataset d, a quality measure q and a
numeric value quality_threshold, the subgroup discovery problem consists of exploring the search
space of d in order to enumerate the subgroups that have a quality measure value above the selected
threshold. Formally:

R = {(s, q(s, d))|q(s, d) ≥ quality_threshold} (A27)

The search space of a problem (i.e., of a dataset d) can be visually illustrated as a
lattice [24] (see Figure 1). According to this comparison, the first level of the search space of a
problem contains all those subgroups s whose descriptions have a size of 1 (i.e., |s.description|
is equal to 1), the second level of the search space of a problem contains all those subgroups s
whose descriptions have a size of 2 (i.e., |s.description| is equal to 2) and, in general, the level
n of the search space of a problem contains all those subgroups s whose descriptions have
the size n (i.e., |s.description| is equal to n).

References
1. Atzmueller, M. Subgroup Discovery—Advanced Review. WIREs: Data Min. Knowl. Discov. 2015, 5, 35–49.
2. Atzmüller, M.; Puppe, F.; Buscher, H.P. Exploiting Background Knowledge for Knowledge-Intensive Subgroup Discovery.

In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Edinburgh, UK, 30 July–5 August 2005;
pp. 647–652.

3. Gamberger, D.; Lavrac, N. Expert-Guided Subgroup Discovery: Methodology and Application. J. Artif. Intell. Res. 2002,
17, 501–527. [CrossRef]

4. Jorge, A.M.; Pereira, F.; Azevedo, P.J. Visual Interactive Subgroup Discovery with Numerical Properties of Interest. In Proceedings
of the Discovery Science, Barcelona, Spain, 7–10 October 2006; pp. 301–305.

5. Duivesteijn, W.; Knobbe, A. Exploiting False Discoveries—Statistical Validation of Patterns and Quality Measures in Subgroup
Discovery. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Vancouver, BC, Canada, 11–14
December 2011; pp. 151–160.

6. Ventura, S.; Luna, J.M. Supervised Descriptive Pattern Mining; Springer: Berlin/Heidelberg, Germany, 2018.
7. Lopez-Martinez-Carrasco, A.; Juarez, J.M.; Campos, M.; Canovas-Segura, B. Phenotypes for Resistant Bacteria Infections Using

an Efficient Subgroup Discovery Algorithm. In Proceedings of the Artificial Intelligence in Medicine, Virtual Event, 15–18 June
2021; pp. 246–251.

8. Herrera, F.; Carmona, C.J.; González, P.; Del Jesus, M.J. An overview on subgroup discovery: Foundations and applications.
Knowl. Inf. Syst. 2011, 29, 495–525. [CrossRef]

http://doi.org/10.1613/jair.1089
http://dx.doi.org/10.1007/s10115-010-0356-2

Algorithms 2023, 16, 274 26 of 26

9. Grosskreutz, H.; Rüping, S.; Wrobel, S. Tight Optimistic Estimates for Fast Subgroup Discovery. In Proceedings of the Proc.
of Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Antwerp, Belgium, 15–19 September 2008;
pp. 440–456.

10. Klösgen, W. Explora: A Multipattern and Multistrategy Discovery Assistant. In Advances in Knowledge Discovery and Data Mining;
American Association for Artificial Intelligence: Washington, DC, USA, 1996; pp. 249–271.

11. Wrobel, S. An algorithm for multi-relational discovery of subgroups. In Proceedings of the Principles of Data Mining and
Knowledge Discovery, Trondheim, Norway, 24–27 June 1997; pp. 78–87.

12. Friedman, J.; Fisher, N. Bump hunting in high-dimensional data. Stat. Comput. 1999, 9, 123–143. [CrossRef]
13. Klösgen, W.; May, M. Census Data Mining—An Application. In Proceedings of the 6th European Conference on Principles and

Practice of Knowledge Discovery in Databases (PKDD 2002), Helsinki, Finland, 19–23 August 2002; p. 733–739.
14. Lavrac, N.; Železný, F.; Flach, P. RSD: Relational Subgroup Discovery through First-Order Feature Construction. In Proceedings

of the Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), Sydney, Australia, 9–11 July 2002;
Volume 2583, pp. 149–165.

15. Lavrac, N.; Kavsek, B.; Flach, P.A.; Todorovski, L. Subgroup Discovery with CN2-SD. J. Mach. Learn. Res. 2004, 5, 153–188.
16. Lavrac, N.; Gamberger, D. Relevancy in Constraint-Based Subgroup Discovery. In Proceedings of the European Workshop on

Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, 11–13 March 2004; pp. 243–266.
17. Kavšek, B.; Lavrac, N.; Jovanoski, V. APRIORI-SD: Adapting association rule learning to subgroup discovery. In Proceedings of

the International Symposium on Intelligent Data Analysis, Berlin, Germany, 28–30 August 2003; Volume 20, pp. 230–241.
18. Mueller, M.; Rosales, R.; Steck, H.; Krishnan, S.; Rao, B.; Kramer, S. Subgroup Discovery for Test Selection: A Novel Approach

and Its Application to Breast Cancer Diagnosis. In Proceedings of the 8th International Symposium on Intelligent Data Analysis:
Advances in Intelligent Data Analysis VIII, Lyon, France, 31 August–2 September 2009; p. 119–130.

19. Lemmerich, F.; Atzmüller, M.; Puppe, F. Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl.
Discov. 2015, 30, 711–762. [CrossRef]

20. Atzmueller, M.; Puppe, F. SD-Map—A Fast Algorithm for Exhaustive Subgroup Discovery. In Proceedings of the Knowledge
Discovery in Databases (PKDD 2006), Berlin, Germany, 18–22 September 2006; pp. 6–17.

21. Lemmerich, F.; Rohlfs, M.; Atzmüller, M. Fast Discovery of Relevant Subgroup Patterns. In Proceedings of the 23rd International
Florida Artificial Intelligence Research Society Conference (FLAIRS-23), Daytona Beach, FL, USA, 19–21 May 2010.

22. Han, J.; Pei, J.; Yin, Y. Mining Frequent Patterns without Candidate Generation. SIGMOD Rec. 2000, 29, 1–12. [CrossRef]
23. Garriga, G.; Kralj Novak, P.; Lavrac, N. Closed Sets for Labeled Data. J. Mach. Learn. Res. 2006, 9, 163–174.
24. Zaki, M.J.; Parthasarathy, S.; Ogihara, M.; Li, W. Parallel Algorithms for Discovery of Association Rules. Data Min. Knowl. Discov.

1997, 1, 343–373. [CrossRef]
25. Nouioua, M.; Fournier Viger, P.; Wu, C.W.; Lin, C.W.; Gan, W. FHUQI-Miner: Fast high utility quantitative itemset mining. Appl.

Intell. 2021, 51, 6785–6809. [CrossRef]
26. Qu, J.F.; Fournier-Viger, P.; Liu, M.; Hang, B.; Wang, F. Mining high utility itemsets using extended chain structure and utility

machine. Knowl.-Based Syst. 2020, 208, 106457. [CrossRef]
27. Le, T.; Nguyen, T.L.; Huynh, B.; Nguyen, H.; Hong, T.P.; Snasel, V. Mining colossal patterns with length constraints. Appl. Intell.

2021, 51, 8629–8640. [CrossRef]
28. Fournier-Viger, P.; Gomariz, A.; Campos, M.; Thomas, R. Fast Vertical Mining of Sequential Patterns Using Co-occurrence

Information. In Proceedings of the Advances in Knowledge Discovery and Data Mining—18th Pacific-Asia Conference (PAKDD),
Tainan, Taiwan, 13–16 May 2014; Volume 8443, pp. 40–52.

29. Fayyad, U.M.; Irani, K.B. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), Chambéry, France, 28 August–3 September 1993.

30. Proença, H.M.; Grünwald, P.; Bäck, T.; van Leeuwen, M. Robust subgroup discovery. Data Min. Knowl. Discov. 2022, 36,
1885–1970. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1008894516817
http://dx.doi.org/10.1007/s10618-015-0436-8
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1023/A:1009773317876
http://dx.doi.org/10.1007/s10489-021-02204-w
http://dx.doi.org/10.1016/j.knosys.2020.106457
http://dx.doi.org/10.1007/s10489-021-02357-8
http://dx.doi.org/10.1007/s10618-022-00856-x

	Introduction
	Related Work
	Problem Definition
	Algorithm
	Experiments, Results and Discussion
	Conclusions
	Appendix A
	References

